
Efficiently Indexing Shortest Paths by Exploiting
Symmetry in Graphs∗

Yanghua Xiao† Wentao Wu† Jian Pei‡ Wei Wang† Zhenying He†
†Department of Computing and Information Technology, Fudan University, Shanghai, China
{shawyh, weiwang1, zhenying}@fudan.edu.cn, {wentaowu1984}@gmail.com

‡School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
jpei@cs.sfu.ca

ABSTRACT
Shortest path queries (SPQ) are essential in many graph
analysis and mining tasks. However, answering shortest
path queries on-the-fly on large graphs is costly. To online
answer shortest path queries, we may materialize and in-
dex shortest paths. However, a straightforward index of all
shortest paths in a graph of N vertices takes O(N2) space.
In this paper, we tackle the problem of indexing shortest
paths and online answering shortest path queries. As many
large real graphs are shown richly symmetric, the central
idea of our approach is to use graph symmetry to reduce the
index size while retaining the correctness and the efficiency
of shortest path query answering. Technically, we develop
a framework to index a large graph at the orbit level in-
stead of the vertex level so that the number of breadth-first
search trees materialized is reduced from O(N) to O(|∆|),
where |∆| ≤ N is the number of orbits in the graph. We
explore orbit adjacency and local symmetry to obtain com-
pact breadth-first-search trees (compact BFS-trees). An ex-
tensive empirical study using both synthetic data and real
data shows that compact BFS-trees can be built efficiently
and the space cost can be reduced substantially. Moreover,
online shortest path query answering can be achieved using
compact BFS-trees.

1. INTRODUCTION
Shortest path queries (SPQ) are essential in many graph

∗The work was supported in part by the National Natural
Science Foundation of China under Grants No. 60673133 and
No. 60703093, the National Grand Fundamental Research
973 Program of China under Grant No. 2005CB321905,
Shanghai Leading Academic Discipline Project Under
Project No. B114, a Natural Sciences and Engineering Re-
search Council of Canada (NSERC) Discovery grant, and
a Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Accelerator Supplements grant.
All opinions, findings, conclusions and recommendations in
this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

v1

v10

v3 v4

v8v7

v6v5

v9

v2

Figure 1: Graph G as our Running example

analysis and mining tasks. For example, in metabolic net-
work analysis, for a given pair of compounds, the shortest
pathway is particularly interesting [19]. In a large communi-
cation network, the shortest paths are important for system
resource management [18, 5]. Moreover, shortest paths are
also important in characterizing the internal structure of a
large graph [27, 23].

Answering shortest path queries on-the-fly on large graphs
is costly. To find the shortest path between a pair of ver-
tices u and v, a straightforward approach is to start a recur-
sive breadth-first search from u until v is reached. Such a
straightforward method has time complexity O(N + M) on
a graph of N vertices and M edges [9].

To achieve online shortest path query answering, a materi-
alization approach is to pre-compute and index the shortest
paths between every pair of vertices in a large graph offline
so that any shortest path queries can be answered online in
almost constant time. In an undirected graph of N vertices,
there are N(N −1)/2 pairs of vertices and thus at least that
many shortest paths. A straightforward implementation of
the materialization strategy takes O(N2) space. For large
graphs, the space cost is often a critical concern.

In this paper, we tackle the problem of indexing short-
est paths and online answering shortest path queries. The
objective is to reduce the space cost of the indexes and si-
multaneously achieve online shortest path query answering.
Our method is motivated by the fact that symmetry exten-
sively exists in large graphs [11, 29, 30, 28]. While we will
review the formal definition of graph symmetry in Section 2,
let us illustrate the intuition using an example.

Example 1 (Symmetry). Consider graph G in Fig-
ure 1. Vertices v1 and v2 have the following property: for
any vertex v ∈ (V (G)− {v1, v2}), the shortest path between
v1 to v and the shortest path between v2 to v differ only on
edges (v1, v3) and (v2, v3). As will be shown in Section 2, this
property can be captured by an automorphic equivalence rela-

(a) The original graph (b) The simplified skeleton

Figure 2: The supervision relationship graph be-
tween Ph.D. students and their advisors in theoret-
ical computer science, and its simplified skeleton.

tion. Using this property, the shortest paths between v1 and
the vertices other than v2 can be used to obtain the shortest
paths between v2 and those vertices immediately. In other
words, as long as we record the symmetry information about
v1 and v2, we do not need to compute or store the shortest
paths of v2. Some space can be saved.

Generally, automorphic equivalence may involve more
than just a pair of vertices. For example, as will be shown in
Section 2, vertices v7, v8, v9, v10 are automorphically equiva-
lent, which can lead to saving in computing and storing the
shortest paths involving those vertices.

Roughly speaking, a graph is symmetric if some vertices
are automorphically equivalent to each other. Using symme-
try we may reduce a large graph substantially to a simplified
skeleton which preserves many essential properties of the
original graph and removes the structural redundancy. For
example, Figure 2(a) shows a social network of the supervi-
sion relationship between Ph.D. students and their advisors
in theoretical computer science [14]. There are 1, 025 ver-
tices and 1, 043 edges in the graph. After compression using
symmetry, the simplified skeleton as shown in Figure 2(b)
contains only 511 vertices and 525 edges.

The above observation motivates us to exploit symmetry
in large graphs to index shortest paths in a space-efficient
way for online shortest path query answering. To the best
of our knowledge, we are the first to exploit symmetry for
shortest path indexing and query answering. In this paper,
we tackle the problem and make the following contributions.
First, we propose a theoretical framework of using symmetry
to compress BFS-trees for shortest paths, and present the
corresponding algorithms. Second, we devise compact BFS-
trees which can reduce the space cost even more. Last, we
present a systematic experimental study to verify our design.

The rest of the paper is organized as follows. In Section 2,
we recall the preliminaries in shortest path analysis and the
notion of symmetry in graphs. We present the framework
of our approach in Section 3. In Section 4, we justify the
correctness of our method and discuss how to compress at
the orbit level. In Section 5, we develop compact BFS-trees
as the space-efficient indexes for shortest paths. We present
a systematic experimental study in Section 6, and discuss
related work in Section 7. The paper is concluded in Sec-
tion 8.

2. GRAPH SYMMETRY
In this section, we review the preliminaries of graphs and

give the formal specification of symmetry in graphs.

2.1 Preliminaries
We consider undirected graphs G = (V, E) where V is a

set of vertices and E ⊆ V ×V is a set of edges. We also write
the set of vertices as V (G) and the set of edges as E(G).

A path P in a graph G is a sequence of vertices
v1, v2, . . . , vk, where vi ∈ V (G) (1 ≤ i ≤ k) and (vj , vj+1) ∈
E(G) (1 ≤ j < k). Vertices v1 and vk are linked by P and
are called the ends of P . The length of P is the number
of edges on it, i.e., len(P) = k − 1. Path P is simple if
all vertices on the path are unique, i.e., vi 6= vj for any
1 ≤ i, j ≤ k. P is a cycle if v1 = vk. By default, we consider
simple paths. For vertices vj and vj+1 on a path P , we also
write (vj , vj+1) ∈ P .

A graph G is connected if for any two vertices u, v ∈ V (G),
u 6= v, there is a path between u and v. A graph G is simple
if it has no self loops, i.e., (v, v) 6∈ E(G) for any v ∈ V (G). In
this paper, by default we consider connected simple graphs.

A graph is acyclic if the graph contains no cycle. A free
tree is a connected, acyclic, undirected graph. A rooted tree
is a free tree in which one of the vertices (the root) is dis-
tinguished from the others. An ordered tree is a rooted tree
in which the children of each vertex (if any) are ordered.

2.2 Shortest Paths and Breadth-first-search
In a graph G, path P with ends u, v ∈ V (G) (u 6= v) is a

shortest path if there does not exist another path P ′ between
u and v such that len(P ′) < len(P). In a connected graph,
there exists at least one shortest path between two vertices.

To keep our discussion simple, by default we only consider
one shortest path between a pair of vertices. Our discussion
can be straightforwardly extended to find all shortest paths
between a pair of vertices.

To find a shortest path between vertices u and v in graph
G, we can conduct a breadth-first search starting from u and
obtain a breadth-first search tree (BFS-tree for short) Tu [9].
To start, we initialize Tu as a tree having only the root node
u. Then, all neighbors of u are added into Tu as the children
of u. That is, if (u, x) ∈ E(G), x is added into Tu as a child
of u. Iteratively, for each leaf node x in the current Tu, we
search all neighbors y of x such that (x, y) ∈ E(G) and y has
not been added into Tu yet, and add y into Tu as a child of
x. The iteration continues level by level (i.e., in a breadth-
first manner) until v is added into Tu. The path from u to
v in the BFS-tree Tu gives a shortest path between u and v
in G.

