
����������	
�����(Eds.): PKDD 2003, LNAI 2838, pp. 253–265, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Efficiently Finding Arbitrarily Scaled Patterns
in Massive Time Series Databases

Eamonn Keogh

University of California - Riverside
Computer Science & Engineering Department

Riverside, CA 92521,USA
eamonn@cs.ucr.edu

www.cs.ucr.edu/~eamonn/

Abstract. The problem of efficiently finding patterns in massive time series da-
tabases has attracted great interest, and, at least for the Euclidean distance
measure, may now be regarded as a solved problem. However in recent years
there has been an increasing awareness that Euclidean distance is inappropriate
for many real world applications. The limitations of Euclidean distance stems
from the fact that it is very sensitive to distortions in the time axis. A partial so-
lution to this problem, Dynamic Time Warping (DTW), aligns the time axis be-
fore calculating the Euclidean distance. However, DTW can only address the
problem of local scaling. As we demonstrate in this work, uniform scaling may
be just as important in many domains, including applications as diverse as bio-
informatics, space telemetry monitoring and motion editing for computer ani-
mation. In this work, we demonstrate a novel technique to speed up similarity
search under uniform scaling. As we will demonstrate, our technique is simple
and intuitive, and can achieve a speedup of 2 to 3 orders of magnitude under re-
alistic settings.

1 Introduction

The problem of efficiently finding patterns in massive time series databases has at-
tracted great interest in the database and data mining communities, and, at least for
the Euclidean distance measure, may now be regarded as a solved problem [2, 5, 11,
12]. However in recent years there has been an increasing awareness that Euclidean
distance is inappropriate for many real world applications [1, 6]. The limitations of
Euclidean distance stems from the fact that it is very sensitive to distortions in the
time axis. A partial solution to this problem, Dynamic Time Warping (DTW), essen-
tially aligns the time axis before calculating the Euclidean distance. Because of its
well-documented lethargy, DTW was deemed impractical for large databases until a
recent breakthrough demonstrated that DTW can be indexed [10]. DTW can only
address the problem of local scaling, however uniform scaling may be just as impor-
tant in many domains, including applications as diverse as bioinformatics, space te-
lemetry monitoring and motion editing for computer animation.

254 Eamonn Keogh

There exists a handful of techniques that can support similarity search under uni-
form scaling if the scaling factor is known in advance [3, 9]; however, in most do-
mains it is unlikely that we know the scaling factor. In such instances we must resort
to multiple queries, one for each possible scaling factor. Clearly, this is untenable for
even moderately large databases. What we really need is a technique that can perform
a single efficient query to retrieve all qualifying time series with any scaling. This is
exactly the contribution of this paper.

The rest of this paper is organized as follows. Section 2 carefully motivates the
need for similarity search under uniform scaling, and reviews related work. In Section
3 we introduce our approach to the problem. Section 4 contains an extensive empiri-
cal evaluation on 5 real world datasets. Finally, Section 5 contains conclusions and
directions for future work.

2 Motivating the Need for Uniform Scaling

In addition to the classic Euclidean and Dynamic Time Warping distance measures,
the last decade has seen the introduction of dozens of new similarity measures for
time series. Recent empirical studies, however, suggest that the majority of these
measures are of dubious utility for real world problems [13]. We will therefore take
the time to motivate the absolute need for uniform scaling in several real world appli-
cations.

2.1 Space Shuttle Telemetry Monitoring

The Space Shuttle transmits thousands of sensor readings to Earth at 1mhz or greater
during flight. With over 100 missions, averaging 8.6 days in orbit, this massive re-
pository of data constitutes a potential goldmine for engineers wishing understand
and predict in-flight anomalies [4]. Consider an engineer wishing to discover all oc-
currences of a “dipping” event. This event consists of a sudden positive change in
yaw, followed by an auto correction by the Shuttle’s onboard flight guidance system.
Such events can easily be visually located in a small time series, as they form a ‘V’
pattern. However, in a massive dataset we must resort to a computerized similarity
search.

If we create a ‘V’ shaped query that is 4 minutes long, and search using the Euclid-
ean distance, we correctly find one true event as shown in Fig. 1 A. However, the
second and third best matches fail to find the other two “dips”. In contrast, if we
issue a query for all ‘V’ shaped patterns in the range of 4 minutes to 6 minutes, we
can correctly discover all three such events as shown in Fig. 1 B.

