
Efficiently Learning Linear-Linear

Exponential Family Predictive Representations of State

David Wingate wingated@umich.edu

Satinder Singh baveja@umich.edu

Computer Science and Engineering, University of Michigan, 2260 Hayward, Ann Arbor, MI 48109

Abstract

Exponential Family PSR (EFPSR) models
capture stochastic dynamical systems by rep-
resenting state as the parameters of an ex-
ponential family distribution over a short-
term window of future observations. They
are appealing from a learning perspective be-
cause they are fully observed (meaning ex-
pressions for maximum likelihood do not in-
volve hidden quantities), but are still expres-
sive enough to both capture existing models
and predict new models. While maximum-
likelihood learning algorithms for EFPSRs
exist, they are not computationally feasi-
ble. We present a new, computationally effi-
cient, learning algorithm based on an approx-
imate likelihood function. The algorithm can
be interpreted as attempting to induce sta-
tionary distributions of observations, features
and states which match their empirically ob-
served counterparts. The approximate like-
lihood, and the idea of matching stationary
distributions, may apply to other models.

1. Introduction

One of the basic problems in modeling controlled, par-
tially observable, stochastic dynamical systems is rep-
resenting and tracking state. In a reinforcement learn-
ing context, the state of the system is important be-
cause it can be used to make predictions about the fu-
ture, or to control the system optimally. Often, state is
viewed as an unobservable, latent variable, but models
with predictive representations of state (Littman et al.,
2002) propose an alternative: PSRs represent state as
statistics about the future.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

The original PSR models used the probability of spe-
cific, detailed futures called tests as the statistics of
interest. Recent work has introduced the more gen-
eral notion of using parameters that model the distri-
bution of length n futures as the statistics of interest
(Rudary et al., 2005; Wingate, 2008). To clarify this,
consider an agent interacting with the system. It ob-
serves a series of observations o1...ot, which we call a
history ht (where subscripts denote time). Given any
history, there is some distribution over the next n ob-
servations: p(Ot+1...Ot+n|ht) ≡ p(Fn|ht) (where Ot+i

is the random variable representing an observation i
steps in the future, and Fn is a mnemonic for future).
We emphasize that this distribution directly models
observable quantities in the system.

The Exponential Family PSR is a new family of models
of partially observable, stochastic dynamical systems.
EFPSR models assume that the distribution p(Fn|ht)
has an exponential family form, and that the param-
eters of that distribution are the state of the system
(Wingate, 2008). This idea has been shown to unify a
number of existing models of dynamical systems: for
example, if p(Fn|ht) is assumed to be Gaussian (and
certain other choices are made), the model can capture
any domain modeled by a Kalman filter.

Existing algorithms for learning EFPSR models from
data are based on maximizing exact likelihood, but
the algorithms are slow. This paper presents an effi-
cient algorithm for one particular EFPSR, named the
Linear-Linear EFPSR. We begin by presenting an ap-
proximate likelihood function, and then show that the
terms needed to maximize it can be efficiently com-
puted by virtue of the linearity of the Linear-Linear
EFPSR’s state update. The resulting algorithm is
computationally efficient, and can be interpreted in
terms of stationary distributions of observations, fea-
tures and states. It allows us to begin to learn models
of domains which are too large (in terms of the amount
of data required, and in terms of the complexity of the
observation space) to tackle with any other EFPSR.

Efficiently Learning Linear-Linear EFPSRs

t+2 t+nt+1 t+2 t+n+1t+nt+1

Extended distribution Conditioned distributionDistribution of next n observations

O
bs

er
va

tio
n

fe
at

ur
es

t+1 t+2 t+n t+n+1O O O O O O O O O O O

......

p(Fn|ht) p(Fn, Ot+n+1|ht) p(Fn|ht, ot+1)

Figure 1. An illustration of extending and conditioning.

2. The Exponential Family PSR

We first review the EFPSR family of models, including
how state is represented and how it is maintained.