The above breadth-first search procedure can be extended
to find a shortest path between u and every vertex v ∈
V (G) − {u}. We only need to run the iterations until all
vertices in V (G)− {u} are added into the BFS-tree Tu.

Example 2 (BFS-trees). Consider graph G in Fig-
ure 1. By a breadth-first search starting from vertex v1, we
can obtain the BFS-tree Tv1 in Figure 3(a). Each path from
the root vertex v1 to a vertex x (x 6= v1) in the tree Tv1 is
the shortest path from v1 to x in G.

If we materialize the BFS-tree for every vertex in a graph,
and index the shortest paths between every pair of vertices
using an array or a hash table, shortest path queries can be
answered online.

In the above simple materialization method, the time com-
plexity to compute all shortest paths is Θ(NM) where N is
the number of vertices and M is the number of edges. The
space complexity of the materialization is Θ(N2).

v1

v10

v3

v4

v8v7

v6v5

v9

v2

v2

v10

v3

v4

v8v7

v6v5

v9

v1

g1=(v1,v2)

(a) Tv1 and Tv2

v1

v3

v2

v8v7

v6v5

v9

v4

v10

(b) Tv3

v1 v2

v3

v4

v8v7

v6v5

v9 v10

(c) Tv4

v1 v2

v3
v4 v8v7

v6

v5

v9 v10

g2=(v5,v6)(v7,v9)(v8,v10)

v1 v2

v3
v4 v10v9

v5

v6

v7 v8

(d) Tv5 and Tv6

v1 v2

v3 v4 v8

v7

v6

v5

v9 v10

g3=(v7,v8)

v1 v2

v3 v4 v7

v8

v6

v5

v9 v10

(e) Tv7 and Tv8

Figure 3: BFS-trees

2.3 Symmetry in Graphs
Graph symmetry is an important topic in algebraic graph

theory [4, 12]. Here, we review some basic concepts.
For graph G = (V, E), a permutation f : V 7→ V acting

on V is a bijective mapping from V onto itself. For a ver-
tex u ∈ V , f maps u to vertex uf . Obviously, the inverse
correspondence f−1 of f is also a permutation.

Let S(V) be the set of all permutations acting on V . For
permutations f, g ∈ S(V), the product h = f ◦ g (or simply
fg) is the mapping h : V 7→ V such that for each u ∈ V ,
uh = (uf)g. Apparently, the product of two permutations is
also a permutation, i.e., f ◦ g ∈ S(V).

Let f ∈ S(V). The action of f on V can be extended to
an induced action on V × V as follows: for (a, b) ∈ V × V ,
we define (a, b)f = (af , bf). For the set of edges E ⊆ V ×V ,
we define Ef = {(a, b)f |(a, b) ∈ E}. If Ef = E, we call f an
automorphism of E.

Let Aut(G) be the set of all automorphisms of a graph
G = (V, E). Mathematically, (Aut(G), V) is a permutation
group. In general, a graph G is asymmetric if (Aut(G), V)
contains no permutations other than the identity permuta-
tion e (i.e., ue = u for all vertices u). Otherwise, the graph
is symmetric.

Automorphism group (Aut(G), V) defines a relation
=Aut(G) on V as follows. For two vertices u, v ∈ G,
u =Aut(G) v if there exists an automorphism f ∈ Aut(G)

such that uf = v. Due to the identity permutation e ∈
Aut(G), relation =Aut(G) is reflexive. Since uf = v im-

plies vf−1
= u, relation =Aut(G) is symmetric. Moreover, if

xf = y and yg = z, xfg = z. Thus, relation =Aut(G) is tran-
sitive. Therefore, =Aut(G) is an equivalence relation, and is
usually called automorphic equivalence.

We can partition the set V (G) using equivalence relation
=Aut(G). Let ∆(G) = V (G)/ =Aut(G) = {∆1, ∆2, . . . , ∆k}.
That is, u, v ∈ ∆i (1 ≤ i ≤ k) if u =Aut(G) v. ∆(G) is
called the automorphism partitioning. An entry ∆i ∈ ∆(G)
is called an orbit of Aut(G). An orbit is trivial if it contains
only one vertex. Otherwise, the orbit is non-trivial. We also
write ∆(G) as ∆ when G is clear from context.

Orbits are important in our study. A non-trivial orbit cap-
tures the set of vertices which can be compressed in shortest
path computation. We will discuss the details in the later

sections.
In Aut(G), a subset F = {f1, . . . , fk} ⊆ Aut(G) is a set of

generators if every permutation f ∈ Aut(G) can be written
as a product of some permutations in F , but for every proper
subset F ′ of F , there exists at least one permutation f ∈
Aut(G) such that f cannot be written as a product of some
permutations in F ′.

Let f be a permutation acting on vertex set V (G) of graph
G(V, E). The support of permutation f is the set of vertices
that f moves, that is, supp(f) = {v ∈ V (G)|vf 6= v}. A
permutation is usually written as a union of some disjoint
cycles. For example, f = (a, b, c)(d, e) means af = b, bf =
c, cf = a and df = e, ef = d. In the cycle representation, all
vertices that f does not move are omitted.

Two permutations f and g are disjoint if their supports
are exclusive, i.e., supp(f) ∩ supp(g) = ∅. Moreover, two
sets of permutations F1 and F2 are support-disjoint if for
any f ∈ F1 and g ∈ F2, f and g are disjoint.

For a non-identity automorphism f ∈ Aut(G) (f 6= e), if
f = f1f2 (f1, f2 ∈ Aut(G), supp(f1) ∩ supp(f2) = ∅) implies
f1 = e or f2 = e, then f is indecomposable. Otherwise,
f is decomposable. In other words, an indecomposable au-
tomorphism cannot be rewritten as a product of disjoint
non-identity permutations, and thus can be considered as
redundancy-free.

Example 3 (Concepts). For graph G in Figure 1,
we can find a set of generators of Aut(G) consisting
of the following automorphisms g1 = (v1, v2), g2 =
(v5, v6)(v7, v9)(v8, v10), g3 = (v7, v8), and g4 = (v9, v10).

Due to g2, we have v7 =Aut(G) v9 and v8 =Aut(G) v10.
Furthermore, due to g3, we have v7 =Aut(G) v8. Conse-
quently, v7, v8, v9, v10 are in the same orbit of the graph.
Given all the automorphisms, we can obtain the automor-
phism partitioning of the graph ∆ = {∆1, ∆2, ∆3, ∆4, ∆5},
where ∆1 = {v1, v2}, ∆2 = {v3}, ∆3 = {v4}, ∆4 = {v5, v6}
and ∆5 = {v7, v8, v9, v10}. The automorphism partitioning
is consistent with our observations in Example 1.

It is easy to check that supp(g1) = {v1, v2}, supp(g3) =
{v7, v8} and supp(g2) = {v5, v6, v7, v8, v9, v10}. Hence, g1

and g3 are disjoint, but g2 is not disjoint with respect to g1

or g3. g1g3 = (v1, v2)(v7, v8) is decomposable since it is the
product of two disjoint non-identity automorphisms g1 and
g3. However, g1, g2, g3 and g4 are indecomposable.

Table 1: Automorphism Storage
Orbit Base vertex Mirrored vertex and automorphism
∆1 v1 〈v2, g1〉
∆4 v5 〈v6, g2〉
∆5 v7 〈v8, g3〉, 〈v9, g2〉, 〈v10, g3g2〉

Algorithm 1: The framework

Input: a graph G;
Output: T: A set of compact BFS-trees;
Obtain symmetry information and partition V (G) into1

orbits;
foreach non-trivial orbit ∆i do2

select a base vertex u ∈ ∆i and compute the3

automorphisms fu,u′ for all u′ ∈ ∆i and u′ 6= u;

end4

conduct a breadth-first search to build the compact5

BFS-trees for the base vertices of all orbits;

3. THE FRAMEWORK
As indicated in Example 3, vertices v1 and v2 in graph

G in Figure 1 are in the same orbit. Figure 3(a) shows the
BFS-trees of v1 and v2. Interestingly, the two BFS-trees
can be mapped to each other under the action of automor-
phism g1 = (v1, v2). Each path in Tv1 can be mapped to a
corresponding path in Tv2 under the action of g1.