2.2 Gene Expression Data

Recent advances in bioinformatics technology have resulted in an explosion of gene
expression data to be analyzed [1]. Several of the most important tasks, such as clus-

Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases 255

tering, classification and missing value reconstruction, require similarity matching as
a first step. Both Euclidean distance and DTW are used; however, we argue that uni-
form scaling may be more useful for some tasks and datasets. Consider the two se-
quences shown in Fig. 2.

Fig. 1. Eight hours of STS-57 Space Shuttle Inertial Sensor Data: A) A ‘V’ shaped query cor-
rectly matches one steep valley in the data, but the second and third best matches fail to find the
two other valleys because they happen more slowly. B) A ‘V’ shaped query that is allowed to
rescale itself by up to 50% correctly finds the three valleys. The second and third best matches
have a scaling factor (sf) of 1.12 and 1.14 respectively

Fig. 2. Two yeast cell-cycle gene expression time series, from genes known to be functionally
related. (Left) Using the original scale, the genes appear to be a poor match. (Right) If the
shorter time series is rescaled by a scaling factor of 1.41, it becomes a high quality match to the
“prefix” of the longer time series

Although the two genes are known to be functionally related [1], the raw time series
subjectively appear to be a poor match. Simply rescaling the shorter time series by a
factor of 1.41 allows the underlying similarity to be more readily discovered.

We considered other approaches for this problem. Euclidean distance is a very
commonly used technique, but it is only defined for time series of the same length.
One solution is to normalize the lengths with interpolation; another is to truncate the
longer time series. Although DTW is defined for time series of different lengths,
interpolation and truncation can also be useful here. In Fig. 3. we show all combina-
tions of possibilities, none of them succeeds in capturing the underlying similarity of
the data.

2.3 Motion Capture Editing

Motion capture data is increasingly used in video games, movie special effects and
gait analysis [6]. The following is a classic problem in this domain. Given two exam-
ples of a human performing a task, once slowly, and once quickly, interpolate the
motion at any desired speed [20]. Figure 4 shows an example. The problem is non-

256 Eamonn Keogh

trivial because of non-linear effects in human dynamics. Nevertheless correctly align-
ing the two time series from each instance is a critical first step in solving the prob-
lem. This can be achieved manually for a simple movie special effect, but for real
time video games, or complex effect shots (i.e, the battle scenes in The Lord of the
Rings), automation is required.

Fig. 3. None of the published alternatives to uniform scaling produce intuitive alignments
between the two gene expression time series introduced in this section. Clockwise from the top
left, DTW after truncating the longer time series, classic DTW, DTW after length normaliza-
tion, Euclidean distance after length normalization

Fig. 4. (left) A computer animation of a boxer, driven by a motion capture system (center).
Given that we have captured an example of a fast moment and a slow movement (right), an
important problem in motion capture editing is to interpolate the movement at any desired
speed. Aligning the signals with uniform scaling is a important first step in this process

Having motivated the need for uniform scaling in several domains, we will next
consider related work.

2.4 Related Work

The past decade has seen literally hundreds of papers on similarity search using the
Euclidean distance [2, 5, 11, 12]; useful surveys can be found in [8] and [17]. How-

Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases 257

ever recent years have seen an increasing awareness that the Euclidean distance may
be unsuitable for many applications [1, 10, 18, 19].

Many non Euclidean distance measures for time series have been introduced, how-
ever, a recent empirical study suggests that most of them are of questionable utility
[10]. The only non-Euclidean distance measure that has been forcefully shown to be
superior to Euclidean distance is DTW, it’s utility has been demonstrated in domains
as diverse as bioinformatics [1], chemical engineering, gait analysis [6], speech rec-
ognition, meteorology, and robotics. However DTW only considers local stretching
and shrinking of the time axis. As we demonstrated in the previous section, uniform
scaling may be equally important in many domains.

The utility of uniform scaling has been noted before [9, 14, 15]. However, all pre-
vious work has focused on speeding up similarity search, when the scaling factor is
known. For example, there are systems that can index data of length 200, and support
queries of any length from 150 to 200. However the user must specify what length
query they wish to run, perhaps a query of length 175. If the user wishes to find the
best matching time series, at any length from 150 to 200, they would have to run
every possible query, of length 150, 151 ,…, 200 to find the answer. This is clearly
untenable. As all these systems claim about one order of magnitude speed up, placing
them in a loop and running them 50 times is clearly going to be self defeating. The
feature that differentiates our work from all the rest is that we allow a user to issue a
single query, and find the best match at any scaling. Our proposed technique is
unique in this aspect.