State. The EFPSR defines state as the parameters of
an exponential family distribution modeling p(Fn|ht),
which is a window of n future observations. To em-
phasize that these parameters represent state, we will
refer to them as st. The form of the distribution is:

p(Fn = fn|ht; st) = exp
{
s⊤t φ(fn)− log Z(st)

}
, (1)

with both { φ(fn), st } ∈ R
l×1. The vector φ(fn)

is a feature vector which controls the particular form
of the distribution. For example, φ(X) = [X,X2],
yields a Gaussian, but φ(X) = [X, log(X)] yields a
gamma. Since the distribution is over the future, φ
can be thought of as features of the future.

As the agent interacts with the system, p(Fn|ht)
changes because ht changes; therefore the parameters
st and hence state change. The feature vector φ(fn)
does not change over time.

Maintaining State. In addition to selecting the form
of p(Fn|ht), there is a dynamical component: given the
parameters of p(Fn|ht), how can we incorporate a new
observation to find the parameters of p(Fn|ht, ot+1)?
That is, how can we update state? Our strategy is to
extend and condition.

Extend. We assume that we have the parameters
of p(Fn|ht), denoted st. We extend the distribution
of Fn|ht to include Ot+n+1, which forms a new vari-
able Fn+1|ht, and we assume it has the distribution
p(Fn, Ot+n+1|ht) = p(Fn+1|ht). This is a temporary
distribution over (n + 1) observations.

To perform the extension, we define an extension func-

tion which maps the current state vector to the param-
eters of the extended distribution:

s+
t = extend(st; θ),

where θ is a vector of parameters controlling the ex-
tension function (and hence, the overall dynamics).

The extension function helps govern the kinds of dy-
namics that the model can capture. For example,
in the PLG family of work, a linear extension allows
the model to capture linear dynamics (Rudary et al.,
2005), while a non-linear extension allows the model
to capture non-linear dynamics (Wingate, 2008).

Condition. Once we have extended the distribution
to model the n + 1’st observation in the future, we
then condition on the actual observation ot+1, which
results in the parameters of p(Fn|ht+1):

st+1 = condition(s+
t , ot+1),

which is our state at time t + 1.

The entire process of extending and conditioning is il-
lustrated in Fig. 1. We have drawn graphs to suggest
that there can be structure in the distributions, and
to informally hint at the fact that the form of the dis-
tribution does not change over time. This, and other
constraints on the features and extension function, are
discussed in detail elsewhere (Wingate, 2008).

2.1. The Linear-Linear EFPSR

The EFPSR is a family of models. Specific members
of the family are chosen by selecting two things: the
features φ, and an extension function. For example, if
p(Fn|ht) is Gaussian, and a special extension function
is chosen, the predictively defined version of a linear
dynamical system (Kalman filter) is recovered.

The Linear-Linear EFPSR chooses features and an ex-
tension function designed to make it both analytically
tractable and efficiently approximable. The extension
function is linear, and features are chosen such that
conditioning is always a linear operation (hence the
name, “Linear-Linear”). In this paper, we also as-
sume the base observations are vectors of binary ran-
dom variables. If they are not, we assume that bi-
nary features are extracted from the observations, and
discard the original observations (we call these atomic

features, to distinguish them from the higher-order fea-
tures defined by φ).

Efficiently Learning Linear-Linear EFPSRs

Features. Let each base observation Ot be a vector
∈ {0, 1}d; therefore, each Fn|ht ∈ {0, 1}nd. We re-
strict all features comprising the feature vector φ to
be conjunctions of the atomic binary variables in the
base observations. For example, if each Ot ∈ {0, 1}3,
there could be a feature φ(ot)k which is a conjunc-
tion of the second and third components of the ob-
servation: φ(ot)k = (ot)2(ot)3. By selecting features
this way, the resulting distribution can be conditioned
with an operator that is nonlinear in the observation
ot+1, but linear in the state st. We therefore define
the linear conditioning operator G(ot+1) to be a ma-
trix which transforms s+

t into st+1: st+1 = G(ot+1)s
+
t .

See (Wingate, 2008) for details.

Extension function. We choose a linear extension:

s+
t = Ast + B.

A ∈ R
k×l and B ∈ R

k×1 are our model parameters.