Generally, for vertices in the same orbit, their BFS-trees
can be mapped to each other under an automorphism. Fig-
ures 3(b), 3(c), 3(d) and 3(e) show more examples. Table 1
shows the mapping automorphisms in the non-trivial obits
in graph G in Figure 1.

Based on the above observation, we can reduce the cost
of computing and storing shortest paths. For each orbit ∆,
we select only one vertex u ∈ ∆ in the orbit as the base
vertex, and generate the corresponding BFS-tree Tu. For
other vertices u′ ∈ ∆, we record the automorphism fu,u′

that maps the BFS-tree Tu to Tu′ .
If a shortest path query involves at least one base vertex,

the query can be answered directly using the BFS-tree of the
base vertex. If both vertices u1 and v1 in a shortest path
query are not the base ones, we can find the base vertex
u of the orbit to which u1 belongs, and the shortest paths
between u and v1 in the BFS-tree Tu. The shortest paths
between u1 and v1 are given by applying the automorphism
fu,u1 on those shortest paths between u and v1.

In this paper, we adopt the nice implementation in
nauty [17] to obtain the symmetry information including or-
bits and a set of generators. The framework of our method
is shown in Algorithm 1.

4. ORBIT-BASED COMPRESSION
In this section, we first justify the correctness of our

method. Then, we discuss how to compute automorphisms
for non-base vertices.

4.1 Shortest Paths Using Orbits
Apparently, automorphisms have the following property

which enables us to find isomorphic subgraphs.

Lemma 1 (Automorphisms and subgraphs). Let
H = (V ′, E′) be a subgraph of G = (V, E), i.e., V ′ ⊆ V
and E′ ⊆ E. For any automorphism f ∈ Aut(G),

Hf = (V ′f , E′f) is a subgraph of G (i.e., V ′f ⊆ V and
E′f ⊆ E) and isomorphic to H.

Moreover, automorphisms are significant for counting
unique isomorphic copies of subgraphs. Let V ′ ⊆ V be a
subset of vertices. The induced subgraph of V ′ is G(V ′) =
(V ′, EV ′), where EV ′ = {(u, v) ∈ E|u, v ∈ V ′}.

Lemma 2. Consider graph G = (V, E) and a subset V ′ ⊆
V . For an automorphism f ∈ Aut(G), if V ′f = V ′ then
G(V ′)f = G(V ′).

Proof. We only need to show E′f = E′. Since f ∈
Aut(G) is an automorphism, E′f ⊆ E. For any edge
(u, v) ∈ G(V ′), (u, v)f ∈ E′ due to V ′f = V ′. Hence,
E′f ⊆ E ∩ V ′ × V ′ = E′. Since f is bijective, we have
E′f = E′, and thereby G(V ′)f = G(V ′).

An orbit captures a set of vertices which can be com-
pressed due to symmetry. For a given graph G, how much
can we compress? To understand this question, technically
we need to explore, given an induced subgraph G(V ′) of G,
how many unique isomorphic copies of G(V ′) exist in G.

For a graph G = (V, E) and a set of vertices Q ⊆ V ,
an automorphism f ∈ Aut(G) is a setwise stabilizer with
respect to Q if Qf = Q, where Qf = {vf |v ∈ Q}. We
denote the set of all setwise stabilizers with respect to Q
by SS(G, Q). As shown in [24], SS(G, Q) is a subgroup of
Aut(G). Moreover, we have the following result.

Theorem 1 (Compressibility). Let G = (V, E) be a
graph, V ′ ⊆ V .

|G(V ′)Aut(G)| = |Aut(G)|
|SS(G, V ′)|

where G(V ′)Aut(G) = {G(V ′)f |f ∈ Aut(G)}.
Proof. SS(G, V ′) is a subgroup of Aut(G) [24]. Thus,

the theorem is an immediate consequence of the Lagrange’s
Theorem [20], which states that if H is a subgroup of P and
P is a finite group then |P | = |H| · [P : H] where [P : H] is
the number of different cosets.

Theorem 1 indicates that the number of unique isomorphic
copies of G(V ′) depends on two factors, the size of Aut(G)
and the setwise stabilizers with respect to V ′. One impor-
tant intuition here is that a setwise stabilizer with respect to
V ′ maps G(V ′) to itself and thus is redundant in subgraph
enumeration.

Automorphisms also have the following nice property.

Lemma 3 (Shortest paths and automorphisms).
Let P be a shortest path between vertices u and v in graph
G. For any automorphism f ∈ Aut(G), P f is a shortest
path between uf and vf , where P f = {(xf , yf)|(x, y) ∈ P}.

Proof Sketch: Using Lemma 1, we can show that P f

is a path between uf and vf . Lauri and Scapellato [15]
showed that automorphisms are geodesic-preserving. That
is, d(u, v) = d(uf , vf) where d(,) is the geodesic dis-
tance that measures shortest distance between a vertex pair.
Therefore, len(P) = len(P f).

Assume that P is a shortest path between u and v. If P f

is not a shortest path between uf and vf , there must be a

shortest path P ′ which is shorter than P f . Clearly, P ′f
−1

is
a shorter path than P between u and v. Contradiction.

Now, we are ready to prove the correctness of our method.

Theorem 2 (BFS-trees and automorphisms). For
graph G, let Tv be a BFS-tree rooted at vertex v ∈ V (G). For
any vertex u which is in the same orbit with v, there exists
an automorphism f ∈ Aut(G) such that vf = u and T f

v is a
BFS-tree rooted at vf , where T f

v = {(xf , yf)|(x, y) ∈ Tv} .
Proof Sketch: Since u and v are in the same orbit, there

must exist at least one f ∈ Aut(G) such that u = vf . Now,
we show T f

v is a BFS-tree rooted at u.
According to Lemma 3, each path in T f

v is a shortest path
starting from u = vf . For each vertex w ∈ V (G), a shortest

path between v and wf−1
must appear in Tv. Let the path be

P . Then, P f is a path in T f
v . Moreover, P f is a shortest

path between u and w.

Example 4 (BFS-trees and automorphisms). In
Figure 3 and Table 1, T g1

v1 = Tv2 , T g2
v5 = Tv6 , T g3

v7 = Tv8 ,
T g2

v7 = Tv9 and T g3g2
v7 = Tv10 .

4.2 Generating BFS-trees for an Orbit
Section 4.1 shows that, in a non-trivial orbit ∆, we can

select one vertex v ∈ ∆ as the base vertex and generate the
BFS tree. Any vertex in ∆ can serve as the base vertex.
For other vertices u in the same orbit, we can find an auto-
morphism f to map Tv to answer any shortest path queries
involving u. How can we find automorphisms for non-base
vertices?

Example 5 (Choice of automorphisms). In our
running example (Figure 3 and Table 1), let us choose v1

as the base vertex in orbit ∆1. Two automorphisms g1 and
g1g3 can map v1 to v2. In other words, the automorphism
for v2 is not unique. Which one is more preferable?

It is easy to see |supp(g1)| < |supp(g1g3)|. Hence, in
terms of storage cost, g1 is a better choice than g1g3.

In general, in an orbit ∆ where v is the base vertex, for
a non-base vertex v′, there may exist more than one auto-
morphism mapping v to v′. Let Gv→v′ = {f : vf = v′}
be the set of automorphisms that map v to v′. Our task is
to choose one automorphism from Gv→v′ for answering the
shortest path queries for v′.

The cost of storing an automorphism f can be quantified
as Θ(|supp(f)|). Therefore, it is desirable to use the auto-
morphism f of the minimum |supp(f)| value. However, we
conjecture that the following problem is NP-hard.

Conjecture 1 (Optimal automorphism selection).
The following problem is NP-hard.
Instance: a graph G(V, E), a positive number n, vertices
v, v′ ∈ V .
Question: is there an automorphism f ∈ Gv→v′ such that
|supp(f)| ≤ n?

To tackle the problem in a practical way, we utilize a set
of generators Gens of the automorphism group returned
by symmetry computation algorithm nauty [17]. Each au-
tomorphism in Gens is indecomposable (part (1) of Theo-
rem 2.34 in [17]), and thus can be regarded as redundancy-
free. As will be shown in our experimental results, in prac-
tice the storage cost of those automorphisms is very low.
Thus, if one of those automorphisms can map the base ver-
tex v to a non-base vertex v′, we use it for v′.