3 Uniform Scaling

We begin by formally defining the uniform scaling problem.
Suppose we have two time series, a query Q and a candidate match C, of length n

and m respectively, where:
Q = q1,q2,…,qi,…,qn (1)
C = c1,c2,…,cj,…,cm (2)

For clarity of presentation we will assume that n ≤ m, that is to say, C is always
longer than or equal to Q, and thus we are only interested in stretching the query to
match some prefix of C. This assumption is only to simplify notion and does not
preclude matching a time series by shrinking, since we can always reverse the roles of
the sequences.

If we wish to compare the two time series, and it happens that n = m, we can use
the ubiquitous Euclidean distance:

() ()∑ −≡
=

n

i
ii cqCQD

1

2,
(3)

Since the square root function is monotonic and concave, we can remove the
square root step and get identical rankings, clustering and classifications. This meas-
ure is called the squared Euclidean distance:

258 Eamonn Keogh

() ()∑ −≡
=

n

i
ii cqCQD

1

2, (4)

In addition to the utility of slightly speeding up the calculations, working with this
distance measure makes other optimizations possible [13].

If n is smaller than m, then the distance measures introduced above are not de-
fined. To compare the two time series in this case, we have several choices; we can
truncate C, and compare Q to [c1,c2,…, cn], or we can somehow stretch Q to be of
length m, or more generally we can stretch Q to be of length p, (n ≤ p ≤ m), truncate
off the last m-p values of Q, then use squared Euclidean distance. The informal idea
behind stretching can be captured in the more formal definition of scaling. To scale
time series Q to produce a new time series QP of length p, the formula is:

QPj = Q j * n/p , 1 ≤ j ≤ p (5)

Note that we can quickly obtain any scaling in O(p) time. We call the ratio p/n the
scaling factor or sf. Slightly different definitions of scaling do exist, but they do not
affect the results that follow. Fig. 5. visually summarizes the above definitions.

Fig. 5. A visual summary of the notation introduced in this section. From (left) to (right) A
candidate time series C, and a shorter query Q. The squared Euclidean distance between Q and
the first n datapoints in C can be visualized as the sum of the squared lengths of the gray hatch
lines. The query Q can be stretched to length p, producing a new time series QP. In this case,
QP is a good match to the first p datapoints in C

3.1 Brute Force Search under Uniform Scaling

If we wish to find the best scaled match between Q and C, we can simply test all
possible scalings, as illustrated in Table 1.

Table 1. An algorithm to find the best scaled match between two time series

 Algorithm: Test_All_Scalings(Q,C)
best_match_val = inf;
best_scaling_factor = null;
for p = n to m
 QP = rescale(Q,p);
 distance = squared_Euclidean_distance(QP, C[1..p]);
 if distance < best_match_val
 best_match_val = distance;

best_scaling_factor = p/n;
end;

end;
return(best_match_val, best_scaling_factor)

Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases 259

The algorithm takes only O(p*(m-n)) time and seems unworthy of any optimization
effort. However, when mining real world datasets, rather than having a single candi-
date time series C, we are typically confronted with massive collection of possible
candidate time series, which will denote as C. As a motivating example, the MACHO
dataset, a collection of star light curve microlensing events, has over 40 million time
series [7]. To find the best scaled match to a query Q, in data collection C, we can use
a brute force algorithm as shown in Table 2.

Note that the time complexity for this algorithm is O(|C| * (m-n)), this is simply
untenable for large datasets.

Table 2. An algorithm to find the best scaled match to query from a set of possible matches

 Algorithm: Search_Database_for_Scaled_Match(Q,C)
overall_best_time_series = null;
overall_best_match_val = inf;
overall_best_scaling = null;
for i = 1 to number_of_time_series_in_(C)
 [dist, scale] = Test_All_Scalings(Q,Ci)
 if dist < overall_best_match_val
 overall_best_time_series = i;

overall_best_match_val = dist;
overall_best_scaling = scale;

end;
end;

return(overall_best_time_series, overall_best_match_val, overall_best_scaling)

3.2 Speeding up Search with Lower Bounding

To speed up matching under uniform scaling we will rely on the classic idea of lower
bounding. The intuition is this: given some technique for quickly calculating the
minimum possible distance between the query and a candidate sequence at any possi-
ble scaling, we can prune off many calculations. In more detail, we maintain a vari-
able that contains the distance of the best-scaled match encountered thus far. Before
calling the subroutine Test_All_Scalings on the next candidate time series, we
first perform the quick lower bounding test. If the lower bound distance between the
candidate and the query is greater than the distance of the best-scaled match already
seen, we can simply discarded the candidate from consideration. For clarity, the idea
is formalized in Table 3, although the algorithm differs from the algorithm in Table 2
only in the addition of the lower bounding test as a precondition to the subroutine
Test_All_Scalings.