The combination of a linear extension and a lin-
ear conditioning operator means that the en-
tire extend-and-condition operation (ie, state
update) is a linear operation:

st+1 = G(ot+1) (Ast + B) .

This will be critical in the sequel.

3. Learning with Exact Likelihood

We now briefly sketch how to learn a Linear-Linear
EFPSR model from data by maximizing exact likeli-
hood. We do this to point out the two primary com-
putational bottlenecks that motivate this paper.

We assume we are given a sequence of T observa-
tions, [o1 · · · oT], which we stack to create a sequence
of samples from the Fn|ht’s: ft|ht = [ot+1 · · · ot+n|ht].
The likelihood of the training data is p(o1, o2...oT) =∏T

t=1 p(ot|ht), but we will find it more convenient
to measure the likelihood of the corresponding ft’s:
p(o1, o2...oT) ≈ n

∏T

t=1 p(ft|ht) (maximizing this is
equivalent to maximizing the standard likelihood).

The expected log-likelihood of the training ft’s under
the model defined in Eq. 1 is

LL =
1

T

(
T∑

t=1

−s⊤t φ(ft)− log Z(st)

)
(2)

Our goal is to maximize this quantity. Any opti-
mization method can be used to maximize the log-
likelihood. Two popular choices are gradient ascent
and quasi-Newton methods, such as (L-)BFGS, which
require the gradient of the likelihood with respect to
the parameters, which we will now compute.

We can differentiate with respect to our parameters:

∂LL

∂{A,B}
=

T∑

t=1

∂LL

∂st

⊤ ∂st

∂θ
(3)

and with respect to each state:

∂LL

∂st

=
∂

∂st

[
−s⊤t φ(ft)− log Z(st)

]

= Est
[φ(Fn|ht)]− φ(ft) (4)

where Est
[φ(Fn|ht)] ∈ R

l×1 is the vector of expected
sufficient statistics at time t.

The gradient of st with respect to A is given by

∂st

∂A
= G(ot+1)

(
A

∂st−1

∂A
+ s⊤t−1 ⊗ I

)
,

where ⊗ is the Kronecker product, and I is an identity
matrix the same size as A. The gradient of the state
with respect to B is

∂st

∂B
= G(ot+1)

(
A

∂st−1

∂B
+ I

)
.

Note that the gradients at time t are temporally re-
cursive – they depend all previous gradients.

There are two bottlenecks which motivate this paper:

1. Computing Est
[φ(Fn|ht)] is a standard inference

problem in exponential family models, and is
computationally expensive because it scales ex-
ponentially with the number of atomic observa-
tion variables included in the domain of p(Fn|ht).
Even approximate inference is NP-hard (Dagum
& Luby, 1993), and it must be done T times.

2. The gradients are temporally recursive, but can
be computed in a single pass through the data.
However, the process is expensive. For the dis-
cussion, assume that we have l features in φ(ft),
and that we have k features in the extended dis-
tribution. This means that the matrix A ∈ R

k×l,
that the vector st ∈ R

l, and that there are kl to-
tal parameters describing A. The term ∂st/∂A
is a matrix, with l rows and kl columns. Given
∂st−1/∂A, part of computing ∂st/∂A involves
multiplying ∂st/∂A by A. This is an expensive
matrix-matrix multiplication, which scales poorly
as the number of features in the model grows, and
it must be performed T times to get the true gra-
dient of the likelihood, which scales poorly as the
size of the training set grows.

To summarize, the exact learning algorithm does not
scale well with either the number of training samples
T , the dimension of the observations, the window size
n, or the number of features |φ|.

Efficiently Learning Linear-Linear EFPSRs

4. Approximate Likelihood

We now turn to the main contribution of this paper.
In order to achieve an efficient learning algorithm, we
will present an approximate expression for likelihood,
named L̂L, and show that its gradient can be effi-
ciently computed. We will also examine what happens
in the limit as T → ∞. The quantity L̂L could be
used with any model, not just the Linear-Linear EF-
PSR, but we will show that the Linear-Linear EFPSR
allows us to compute the needed terms easily.