Algorithm 2: getAut(u,v,P)

Input: Two vertices u, v
Output: P: the set of automorphisms such that the

production of all automorphisms in P is an
automorphism mapping u to v

foreach p ∈ Gens do1

if up == v then2

P = P ∪ {p}; return true;3

end4

if !visited[up] then5

P = P ∪ {p}; visited[up] = true;6

if getAut(up, v,P) then7

return true;8

else9

P = P− {p}; visited[up] = false;10

end11

end12

end13

However, we may not be able to find an indecomposable
automorphism f ∈ Gv→v′ directly from Gens for a non-base
vertex v′ such that vf = v′. In such a case, we have to search
the possible products of the automorphisms in Gens. The
procedure is shown in Algorithm 2.

Before calling the procedure, the variable visited for each
vertex is initialized to false except for vertex u. When we
encounter an automorphism p such that up has been visited
(which implies that the product of a segment of automor-
phism sequence pi, pi+1, . . . , pj (pj = p) in P up = u), the
search process along the current path can be terminated,
since we can find a shorter automorphism sequence to trans-
form vertex u to v.

Each possible product of the automorphisms in Gens
leads to a candidate automorphism. Hence, Algorithm 2
is exponential in the worst case. However, as shown in our
experimental results, for real networks, in most cases we can
find the desirable automorphisms from Gens quickly.

Clearly, the total space cost to store the automorphisms
for non-based vertices is O((|V (G)|−|∆|)p̄), where |∆| is the
number of orbits and p̄ is the average support length of the
automorphisms for non-based vertices. Since each orbit has
only one BFS-tree, the storage cost for BFS-trees is reduced
from Θ(|V (G)|2) to Θ(|∆||V (G)|). Now, the last question
in this section is how we can estimate p̄ and compare it to
the cost of storing a BFS-tree.

We say a graph G(V, E) to be globally symmetric if there
exists an indecomposable automorphism g ∈ Aut(G) such
that supp(g) = V (G). Otherwise, we say the graph to be
locally symmetric. It has been shown that real large graphs
are unlikely globally symmetric [11]. Hence, the key is to
quantify the degree to which a graph is locally symmetric.
For this purpose, we define a measure ϕG as

ϕG =
maxg∈ID(G){|supp(g)|}

|V (G)| ,

where ID(G) is the set of indecomposable automorphisms
of graph G. Intuitively, the larger ϕG, the closer to global
symmetric G is.

Example 6 (ϕG). In Figure 4(a), there exists an inde-
composable automorphism f = (v1, v2)(v3, v4)(v5, v6)(v7, v8)

v1 v2

v3
v4

v8v7

v6v5

(a) G1

v1 v2

v3 v4

v8v7

v6

v5

(b) G2

Figure 4: Local symmetry and
global symmetry.

v1

v2

v3

v4 v5

v7

(a) T̄v1

v1

v3

v4 v5

v7

(b) T̄v3

v1

v3

v4

v5

v7

(c) T̄v4

v1

v3

v4 v8v7

v6

v5

v9 v10

(d) T̄v5

v1

v3 v4 v8

v7

v6

v5

v9 v10

(e) T̄v7

Figure 5: compact BFS-trees

Table 2: Statistics of some real graphs (Avg and Max are the average orbit length and the maximal orbit
length, respectively)

Graph N |∆| rG% M ϕG‰ Avg Max
PPI 1458 1019 69.89 1948 4.11 1.43 46

Yeast 2284 1852 81.09 6646 2.63 1.23 34
Homo 7020 6066 86.41 19811 0.57 1.15 44

P-fei1738 1738 1176 67.66 1876 5.75 1.48 10
Geom 3621 2803 77.41 9461 1.66 1.29 13

Erdos02 6927 2365 34.14 11850 3.46 2.93 142
DutchElite 3621 1907 52.67 4310 2.21 1.90 49

Eva 4475 898 20.07 4652 4.47 4.98 545
California 5925 4009 67.66 15770 1.01 1.48 46

Epa 4253 2212 52.01 8897 0.94 1.92 115
InternetAs 22442 11392 50.76 45550 0.27 1.97 343

moving all vertices, hence ϕG1 = 100% . In Figure 4(b),
ϕG2 = 50% since g = (v1, v2)(v3, v4) is indecomposable
and maximal in terms of cardinality of the support. No-
tice that, automorphism h = (v1, v2)(v3, v4)(v7, v8) of G2

moves more vertices than g, however h is decomposable into
the composition of two disjoint automorphisms of G2: g and
g′ = (v7, v8), thereby cannot be selected as the maximal one
to compute ϕG2 .

In Table 2, we give ϕG for a variety of real large graphs.
Please refer to [28] for the details of each graph. It is evi-
dent that real graphs are locally symmetric with the value
of ϕG at the order of magnitude of 10−3 or 10−4. Local
symmetry of real graphs implies that the automorphisms
required to generate BFS-trees of non-base elements can be
stored using very small storage space, thousands or tens of
thousands times smaller than storing a BFS-tree. More-
over, the support of an automorphism in a graph G is at
most |V (G)| · ϕG. Thus, the storage cost of automorphisms
is O((|V (G)| − |∆|)|V (G)|ϕG).

5. COMPACT BFS-TREES
The size of BFS-trees can be further reduced by utilizing

symmetry in a graph.

Example 7 (Compacting BFS-trees). In our run-
ning example (Figure 1), ∆4 = {v5, v6} and ∆5 =
{v7, v8, v9, v10}. Let us try to compact the BFS-trees Tv1 ,
Tv3 and Tv4 in Figure 3 using the two orbits.

We can compact a BFS-tree such that only one vertex in
an orbit is used as long as we can ensure the adjacency of
the remaining vertices, as shown in Figure 5. It is easy to
see that the shortest path Pv1,v6 can be obtained from path
Pv1,v5(under the action of g2). Moreover, the shortest paths

from v1 to v8, v9, v10, respectively, can be obtained from the
shortest path Pv1,v7 under the action of g3, g2 and g3g2,
respectively.

Not all orbits can be compacted in the above way. For ex-
ample, in Tv7 , {v5, v6} cannot be compacted, since the length
of the shortest path between v7 and v5 and that between v7

and v6 are different. Consequently, the shortest paths cannot
be mapped to each other under any automorphism.

In this section, we show that whether an orbit can be
compacted in a BFS-tree is highly related to the reachability
relation between this orbit and the root orbit, the orbit to
which the root vertex belongs. We formulate our ideas using
orbit adjacency and orbit reachability. Then, we develop the
compact BFS-tree index structure and an efficient algorithm
for shortest path query answering using compact BFS-trees.

5.1 Orbit Adjacency and Reachability
If some vertex in orbit ∆i is adjacent to some vertex in

orbit ∆j , we say that orbits ∆i and ∆j are adjacent. An
orbit can be adjacent to itself. A sequence ∆1∆2 · · ·∆k of
orbits is called as an orbit path if ∆i is adjacent to ∆i+1 for
each 1 ≤ i < k. If there is no repeated orbit in an orbit
path, we call the orbit path a simple orbit path.

Let ∆i and ∆j be two orbits in graph G. For vertex
v ∈ ∆i, Nj(v) = {(u, v) ∈ E(G)|u ∈ ∆j} is the set of
neighbors of v that belong to orbit ∆j . Orbit ∆i is said to
be strongly adjacent to ∆j if for any two vertices v, v′ ∈ ∆i,
Nj(v) = Nj(v

′).
If there exists an orbit path ∆1∆2 · · ·∆k such that ∆i is

strongly adjacent to ∆i+1 for 1 ≤ i < k, we say that orbit
∆1 is strongly reachable to orbit ∆k along the orbit path.

Lemma 4 (Strong adjacency). If orbit ∆i is

strongly adjacent to orbit ∆j, then for any vertex u in ∆i,
Nj(u) = ∆j.

Proof. For any vertex u ∈ ∆i, Nj(u) ⊆ ∆j. Suppose
there exists a vertex y ∈ ∆j but not in Nj(u), which implies
that y will not be adjacent to any vertex in ∆i. Let x ∈
Nj(u) be a vertex adjacent to vertex u ∈ ∆i. There must
exist some automorphism f ∈ Aut(G) such that xf = y and
(u, x)f ∈ E(G). Thus, we have uf ∈ ∆i, which implies that
y is adjacent to some vertex in ∆i. Contradiction.

Lemma 4 immediately leads to the fact that the strongly
adjacent relation is symmetric. Another immediate conse-
quence of Lemma 4 is that the induced subgraph of any two
strongly adjacent orbits ∆i and ∆j , i.e. G(∆i ∪ ∆j), is a
complete bipartite.