There are only two important properties of a lower bounding measure:

• It must be fast to compute. A measure that takes as long to compute as
Test_All_Scalings is of little use. We would like the time complexity to be at
most linear in the length of the time series.

• It must be a relatively tight lower bound. A function can achieve a trivial lower
bound by always returning zero as the lower bound estimate. However, in order
for the algorithm in Table 3 to be effective, we require a method that tightly
bounds the value of the best match.

260 Eamonn Keogh

Table 3. A modified algorithm for searching for the best match under uniform scaling

Algorithm: Faster_Search_Database_for_Scaled_Match(Q,C)
overall_best_time_series = null;
overall_best_match_val = inf;
overall_best_scaling = null;
for i = 1 to number_of_time_series_in_(C)
 if lower_bound_distance(Q,Ci) < overall_best_match_val

[dist, scale] = Test_All_Scalings(Q,Ci)
 if dist < overall_best_match_val
 overall_best_time_series = i;

overall_best_match_val = dist;
overall_best_scaling = scale;

end;
 end;
end;

return(overall_best_time_series, overall_best_match_val, overall_best_scaling)

The idea of speeding up search using lower bounding is not new; in fact, it is the
cornerstone of virtually every time series similarity search algorithm. However, while
dozens of lower bounding measures are known for Euclidean distance [2, 5, 9, 11,
12], and 3 lower bounding measures known for DTW [10], there are no lower bound-
ing measures in the literature for uniform scaling. In the next section we introduce the
first such measure.

3.3 Lower Bounding Uniform Scalings

To create a lower bounding distance measure for uniform scaling we will generate a
bounding envelope. Bounding envelopes were introduced in [10] to lower bound
DTW, and since then they have sparked a flurry of research activity [16, 18, 19].
While the principle is the same here, the definitions of the envelope are very differ-
ent. In particular, we create two sequences U and L, such that:

Ui = max(c (i-1)*m/n +1,…, c i*m/n) (6)

Li = min(c (i-1)*m/n +1,…, c i*m/n) (7)

These sequences can be visualized as bounding the first n points of the time series C.
Fig. 6. shows some examples.

Fig. 6. (Left) A time series C of length 100. (Center) The time series shrouded by upper and
lower envelopes U and L with lengths 80. (Right) The same time series shrouded by upper and
lower envelopes U and L with lengths 60

Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases 261

Having defined the U and L, we can now introduce the lower bounding function, it
was originally introduced in [10] for the problem of DTW.

∑

=

<−
>−

=
n

i
iiii

iiii

otherwise

LqifLq

UqifUq

CQKeoghLB
1

2

2

0

)(

)(

),(_
 (8)

This function can be visualized as the squared Euclidean distance between any part of
the query time series not falling within the envelope and the nearest (orthogonal)
corresponding section of the envelope. Fig. 7. illustrates the idea.

Fig. 7. (Left) A time series C and a shorter query Q. (Right) A visualization of the lower-
bounding function LB_Keogh(Q,C). Note that any part of query time series Q that falls inside
the bounding envelope is ignored. Otherwise the distance corresponds to the sum of the squared
straight line distances from the query to the nearest point in the envelope (the gray hatch lines)

We have claimed that LB_Keogh(Q,C) lower bounds the squared Euclidean distance
between any scaling of Q, and the appropriate prefix of C. The proof is straightfor-
ward, we omit it brevity.

3.4 Further Optimizations

While LB_Keogh(Q,C) is the optimal lower bound for uniform scaling, given only U
and L, several further optimizations are possible in the context of similarity search.
We will give one such example here, using concrete numbers for clarity. Suppose we
are using the algorithm in Table 3 for similarity search, with n = 100, and m = 200.
Further suppose that the best matching time series encountered thus far is at a dis-
tance of 10. If we test the lower bound of the next candidate time series and we find it
to be 11, we can prune it from the search space. However, if the lower bound is 9 we
must call the Test_All_Scalings subroutine.