We now present our approximate log-likelihood L̂L,
which is an approximate lower bound on the exact like-
lihood. To begin, we will make one central assumption:

Assumption 4.1. We assume that Cov[st, φ(ft)] = 0
and that Cov[st, ot] = 0, ∀t.

This assumes that the state does not covary with
observable quantities. It implies that E[s⊤t φ(ft)] =
E[st]

⊤E[φ(ft)], which will be repeatedly used in the
following derivation. This is not as severe of an as-
sumption as it may appear to be – in particular, that
this does not imply that st and φ(ft) are independent.

We derive L̂L using Assumption 4.1 and a lower bound
based on Jensen’s inequality:

LL =
1

T

(
T∑

t=1

−s⊤t φ(ft)− log Z(st)

)

= ET

[
−s⊤t φ(ft)− log Z(st)

]

= ET

[
−s⊤t φ(ft)

]
− ET [log Z(st)]

≈ ET [−st]
⊤

ET [φ(ft)]− ET [log Z(st)]

≥ ET [−st]
⊤

ET [φ(ft)]− log Z(ET [st])

≡ L̂L

where we have defined the operator

ET [X] ≡
1

T

T∑

t=1

X.

The fourth line in the derivation follows because of
Assumption 4.1. The fifth line is obtained by a double
application of Jensen’s inequality:

E[− log Z(st)] = E

[
− log(

∫
exp(−s⊤t φ(F))dF)

]

≥ − log(E

[∫
exp(−s⊤t φ(F))dF

]
)

≥ − log(

∫
exp(E

[
−s⊤t φ(F)

]
)dF)

≈ − log(

∫
exp(E [−st]

⊤
E [φ(F)])dF)

= − log Z(E[st]).

Algorithm 1 LEARN-EFPSRS-W-APPROX-LL

Input: ET [ot], ET [φ(ft)]
Initialize A = 0, B = 0.
repeat

(L̂L,∇AL̂L,∇BL̂L)=GRADS-OF-APPROX-
LL(ET [ot],ET [φ(ft)], A,B)

// Use the gradients in an optimizer. Steepest
// descent would look like this:

A = A + α∇AL̂L
B = B + α∇BL̂L

until L̂L is maximized
Return A, B

The second and third lines follow because of the con-
vexity of the functions − log and exp, and the fourth
line follows by Assumption 4.1.

The approximate log-likelihood involves several new
terms, which we now explain. Consider ET [st]. Be-
cause this is an unconditional expectation, as T →∞,
this can be interpreted as the stationary distribution
of states induced by a particular setting of the param-
eters of the model.

At first glance, this term would appear to defeat the
point of our approximations: it appears to depend on
T and on the model parameters, which means that
we would have to recompute it, at cost T , every time
the parameters change (as they would inside any sort
of optimization loop). Fortunately, because it is the
stationary distribution of states, it can be efficiently
computed in the case of the Linear-Linear EFPSR as
the solution to a linear system of equations in a way
that does not depend on T .

The other terms have similar interpretations.
ET [φ(ft)] is empirically observed stationary distribu-
tion of features of n-step windows of observations.
Since it does not depend on the model parameters, it
can be computed once at the beginning of learning
in a single pass through the data. The quantity
log Z(ET [st]) is the log partition function Z computed
using the vector ET [st], and can be computed in the
same way as the partition function associated with
any ordinary state st.

4.1. Computing the Approximate Likelihood

Can the approximate log-likelihood L̂L and its deriva-
tives be computed efficiently? The answer is yes: Ap-
pendix A shows that in the case of the Linear-Linear
EFPSR, both L̂L and the derivative of L̂L with respect
to the model parameters can be computed efficiently.
The computation does not depend on T (the amount

Efficiently Learning Linear-Linear EFPSRs

of training data), and only involves the solution to two
sparse linear systems of equations. Inference must be
performed on the graphical model only once. In addi-
tion, the expensive matrix-matrix multiplications are
completely eliminated.