Similarly, we can define weak adjacency and weak reach-
ability between orbits in a graph. Orbit ∆i is weakly adja-
cent to ∆j if there exist u, v ∈ ∆i such that Nj(u) 6= Nj(v).
Clearly, weak adjacency for orbits is also a symmetric rela-
tion. In simple graphs (i.e., no self-loops), an orbit is always
weakly-adjacent to itself.

Moreover, orbit ∆1 is said to be weakly reachable to orbit
∆k if there exists an orbit path ∆1∆2 · · ·∆k such that ∆i

is weakly adjacent to ∆i+1 for 1 ≤ i < k. Otherwise, ∆1

is not weakly reachable to orbit ∆k, which means that there
certainly exist two orbits strongly adjacent to each other in
all possible orbit paths from ∆1 to ∆k.

We can extend the weak reachability relation from orbits
to vertices. For a vertex v in a graph G, let Orb(v) be the
orbit to which v belongs. For vertices u, v in G, if Orb(u) is
weakly reachable to Orb(v), we said u to be weakly reachable
to v.

Apparently, trivial orbits (i.e., orbits containing only one
vertex) have the following property.

Lemma 5 (Trivial orbits). In graph G, let ∆ be a
trivial orbit. For any vertex v′ such that (v, v′) ∈ E(G),
∆ is strongly adjacent to Orb(v′). Moreover, for any orbit
∆′ 6= ∆, ∆ is not weakly reachable to ∆′.

It is easy to see that both the weak reachability rela-
tion on orbits and the weak reachability relation on ver-
tices are equivalence relations. Consequently, we can ob-
tain two partitionings using the two relations. Using the
weak reachability on orbits, we can obtain partitioning
Θ̄(G) = {Θ̄1, Θ̄2, . . . , Θ̄s} of all orbits in a graph. Using
the weak reachability relation on vertices, we can obtain
partitioning Θ(G) = {Θ1, Θ2, . . . , Θs′} of all vertices. It is
not difficult to show that, for each ∆j ∈ ∆(G), there exists
a Θi ∈ Θ(G) such that ∆j ⊆ Θi. That is, Θ(G) is a parti-
tioning coarser than ∆(G). The induced subgraph of each
Θi in graph G is called a weakly reachable area in the graph.

Example 8 (Θ(G)). In the graph in Figure 4(b),
∆(G2) = {∆1, ∆2, ∆3, ∆4, ∆5} where ∆1 = {v1, v2}, ∆2 =
{v3, v4}, ∆3 = {v5}, ∆4 = {v6} and ∆5 = {v7, v8}. Since
∆1 is weakly adjacent to ∆2, they are in the same unit in
Θ. Θ(G2) = {{v1, v2, v3, v4}, {v5}, {v6}, {v7, v8}}.

Let A(∆i) be the set of all indecomposable automorphisms
mapping vertices in the same orbit to each other, that is,
A(∆i) = {g ∈ ID(G) : ug = v, for any vertex pair u, v ∈
∆i}. Let A(Θi) = A(∆i1) ∪ A(∆i2), . . . ,∪A(∆is), where

∆i1∪, . . . ,∪∆is = Θi. The following result shows that each
indecomposable automorphism of a graph only moves ver-
tices within a certain weakly reachable area.

Lemma 6 (Support of indecomposable automorphism).
For each g ∈ A(Θi), supp(g) ⊆ Θi.

Proof Sketch: A permutation in S(V) is either a cycle or
a product of disjoint cycles [20]. Each cycle can be repre-
sented as a permutation in S(V). 1-cycle can be represented
as the identity permutation e. Hence, any permutation g can
be decomposed into g = g1g2 · · · gsgs+1 · · · gt. Such a decom-
position is called the complete factorization, which is unique
except for the order in which the factors occur [20].

Let F (g) be the set of factors of complete factoriza-
tion for an automorphism g ∈ Aut(G). Then, there ex-
ists a surjective mapping from F (G) onto ∆(G). For
any gi ∈ F (g), supp(gi) is a subset of some orbit of
the graph. Hence, without loss of generality, we can as-
sume that supp(g1) ∪ supp(g2), . . . ,∪supp(gs) ⊆ Θi and
supp(gs+1) ∪ supp(gs+2), . . . ,∪supp(gt) ⊆ V −Θi.

Let g ∈ A(Θi). If supp(g) is not a subset of Θi, then
g′′ = gs+1, . . . , gt 6= e. Let g′ = g1g2, . . . , gs. Then, g = g′′g′

and supp(g′) ∩ supp(g′′) = ∅. It’s not difficult to show that
g′ is an automorphism of the graph.

Since g′ is an automorphism and Aut(G) is a group, g′−1

is an automorphism. Consequently, g′′ = gg′−1 is an au-
tomorphism too. Since supp(g′) ∩ supp(g′′) = ∅, g′ 6= e,
g′′ 6= e, g is a decomposable automorphism, which contra-
dicts to the assumption that g ∈ A(Θi).

Following Lemma 6, the indecomposable automorphisms
of a graph have the following property.

Lemma 7. A(Θi) and A(Θj) (i 6= j) are support disjoint.
Moreover, A(∆i) and A(∆j) are support disjoint if ∆i ⊆
Θm, ∆j ⊆ Θn and m 6= n.

Now, we are ready to show in what situations an orbit in
a BFS-tree can be further compacted using a representative
vertex in the orbit.

Theorem 3 (Condition of orbit compacting).
The length of the shortest path between a vertex in ∆i and
a vertex in ∆j (i 6= j) is a constant if one of the following
conditions holds: (1) A(∆i) and A(∆j) are support-disjoint,
(2) ∆i ⊆ Θm, ∆j ⊆ Θn and m 6= n, or (3) ∆i is not weakly
reachable to ∆j.

Proof Sketch: Consider u1, u2 ∈ ∆i and v1, v2 ∈ ∆j (i 6=
j). There exist g1 ∈ A(∆i) and g2 ∈ A(∆j) such that ug1

1 =
u2, vg2

1 = v2 and supp(g1)∩ supp(g2) = ∅. To show that the
first condition in the theorem is sufficient, we need to show
that a shortest path Pu1,v1 between u1 and v1 has the same
length as a shortest path Pu2,v2 between u2 and v2. This can
be shown using the results in [15] that automorphisms are
geodesic-preserving.

Condition 1 is a consequence of Condition 2. Condition
2 is equivalent to condition 3.

Please note that the conditions in Theorem 3 are suffi-
cient but are not necessary. Moreover, for orbits in a weakly
reachable area, the lengths of the shortest paths between
orbits are not necessarily a constant. For example, in the
graph shown in Figure 4(b), orbit ∆i = {v1, v2} is weakly
adjacent to ∆2 = {v3, v4}. It is easy to check that the short-
est path between v1 and v3 has a length different from that
between v1 and v4.

Algorithm 3: CompactBFS(u)

Input: A vertex u
Output: Compact BFS-tree T̄u

if |Orb(u)| > 1 then1

WR(u) ← WeaklyReachableOrbits(Orb(u));2

end3

que.push(u);4

visited[u] = 1;5

while !que.empty() do6

w ← que.pop();7

foreach v ∈ Neighbors(w) do8

if |Orb(u)| > 1 and Orb(v) ∈ WR(u) then9

if !visited[v] then10

visited[v] = 1;11

que.push(v);12

end13

else14

if !visited[v] and !orbit visited[Orb(v)]15

then
visited[v] = 1;16

orbit visited[Orb(v)] = 1;17

que.push(v);18

end19

end20

end21

end22

Lemma 8. Let Orb(g) be the set of orbits of vertices
in supp(g) where g is an indecomposable automorphism of
graph G. If |Orb(g)| > 1, orbits in Orb(g) are weakly reach-
able to each other.

Proof. We only need to show that Orb(g) is a subset of
some Θi. From Lemma 6, we have supp(g) ⊆ Θi. Thus, all
orbits in Orb(g) are also in Θi.

5.2 Compact BFS-trees
In a breadth-first search starting from vertex u, when we

meet vertex v, whether Orb(v) can be compacted depends
on the reachability relation between Orb(u) and Orb(v). In
Theorem 3, we show that only when Orb(v) is not weakly
reachable to Orb(u), Orb(v) can be compacted. Let WR(u)
be the set of orbits that are weakly reachable to Orb(u).
When Orb(v) is weakly reachable to Orb(u) or Orb(v) ∈
WR(u), Orb(v) cannot be compacted.