We can observe, however, that although the lower bounding test did fail for the
fairly drastic scaling factor of 2 (i.e. 200/100), it would be less likely to do so for
smaller scaling factor, say 3/2. We could rescale the query to length 150, rebuild U
and L and apply the lower bounding test again. If it happens that the lower bound is
now 10 or greater, we could prune all possible scalings from length 150 to 200 from
consideration, and only examine the scalings from 100 to 149. Of course, we could
apply the above logic recursively to the scalings from 100 to 149, and more generally
this suggests doing a binary search over all the scalings. We call this algorithm Bi-

262 Eamonn Keogh

nary_Test_All_Scalings, but omit a detailed description since it is rather obvi-
ous. Note that we cannot use binary search to speed up the brute force algorithm,
since the squared Euclidean distance does not vary monotonically with the scaling
factor (in general). We use this optimization in all our experiments below.

4 Experimental Results

In this section we test our proposed approach with a comprehensive set of experi-
ments. We compare only to the brute force search algorithm defined in Table 2, be-
cause there are no other techniques in existence that support uniform scaling queries,
with a single query. To eliminate the possibility of implementation bias [13], we will
report the Pruning Power, the fraction of times that our approach must call the
squared Euclidean distance function.

searchforcebrutebyfunctionncestaditocallsofNumber

approachproposedbyfunctionncestaditocallsofNumberPowerruningP = (13)

This measure depends only on the tightness of the lower bounds, and is independent
of language, platform, caching or any other implementation details. As an additional
sanity check we also measured the CPU time, however since it is almost perfectly
correlated with the Pruning Power, we will omit it for brevity.

It has been forcefully demonstrated that the quality of lower bounding measures,
and therefore the speed of search, can vary greatly depending on the data [13]. We
therefore tested our approach on a variety of datasets. Fig 8. shows a sample of each.

Fig. 8. Randomly extracted samples of the time series datasets

Since the speed-up obtained for our approach clearly depends on range of scaling
factors and the length of the time series, we will test our approach for the cross prod-
uct of scaling factors = {1.05, 1.10, 1.15, 1.20, 1.25} and time series candidate
lengths of {16, 32, 64, 128, 256}.

We conducted our experiments as follows. We randomly removed a subsequence
of the appropriate length from the data to use as a query, then we randomly choose
5,000 other subsequences to act as the database. We then searched for the best scaled
match, noting the pruning power. We repeated this 100 times for every combination
of scaling factors and candidate lengths. Fig 9. shows the results.

The results are quite impressive, the worst case is a single order of magnitude
speed-up, more generally two to three orders of magnitude speedup are observed.
Note that, the pruning power seems independent of the candidate time series lengths,
but does get worse as the scaling factor increases. This is to be expected, since for
large scaling factors the LB_Keogh function has relatively little information with
which to calculate the lower bound.

Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases 263

Fig. 9. The pruning power of LB_Keogh of 5 different datasets, over a range of scaling factors
and candidate lengths

Fig. 10. The pruning power of LB_Keogh on the burst dataset, over a range of scaling factors
and database sizes. Note the scale of the Z-axis is different from that of Fig. 9

As with many indexing techniques, the pruning power of our approach improves
with the size of the dataset. The intuition behind this effect is that the larger the data-
set, the more likely we are to find a very close match early on in the search, and thus
derive the maximum benefit from the lower bound pruning test (the outermost if
statement in Table 3). To demonstrate this, we repeated the previous experiment for
different size datasets. The results for just the burst dataset are shown in Fig. 10.

The results clearly show that as the database size increases, the pruning power im-
proves. This is a very desirable property when mining larger datasets.

5 Discussion and Conclusions

We have shown how to dramatically speed up similarity search under uniform warp-
ing, however, we have not considered indexing under uniform warping. Fortunately

264 Eamonn Keogh

the ability to index the data comes for free! A technique for indexing envelopes under
LB_Keogh was introduced in [10]. Since then, many other researchers have used this
technique and suggested extensions [16, 18, 19] (Note that paper [19] claims to intro-
duce the “concept of envelopes”, introduce must be a typo for review, since enve-
lopes were introduced in [10]). This explosion of interest has ensured that indexing of
time series envelopes has become a mature technology in only one year. We omitted
empirical testing of indexing for brevity and clarity; we simply note that it works
exceptionally well. We leave a full discussion for future work.