4.2. Algorithm Summary

Let us pause for a brief summary. The exact log-
likelihood LL in Eq. 2 is intractable to maximize.
However, we have introduced L̂L, and shown that
it and its derivatives can be computed efficiently.
Putting everything together, we see that this learning
algorithm is attempting:

• to find a setting of the parameters A and B

• which generate a stationary distribution of states
ET [st],

• based on a transition operator defined using the
stationary distribution of observations ET [ot],

• which imply a stationary distribution of features
of length n trajectories EET [st][φ(Fn|ht)] as close
as possible to the empirically observed station-
ary distribution of features of length n trajectories
ET [φ(ft)].

With gradients in hand, any optimization method may
be used to find the optimal settings for A and B. The
final gradient algorithm is shown in Algorithm 2 (in
Appendix A), and a simple companion steepest de-
scent optimizer is shown in Algorithm 1.

5. A Low-Rank Parameterization

We briefly turn our attention to the parameter matri-
ces A and B. So far, we have implicitly assumed that
the matrix A is reasonably sized, but this assumption
is false in the case of a large number of features.

To clarify this, recall that our state st is a vector ∈
R

l×1, where l is the number of features of the future.
When we extend and condition, we implicitly compute
s+

t , which is a vector of parameters describing n + 1
observations: s+

t = Ast + B. If we assume that there
are k extended features, the A matrix is ∈ R

k×l.

One of the goals of EFPSRs is to be able to use many
features in order to capture state. If the number of
features l is very large (say, tens of thousands, or even
millions), the number of extended features k will be
even larger, and the matrix A will be too large to work
with. For example, if there are 10,000 features, and
if the extended distribution has 15,000 features, the
matrix A ∈ R

15,000×10,000, which is simply too large.

L̂L has another property which suggests a solution

−60

−50

−40

−30

−20

−10

0

O
O

O
t
+

2
t
+

1
t

Figure 2. The setup of the bouncing ball problem.

to this problem: the gradients ∇AL̂L have a natu-
ral rank-one form, and therefore mesh well with sin-
gular value decomposition (SVD) update algorithms
(Brand, 2006). Instead of maintaining the full matrix
A, we can maintain a low-rank SVD of A. Given the
SVD of A and a rank-one gradient update, the param-
eters of the updated SVD can be efficiently computed.
The entire process can be meshed with a rank-aware
line search. The advantage is that the full matrix A
is never computed, but exact line searches can be con-
ducted. See (Wingate, 2008) for more details.

6. Experiments and Results

We now evaluate the quality of our approximations.
For large problems, we cannot compute the exact like-
lihoods to compare with, and since we are using ap-
proximate likelihoods, it is not clear what a compari-
son would mean. Instead, we use reinforcement learn-
ing to help measure the quality of the model: we use
the states generated by the EFPSR as the input to an
reinforcement learning planner. We conclude that our
model is good if the RL agent is able to use it gener-
ate performance comparable to that of the true model.
For comparison, we also tested RL using the raw ob-
servations as state (called the “reactive,” or first-order
Markov policy), and a random policy.

6.1. Planning in the EFPSR

We used the Natural Actor Critic (or NAC) algo-
rithm (Peters et al., 2005) to test our model. NAC
requires two things: a stochastic, parameterized pol-
icy and the gradients of the log probability of that
policy. We used a softmax function of a linear pro-
jection of the state: the probability of taking ac-
tion ai from state st given the policy parameters θ

is p(ai; st, θ) = exp
{
s⊤t θi

}
/
∑|A|

j=1 exp
{
s⊤t θj

}
, where

θ is to be learned. See (Wingate, 2008) for details.

6.2. Bouncing Ball

The first test domain is called the Bouncing Ball do-
main. In this domain, the observations are factored in
a way that is closely related to the dynamics of the sys-
tem. This domain was hand-crafted to be compatible
with the EFPSR: the domain has significant structure

Efficiently Learning Linear-Linear EFPSRs

Noiseless 1% Noise 10% Noise
−20

−15

−10

−5

0
A

ve
ra

ge
 R

ew
ar

d

EFPSR
Reactive

Figure 3. Results on the bouncing ball domain.

in the observations, and basically requires the use of a
model which is able to capture that structure.