Based on the above idea, we define a compact BFS-tree as
follows. A compact BFS-tree T̄u of graph G is a tree gener-
ated by the breadth-first search procedure starting from ver-
tex u. For each orbit of Aut(G) that is not weakly reachable
to orbit Orb(u), only one vertex in the orbit is traversed.

The algorithm framework of the traverse procedure to gen-
erate a compact BFS-tree is shown in Algorithm 3. Be-
fore the algorithm starts, for each vertex u, visited[u] and
orbit visited[Orb(u)] are initialized to 0, which are omitted
in Algorithm 3. In the algorithm, when Orb(u) is a trivial or-
bit, Orb(v) is not weakly reachable to Orb(u) (by Lemma 5).
Orb(v) can be compacted (lines 15 to 19). When Orb(u) is
non-trivial, if Orb(v) ∈ WR(u), Orb(v) is weakly reachable
to Orb(u); else Orb(v) is not weakly reachable to Orb(u).

Example 9 (Compact BFS-trees). Figure 5 shows
all compact BFS-trees in our running example.

Algorithm 4: QueryShortestPath(u,v)

Input: u:the source vertex; v:the destination vertex;
Output: Puv: one shortest path from u to v
u′ ← rep(u);1

Let fu ∈ Gu→u′ ;2

v′ ← vfu ;3

if u′! = u and v′! = v then4

Pu′v′ ← readpath(T̄u′ , v
′);5

return P
f−1

u
u′v′ ;6

else7

if u′ = u and Puv ∈ T̄u then8

Puv ← readpath(T̄u, v);9

return Puv;10

end11

foreach w ∈ Orb(v) do12

v′ ← w;13

fv ∈ Gv→v′ ;14

if Pu′v′ ∈ T̄u′ then15

Pu′v′ ← readpath(T̄u′ , v
′);16

return P
f−1

u f−1
v

u′v′ ;17

end18

end19

end20

Using compact BFS-trees, all orbits that are not weakly
reachable to the root orbit are compacted. In the best case
where all orbits are not weakly reachable to the root orbit,
the storage cost for a compact BFS-tree is Θ(|∆|). Taking
into account the storage cost of automorphisms, which is
O((|V (G)| − |∆|)|V (G)|ϕG), we have the following result.

Theorem 4. For a graph G, the space complexity of the
compact BFS-trees built in Algorithm 1 is O(|∆||V (G)|+α),
where α = (|V (G)| − |∆|)|V (G)|ϕG.

5.3 Answering Shortest Path Queries on
Compact BFS-trees

Given a vertex pair u and v, to find a shortest path be-
tween them, the key is to find the automorphism that can
move u to u′ and v to the v′ such that Pu′,v′ is a path in the
compact BFS-tree T̄u′ . Then, we only need to recover Pu,v

from Pu′,v′ by applying the corresponding automorphism.
Algorithm 4 shows the procedure, where two cases of the
reachability relation between Orb(u) and Orb(v) need to be
considered. If Orb(u) and Orb(v) are weakly reachable to
each other, we can find an automorphism f that moves both
u and v. Otherwise, we need to find two automorphisms
that move u and v, respectively. The product of these two
automorphisms is the desired automorphism.

Let rep(u) be the base vertex in Orb(u). When u = u′,
fu is the identity permutation e, which does not move any
vertex. If Pu,v ∈ T̄u (line 8), we can directly obtain the
path without any extra operation (lines 9 and 10). If Pu,v

does not exist in T̄u, Orb(v) must be not weakly reachable
to Orb(u). We need to find the materialized shortest path in
T̄u′ that can be mapped to Pu,v, as well as the corresponding
automorphism fv (lines 12 to 19). When u 6= u′ and v 6= v′

(line 4), Orb(u) and Orb(v) are weakly reachable to each
other1, then fu is the desired automorphism. Otherwise,
1Lemma 8 shows that orbits with vertices in the support of

Table 3: Compression rate and construction time on real graphs (rc =
compact BFS-tree index size

BFS-tree index size
,rt =

TBF S
TcompBF S

).

Index Size Index Construction Time (seconds)
Compact Compact

Graph BFS-trees(M) TSize(M) PSize(K) BFS-tree(M) rc BFS-trees t1 t2 BFS-tree rt

PPI 12.1637 5.9442 9.88 5.954 48.9% 0.992 0.454 1.093 1.547 64%
Yeast 29.8500 19.4382 7.52 19.4457 65.1% 2.641 3.797 3.781 7.578 35%
Homo 281.9847 210.556 18.2 210.574 74.7% 26.969 1.485 52.5 53.985 50%

p-fei1738 17.2843 7.9168 7.5 7.9243 45.8% 1.219 0.438 2.25 2.688 45%
Geom 75.0254 44.9619 8.8 44.9907 59.97% 6.61 0.549 14.265 14.859 44%

Erdos02 274.5628 32.031 238.5 32.2695 11.8% 29.688 78.531 11.922 90.453 33%
DutchElite 75.0254 20.819 36.83 20.8559 27.8% 5.515 5.875 7.812 13.687 40%

Eva 114.5876 4.6354 909 5.5447 4.8% 7.656 287.422 2.11 289.532 3%
California 200.876 91.9763 49.68 92.026 45.8% 18.843 8.578 25.516 34.094 55%

Epa 103.5004 28.0094 189.8 28.1992 27.2% 9.344 31.156 5.984 37.14 25%
InternetAS 2881.8704 742.658 1416.78 744.07478 25.8% 347.891 1258.97 450.672 1709.64 20%

i.e., u 6= u′ and v = v′, Orb(v) must be not weakly reachable
to Orb(u), we also need to execute lines 12 to 19. To look
up a path in the tree (function readpath()), we only need
to store a parent pointer for each node in the compact BFS-
tree and recursively read the parent until the root vertex is
reached.

Example 10 (Query answering). In our running
example, let us find a shortest path between v2 and v9 from
T̄v1 . Following Algorithm 4, we first need to find the au-
tomorphism that moves v2 to its base vertex rep(v2) = v1.
From Table 1, we find g1 is the required automorphism. We
can check that v9 is fixed by g1. Hence, lines 12 to 19 are ex-
ecuted. Since we do not know which vertex in Orb(v9) is se-
lected to be traversed, we have to try each vertex in the orbit
(line 12). As the result, we find that Pv1v7 is materialized in
T̄v1 and the automorphism mapping v9 and v7 to each other
is g2. We apply automorphism g−1

1 g−1
2 on v1v3v5v7 to obtain

the shortest path between v2 and v9, which is v2v3v6v9.
As another example, let us consider the shortest path be-

tween vertex v6 and v8. From Table 1, we see that v5 can
be mapped to v6 under the action of g2; and v8 is moved to
v10 under the action of the permutation. The condition in
line 4 is satisfied, which indicates that Orb(v6) and Orb(v8)
are weakly reachable to each other. Hence, Pv5v10 must ex-
ist in T̄v5 . We obtain this shortest path, which is v5v3v6v10.
Then we apply g−1

2 on v5v3v6v10, obtaining a vertex sequence
v6v3v5v8, which is the answer to the query.

The worst case for Algorithm 4 happens when a shortest
path to be found is between two vertices that belong to two
not weakly reachable orbits. Whether Pu′,v′ is materialized
in T̄u′ can be determined in constant time, since we can
build a hash table for each compact BFS-tree where all ver-
tices that are traversed in the compact BFS-tree are hashed.
The time cost of Algorithm 4 is O(|Orb(v)|). That is, the
performance of the query answering algorithm is determined
by the orbit length. Table 2 summarizes some statistics of
real graphs, including the average orbit length (Avg) and
the maximal orbit length (Max). It is clear from the table
that most of the real graphs have an average orbit length

an indecomposable automorphism must be weakly reachable
to each other. Here, in implementation, fu is always selected
from the generator set (Gens) of Aut(G). Such a generator
set is returned by nauty and the automorphisms in this set
are indecomposable[17].

less than 2. Therefore, we can answer shortest path queries
online using compact BFS-trees.

Alternatively, we may record the traversed vertex for each
orbit as part of the index, which enables us to directly ac-
cess Pu′v′ that is materialized in T̄ ′u without trying each
vertex in the orbit (line 12). Clearly, such a strategy can
achieve O(1) time complexity in query answering with the
extra space overhead O(|∆||V (G)|). Considering the fact
that real graphs are locally symmetric with relatively small
orbit length, it is reasonable to trade off index size for query
performance.