Acknowledgements

The author would like to thank Victor Zordan for his help with the motion capture
example, Dennis DeCoste at JPL for contributing the Space Shuttle data, and Jessica
Lin and Michalis Vlachos for their suggestions.

References

1. Aach, J. and Church, G. (2001). Aligning gene expression time series with time warping al-
gorithms. Bioinformatics. Volume 17, pp 495-508

2. Chan, K. & Fu, A. W. (1999). Efficient time series matching by wavelets. In proceedings
of the 15th IEEE Int’l Conference on Data Engineering. Sydney, Australia. pp 126-133

3. Chu, K., Lam., S. & Wong, M. (1998) An Efficient Hash-Based Algorithm for Sequence
Data Searching. The Computer Journal 41 (6): 402-415

4. Dennis DeCoste and Marie Levine. (2000). Automated Event Detection in Space Instru-
ments: A Case Study Using IPEX-2 Data and Support Vector Machines. SPIE Conference
Astronomical Telescopes and Instrumentation.

5. Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching
in time-series databases. In Proc. ACM SIGMOD Conf., Minneapolis. pp. 419-429

6. Gavrila, D. M. & Davis,L. S.(1995). Towards 3-d model-based tracking and recognition of
human movement: a multi-view approach. In International Workshop on Automatic Face-
and Gesture-Recognition

7. Hegland, M., Clarke, W. & Kahn, M. (2002). Mining the MACHO dataset, Computer Phys-
ics Communications, Vol 142(1-3), December 15. pp. 22-28

8. Hetland, M. (2003). A Survey of Recent Methods for Efficient Retrieval of Similar Time
Sequences. To appear in an Edited Volume, Data Mining in Time Series Databases. Pub-
lished by the World Scientific Publishing Company

9. Kahveci, T. & Singh, A. (2001). Variable length queries for time series data. In proceed-
ings of the 17th Int’l Conference on Data Engineering. Heidelberg, Germany, pp 273-282

10. Keogh, E. (2002). Exact indexing of dynamic time warping. In 28th International Confer-
ence on Very Large Data Bases. Hong Kong. pp 406-417

11. Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2000). Dimensionality reduction for
fast similarity search in large time series databases. Journal of Knowledge and Information
Systems. pp 263-286

Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases 265

12. Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2001) Locally adaptive dimensional-
ity reduction for indexing large time series databases. In Proc of ACM SIGMOD Confer-
ence on Management of Data. pp 151-162

13. Keogh, E. and Kasetty, S. (2002). On the Need for Time Series Data Mining Benchmarks:
A Survey and Empirical Demonstration. In the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Edmonton, Canada. pp 102-111.

14. Park, S., Chu, W. W., Yoon, J. & Hsu, C. (2000). Efficient searches for similar subse-
quences of different lengths in sequence databases. In proceedings of the 16th Int’l Confer-
ence on Data Engineering. San Diego, CA, pp 23-32

15. Perng, C., Wang, H., Zhang, S., & Parker, S. (2000). Landmarks: a new model for similar-
ity-based pattern querying in time series databases. In proceedings of 16th International
Conference on Data Engineering. pp 33-42

16. Rath, T. & Manmatha, R. (2002): Lower-Bounding of Dynamic Time Warping Distances
for Multivariate Time Series. Tech Report MM-40, University of Massachusetts Amherst.

17. Roddick, J. F. and Spiliopoulou, M. (2001). A Survey of Temporal Knowledge Discovery
Paradigms and Methods. IEEE Tran’s on Knowledge and Data Engineering. pp. 750-767

18. Vlachos, M., Kollios, G., & Gunopulos, G. (2002). Discovering similar multidimensional
trajectories. In Proc 18th International Conference on Data Engineering

19. Zhu, Y. & Shasha, D. (2003). Query by Humming: a Time Series Database Approach. To
appear in SIGMOD 2003.

20. Zordan, V. B., Hodgins, J. K., (2002). Motion capture-driven simulations that hit and react,
ACM SIGGRAPH Symposium on Computer Animation.

	1 Introduction
	2 Motivating the Need for Uniform Scaling
	2.1 Space Shuttle Telemetry Monitoring
	2.2 Gene Expression Data
	2.3 Motion Capture Editing
	2.4 Related Work

	3 Uniform Scaling
	3.1 Brute Force Search under Uniform Scaling
	3.2 Speeding up Search with Lower Bounding
	3.3 Lower Bounding Uniform Scalings
	3.4 Further Optimizations

	4 Experimental Results
	5 Discussion and Conclusions
	References