Figure 2 describes the domain pictorially. The left fig-
ure shows the the ball bouncing. At each timestep,
the agent observes an 11x10 array of pixels which
may be black or white. One of these pixels represents
the “ball,” which bounces diagonally around the box
(shown as a gray trail in the figure). The agent has
two actions: 0 means “do nothing,” and 1 means “re-
verse the direction of the ball.” The reward signal is
shown in the middle. This domain is episodic: every
50 timesteps, the ball is reset to a random position.
We define three different versions of the domain. In
the noiseless version, the agent sees the exact position
of the ball. This domain is second-order Markov with
11 × 10 = 110 observations. The second version adds
a p=1% chance of flipping white pixels to black. This
domain is no longer second-order Markov, and has 2110

possible observations. The third version uses p=10%.

Figure 2 shows the features we used, which are hand-
coded to correspond with the known dynamics. We set
n = 2 and added singleton features for each observa-
tion. Pairwise features were added for each variable to
its diagonal neighbors in the next timestep (to capture
the diagonal motion of the ball). The extended distri-
bution p(F 3|ht) used quartets consisting of an action
and observation at time t, and diagonal observations at
time t+1 and t+2. There were 584 features describing
p(F 2|ht) and 1,292 features describing p(F 3|ht).

We used the timeless gradients, the low rank approx-
imation of A, and 100,000 training samples. Figure
3 collects the results. The EFPSR is able to consis-
tently improve over the best reactive policy, generat-
ing a policy with 30% higher reward in the noiseless
version, a policy with 25% higher reward when p=1%,
and a policy with 13% higher reward when p=10%. It
is an open question as to whether different feature sets
would improve these results further.

6.3. Robot Vision Domain

Together, the combination of the Linear-Linear EF-
PSR, the approximate maximum likelihood objective
function, and the low-rank decomposition of the pa-

...

t+n

...

...

...

t+1 t+2O
bs

er
va

tio
n

va
ri

ab
le

s

Figure 4. Setup of the vision domain.

rameter matrix allow experimentation on domains
with hundreds of observation variables and tens of
thousands of features, which is larger than any other
model with a predictive representation of state. Here,
we apply the entire suite of techniques to the task of
visual navigation, where a robot must navigate a maze
using only features of camera images as observations.

Figure 4 explains the setup. The latent state space
consists of a position x, y and orientation θ. The ex-
periments used two different maps (bottom left). The
agent has four actions: move forward, move backward,
turn left and turn right. We tested two kinds of dy-
namics: in the “coarse” dynamics, the agent took large
steps and turns, and in the “fine” dynamics, the agent
took small steps and turns. The initial observations
are 64x64 color images, from which binary features
are extracted (upper left). We tried two different sets
of binary features. The first set consisted of 884 fea-
tures like edges, corners and colors, and the second
feature set was a post-processed version of the first.
The idea of the second set was to create higher-order
features which represented things like walls and hall-
ways. To do this, images from Maze #1 were clustered
according to the latent states, and then the binary fea-
tures were averaged together to create a sort of filter.
New images were tested against each filter, triggering
if the response exceeded a threshold. There were 373
of these features. Note that while the images were all
taken from Maze #1, they were also used in Maze #2,
where the colors, hall geometry, etc. were all different.

We set n = 3. For the feature vector φ(), we used
“streamer features.” These connect each observation
variable only to its temporal successors (Fig. 4, right).
There were between 12,000 and 50,000 total features
in the final feature set. We trained on 200,000 sam-
ples generated with a random policy. For the NAC
parameters, we used a TD rate of λ = 0.85, a step-
size α = 10.0, gradient termination test ǫ = 0.001 and
remembering factor β = 0.0.

Figure 5 shows the results. The random policy per-
formed the same in both domains, regardless of map
or dynamics. Higher rewards were obtained in general

Efficiently Learning Linear-Linear EFPSRs

Map 1 − Coarse Map 1 − Fine Map 2 − Coarse Map 2 − Fine
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 r
ew

ar
d

Feature Set #1

EFPSR
Reactive
Random

Map 1 − Coarse Map 1 − Fine Map 2 − Coarse Map 2 − Fine
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 r
ew

ar
d

Feature Set #2

EFPSR
Reactive
Random

Figure 5. Results on the vision domain.

with coarse dynamics, regardless of map, feature set,
or learning algorithm (presumably because the agent
can reach high-reward regions more quickly).