6. EXPERIMENT RESULTS
We implemented the algorithms in C++, and carried out

our experiments on a PC running Windows XP Professional
Operating System with an Intel Pentium 2.0 GHz CPU and
2G main memory.

The space cost of our index structure consists of two parts:
the size of compact BFS-trees TSize and the size of mirror-
ing automorphisms PSize. The index construction time also
includes two parts: the time to find all automorphisms be-
tween non-base vertices and base vertices (t1) and that to
generate all compact BFS-trees for base elements (t2).

Efficiently indexing shortest paths for a general network is
still a challenging open problem. To the best of our knowl-
edge, no efficient solution is available yet. Hence, in our
experiments, we compare our compact BFS-tree index with
the baseline method which stores a BFS-tree for each vertex.

6.1 Results on Real Graphs
We collect a variety of real graph data including biolog-

ical networks (PPI, Yeast and Homo), social networks (P-
fei1738, Geom, Erdos02, DeutchElite, and Eva), information
networks (California and Epa) and technological networks
(InternetAS). Some statistics of those graphs are shown in
Table 2. All these graphs have been shown to have symme-
try to some extent.

We first show the speedup of shortest path query answer-
ing using compact BFS-trees in Table 4. In each graph,
we randomly generate 10, 000 pairs of vertices and query
the shortest paths between each pair of vertices. The query
time reported in the table is the average on each data set.
For comparison, we also report the query answering time
by breadth-first search on-the-fly, that is, no index is used.
Although each individual graph can fit in memory, query an-

Table 4: Query answering using compact BFS-trees.

Graph p-fei1738 Geom Epa DutchElite Eva California Erdos02 PPI Yeast
Compact BFS-trees (ms) 0.0266 0.0219 0.0250 0.0282 0.0438 0.0235 0.0265 0.0235 0.0203

No index (ms) 0.3468 0.9 0.9906 0.7954 0.8844 1.3937 1.5297 0.3125 0.5203

Speedup (
timeno index

timecompact BFS-trees
) 13.04 41.10 39.62 28.21 20.20 59.31 57.72 13.30 25.63

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C
om

pr
es

si
on

 R
at

e

rG

Figure 6: Relation between symmetry and compres-
sion rate on real graphs

swering using compact BFS-trees is an order of magnitude
faster than breadth-first search on-the-fly.

We compare in Table 3 the size of the BFS-trees (no orbit
compression at all) and the size of our compact BFS-tree
indexes in those real graphs. Compact BFS-trees are sub-
stantially smaller than BFS-trees. In the best case (Eva),
the size of the compact BFS-tree index is only 4.8% of the
size of the BFS-trees. Please note that, in the table, the
unit of Tsize is megabyte and the unit of Psize is kilobyte.
In most cases, the storage cost of automorphisms is at least
two orders of magnitude smaller than that of the compact
BFS-trees. This clearly justifies the strategy of orbit-based
compression: whenever possible, we should store an auto-
morphism to generate a BFS-tree from the base vertex in-
stead of storing a BFS-tree.

We also show in Table 3 the index construction time. Con-
structing compact BFS-trees takes longer time than con-
structing simple BFS-trees. However, the index construc-
tion is offline. An compact BFS-tree index is constructed
once and used many times.

We notice that the more symmetric a graph, the longer the
compact BFS-tree index construction time. In Eva, a highly
symmetric graph, the time to compute automorphisms be-
tween non-base vertices and base vertices (t1) dominates the
index construction time.

To understand the relation between compression rate and

symmetry in graphs, we plot Figure 6. We use rG = |∆|
|V (G)|

to measure the degree of symmetry in a graph G, where
∆ is the set of orbits. Clearly, the lower the value of rG,
the more symmetric a graph. The figure clearly shows that
the more symmetric a graph, the more efficient our compact
BFS-trees.

6.2 Results on Synthetic Data Sets
To test the scalability of our method, we generate syn-

thetic graphs according to the BA model [3], a widely used
model to simulate real graphs. In the data generation, when
a new vertex u is added into the graph, u randomly connects
to k vertices such that the probability that u connects to a
vertex v already in the graph is proportional to the degree

0 2000 4000 6000 8000 10000
0.4

0.5

0.6

0.7

0.8

r G

Graph Size

(a) rG

0 2000 4000 6000 8000 10000

0

200

400

600

800

In
de

x
S

iz
e(

M
)

Graph Size

 BFS trees
 Compact BFS tress

Index Size of BA (k=1.1)

(b) Index size.

0 2000 4000 6000 8000 10000
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

C
om

pr
es

si
on

 R
at

e
Graph Size

(c) Compression Rate

0 2000 4000 6000 8000 10000

0
20
40
60
80
100
120
140

Ti
m
e(
s)

Graph size

 TBFS

 t1

 t2

 Tcom BFS

Index Building Time of BA (k=1.1)

(d) Index Building Time

Figure 7: Scalability to graph size

of v. The average degree of the graph generated is 2k.
In the experiments in Figure 7, we set k = 1.1. We vary

the graph size from 1000 to 10, 000 vertices by step 1, 000.

Figure 7(a) plots the rG = |∆|
|V (G)| values of the data sets. It

can be seen that the data sets have very similar rG values.
Thus, the graphs generated have similar degree of symmetry.

In Figure 7(b), we compare the index size of simple BFS-
trees (no orbit compression) and our compact BFS-trees,
respectively. As shown in Figure 7(b), the difference in size
between the simple BFS-trees and the compact BFS-trees
increases as the graph size increases. Figure 7(c) shows the
compression rate, which remains constant with the growth
of graph size. This clearly shows that compact BFS-trees
can achieve consistent compression quality on large graphs.

In Figure 7(d), we also show the time t1 for finding all
mapping automorphisms and time t2 for generating compact
BFS-trees in our method. Constructing compact BFS-trees
costs more in time. Again, index construction is offline.

To explore the influence of symmetry on compact BFS-
trees, we generate synthetic graphs following the graph
growth model under the principle of “similar linkage pat-
tern” [30], where a parameter α is used to control the degree
of symmetry of the graph. By fixing the graph size to 5, 000
vertices and varying parameter α from 0 to 1 by step 0.05,
we generate graphs of the same size but different degree of
symmetry. The average degrees of networks generated are
2.92. Figure 8(a) shows the degree of symmetry (rG) with
respect to parameter α in the graphs generated.

Figures 8(b) and 8(c) show the size and the compression
rate, respectively, of BFS-trees and compact BFS-trees with

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

r G

(a) Symmetry w.r.t. α

0.0 0.2 0.4 0.6 0.8 1.0
-20
0

20
40
60
80

100
120
140
160

In
de

x
S

iz
e(

M
)

BFS trees
Compact BFS trees

(b) Index size.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

C
om

pr
es

si
on

 R
at

e

(c) Compression Rate

0.0 0.2 0.4 0.6 0.8 1.0
0

20
40
60
80

100
120
140

Ti
m
e(
s)

 TBFS

 t1

 t2

 Tcomp BFS

(d) Index Building Time

Figure 8: Effect of symmetry on compact BFS-trees

respect to α. Clearly, the more symmetric a graph, the more
effective compact BFS-trees. On the other hand, since the
simple BFS-trees do not explore symmetry information in
compression, the size of BFS-trees does not change. One
interesting observation is that, even when α = 1 (rG > 0.8,
i.e., the graph has low degree of symmetry), compact BFS-
trees still can achieve a compression rate less than 80%. This
indicates that even very few non-trivial orbits identified by
our method can bring in good compression power.

Figure 8(d) shows the index construction time with re-
spect to parameter α. When the graphs are highly symmet-
ric (i.e., α is very small), the construction time of compact
BFS-trees is high since there are many automorphisms need
to be calculated. However, when α increases, the compact
BFS-tree construction time decreases dramatically and be-
comes stable, comparable to the construction time of simple
BFS-trees. The construction time of simple BFS-trees is rel-
atively insensible to parameter α. In practice, large graphs
often have local symmetry, but may not be very close to
global symmetry. The offline construction of compact BFS-
trees may often take only moderate extra cost than con-
structing simple BFS-trees, and thus is highly feasible.

In summary, our experimental results clearly show that
compact BFS-trees as an index are effective in exploiting
symmetry in graphs. Moreover, the construction of com-
pact BFS-trees is feasible and affordable as an offline opera-
tion. Using compact BFS-trees, we can online answer short-
est path queries efficiently and achieve the performance tens
of times faster than not using indexes.

7. RELATED WORK
The most famous and widely used algorithm to solve the

shortest path problem is Dijkstra [10], which is fast using
heap data structures for priority queues [9]. Some faster al-
gorithms for graphs with special constraints on edge weights
are developed [8]. However, one assumption common to
all those algorithms is that the whole graph can be stored
in main memory. To tackle the problem when the size of
a graph is too large to completely fit into main memory,
Agrawal and Jagadish [2] first introduce the idea based on
graph partitioning and materialization. A recent study [6]
proposes an efficient algorithm as long as the materialized
data can be held into main memory. All those methods
focus on improving shortest path query answering perfor-
mance, but do not consider materialization of shortest paths.
Therefore, when the graph is large, those methods cannot
achieve online query answering performance.

Very recently, Samet et al. [21] propose an algorithm to
find the k nearest neighbors in a spatial graph. They also ex-

ploit the idea to pre-compute the shortest paths between all
possible vertices in the graph. Such shortest path informa-
tion is organized as a shortest path quadtree, which is based
on the spatial coherence of spatial graphs. Their algorithm,
however, does not study how to index the shortest paths for
a general graph. Their method is complement to ours. As
future work, it is interesting to explore how to integrate the
two methods and how to apply symmetry information into
the framework of [21] to further reduce the storage cost.

There are some other graph query problems closely related
to shortest path queries, such as reachability queries. The
simplest way to answer a reachability query is to traverse
the graph at query time using depth-first or breadth-first
search [9]. Another option is to pre-compute the transitive
closure. The transitive closure of a graph is the set of node
pairs (v, w) where a path from v to w exists. Although effi-
cient algorithms are developed for computing transitive clo-
sure in relational databases [1, 16], the cost of storing tran-
sitive closure is O(n2), and the computation cost is O(n3).
The high cost makes the transitive closure methods inap-
plicable to large graphs. Various indexing technologies are
proposed [7, 22, 26, 25, 13] which give better performance
than the naive method and the transitive closure material-
ization method. Some methods [7, 26, 13] adopt an interval
code to efficiently answer reachability queries.

Recently, graph symmetry has attracted interests in the
community of complex networks. It has been shown that
various real networks are richly symmetric [11, 29, 30]. Such
symmetry is commonly resulted from the presence of locally
treelike or biclique-like structures which are present in many
empirical networks, and are derived naturally from elemen-
tary growth processes such as growth with similar linkage
patterns [30]. If we collapse all structural redundancy char-
acterized by network symmetry, we can obtain a structural
skeleton of the parent network – network quotient, which
preserves various key functional properties of the parent net-
work [28]. To the best of our knowledge, we are the first to
exploit symmetry for indexing shortest paths and answering
queries on large graphs.

8. CONCLUSIONS
Shortest path queries are important in many applications.

In this paper, we tackle the problem of online answering
shortest path queries by exploiting rich symmetry in graphs.
We develop compact BFS-trees, a novel index structure for
online shortest path queries. We show by experiments on
real data sets and synthetic data sets that compact BFS-
trees are effective and can be constructed efficiently. More-
over, compact BFS-trees can support online shortest path

queries efficiently.
It’s worthwhile to point out that the equivalence between

automorphically equivalent vertices is far beyond the short-
est path. It has been shown that automorphically equiva-
lent vertices have the same property under almost all general
structural measurement of vertices, such as clustering coef-
ficient and betweenness [11]. They also exhibits equivalence
from other structural perspective, such as reachability to
other vertices, DFS-trees rooted at the vertex and neighbor-
hood graph of the vertex. As future work, it is interesting
to explore how symmetry can be exploited to tackle other
query answering and data analysis problems in large graphs.
Moreover, how to extend our compact BFS-trees to weighted
and directed graphs remains an interesting and challenging
problem. Although nauty program is the most efficient algo-
rithm ever known to calculate automorphism information of
the network, its capability is limited and it can only handle
networks with 20000 nodes or less without extra techniques.
Hence, it is interesting to use local symmetry in real net-
works to improve the scalability of nauty program, so that
the framework of exploiting network symmetry proposed in
this paper can be applied to larger networks.

9. REFERENCES
[1] R. Agrawal and H. V. Jagadish. Direct algorithms for

computing the transitive closure of database relations.
In Proceedings of the 13th International Conference on
Very Large Data Bases, 1987.

[2] R. Agrawal and H. V. Jagadish. Algorithms for
searching massive graphs. IEEE Trans. on Knowl. and
Data Eng., 6(2), 1994.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286, 1999.

[4] N. Biggs. Algebraic Graph Theory. Cambridge
University Press, 1974.

[5] S. Boccalettia, V. Latora, Y. Moreno, M. Chavez, and
D.-U. Hwang. Complex networks: Structure and
dynamics. Physics Reports, 424, 2006.

[6] E. P. F. Chan and N. Zhang. Finding shortest paths in
large network systems. In Proceedings of the 9th ACM
international symposium on Advances in geographic
information systems, 2001.

[7] L. Chen, A. Gupta, and M. E. Kurul. Stack-based
algorithms for pattern matching on dags. In
Proceedings of the 31st international conference on
Very large data bases, 2005.

[8] B. V. Cherkassky, A. V. Goldberg, and T. Radzik.
Shortest path algorithms: Theory and experimental
evaluation. Mathematical Programming, 73, 1996.

[9] T. H. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to algorithms. MIT Press, Cambridge,
MA, USA, 2001.

[10] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1959.

[11] B. D.MacArthur, R. J.Sánchez-Garćıa, and
J. W.Anderson. Symmetry in complex networks.
Discrete Applied Mathematics.

[12] C. Godsil and G. Royle. Algebraic Graph Theory,
volume 207 of Graduate Texts in Mathematics.
Springer, 2001.

[13] H. He, H. Wang, J. Yang, and P. S. Yu. Compact

reachability labeling for graph-structured data. In

Proceedings of the 14th ACM international conference
on Information and knowledge management, 2005.

[14] D. S. Johnson. The genealogy of theoretical computer
science: a preliminary report. SIGACT News, 16(2),
1984.

[15] J. Lauri and R. Scapellato. Topics in Graph
Automorphisms and Reconstruction. Cambridge
University Press, 2003.

[16] H. Lu. New strategies for computing the transitive
closure of a database relation. In Proceedings of the
13th International Conference on Very Large Data
Bases, 1987.

[17] B. D. McKay. Practical graph isomorphism.
Congressus Numerantium, 30.

[18] R. Pastor-Satorras and A. Vespignani. Evolution and
Structure of the Internet: A Statistical Physics
Approach. Cambridge University Press, New York,
NY, USA, 2004.

[19] S. A. Rahman and D. Schomburg. Observing local and
global properties of metabolic pathways: ’load points’
and ’choke points’ in the metabolic networks.
Bioinformatics, 22(14), 2006.

[20] J. J. Rotman. An Introduction to the Theory of
Groups, Fourth Edition. Springer, 1999.

[21] H. Samet, J. Sankaranarayanan, and H. Alborzi.
Scalable network distance browsing in spatial
databases. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, New
York, NY, USA, 2008. ACM.

[22] R. Schenkel, A. Theobald, and G. Weikum. Efficient
creation and incremental maintenance of the hopi
index for complex xml document collections. In
Proceedings of the 21st International Conference on
Data Engineering, 2005.

[23] J. Scott. Social Network Analysis: A Handbook,
Second Edition. Sage Publications, London, 2000.

[24] G. Tinhofer and M. Klin. Algebraic combinatorics in
mathematical chemistry. Methods and algorithms. III.
Graph Invariants and Stabilization Methods
(Preliminary Version). Technical Report,
TUM-M9902, Technische Universitat Munchen, 1999.

[25] S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In Proceedings of the
2007 ACM SIGMOD international conference on
Management of data, 2007.

[26] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual
labeling: Answering graph reachability queries in
constant time. In Proceedings of the 22nd
International Conference on Data Engineering, 2006.

[27] S. Wasserman and K. Faust. Social Networks Analysis.
Cambridge University Press, Cambridge, 1994.

[28] Y. Xiao, B. D.MacArthur, H. Wang, M. Xiong, and
W. Wang. Network quotients: Structural skeletons of
complex systems. Physical Review E, 78.

[29] Y. Xiao, W. Wu, H. Wang, M. Xiong, and W. Wang.
Symmetry-based structure entropy of complex
networks. Physica A, 387.

[30] Y. Xiao, M. Xiong, W. Wang, and H. Wang.
Emergence of symmetry in complex networks. Physical
Review E, 77.