The difference between the two feature sets that is
most interesting. Using feature set #1, the EFPSR
performs just under the performance of the reactive
policy, regardless of map or dynamics. Perhaps this
means that the EFPSR was unable to capture any
meaningful dynamics, and instead learned to predict
the identity function, with some noise. This would
result in a policy equivalent to the reactive policy.

The results are reversed for feature set #2. Here, the
EFPSR consistently outperforms the reactive policy.
Together, these observations imply a coherent story.
For both feature sets, we used the same set of streamer
features. One plausible explanation for the results is
that low-order conjunctions of more abstract features
gives more modeling benefit than low-order conjunc-
tions of granular, low-level features. It is easy to imag-
ine that low-order conjunctions of granular features is
insufficient to capture useful abstract structure in the
domain. For example, to represent the corner of a wall,
the agent might need a conjunction of 10 features, but
we only had fourth order conjunctions. This was part
of the motivation for feature set #2: because the cam-
era images were clustered according to latent states,
they were typically images of the same thing, from
slightly different positions and angles. Using this fea-
ture set, the highest-order conjunction was still four
or five, but these conjunctions may represent more ab-
stract knowledge: if one feature represents “pink wall”
and another represents “pink corner,” perhaps a low-
order conjunction could express “I’m looking at a pink

wall, but if I turn left, I’ll see a pink corner.” The idea
that low-order conjunctions of more abstract features
gives more modeling benefit than low-order conjunc-
tions of granular, low-level features suggests several
directions for future improvement of these results.

Not reflected in the performance graphs is the com-
putation required. Learning the model was relatively
easy, taking only about 30 seconds. Because of the
intensive rendering and relatively large size of the do-
mains, the NAC algorithm required about a day to
generate the policies to be reported. Informal calcula-
tions indicated that it would take about a week to get
a single gradient with exact likelihood.

7. Conclusions and Future Work

We have presented a computationally efficient learning
algorithm for the Linear-Linear EFPSR model and il-
lustrated it on two domains. Our main contribution is
an approximate likelihood, and the insight that maxi-
mizing it is equivalent to attempting to match station-
ary distributions. This idea may find traction in other
learning problems. While evaluation of the model and
learning algorithm is challenging, it is only by virtue
of these approximations that we were able to attempt
at all domains like the Bouncing Ball or the Robot Vi-
sion domain, which have continuous state spaces, rich
observations, and tens of thousands of features. For
both domains, we obtained better-than-reactive con-
trol policies, suggesting that information from history
has successfully been incorporated into the state repre-
sentation. This is a positive result considering the size
of the data set and the number of features involved.
Future work needs to address the problem of learning
good atomic features and the graphical structure, since
these appear to be key factors affecting performance.

A. Computing L̂L and Its Derivatives

To compute L̂L we must compute three terms:
ET [st] (the stationary distribution of states), ET [φ(ft)]
(which is computed once from data), and the log par-
tition function log Z(ET [st]). We begin with ET [st].
Recall that our goal is to compute this term in a way
that is independent of T . This will be possible using
Assumption 4.1, the linearity of the state update, and
an insight related to stationary distributions:

ET [st] = ET [G(ot) (Ast−1 + B)]

≈ ET [G(ot)A] ET [st−1] + ET [G(ot)] B

= ET [G(ot)A] ET [st] + BG

= G(ET [ot])AET [st] + BG

= (I −G(ET [ot])A)
−1

BG (5)

Efficiently Learning Linear-Linear EFPSRs

where I is an appropriately sized identity matrix, and
where BG = G(ET [ot])B. The second line follows by
Assumption 4.1.

The third and fourth lines are both interesting for dif-
ferent reasons. The fourth line follows by the linear-
ity of the operator G(·). The matrix G(E[ot]) can be
interpreted as the expected transition operator, and
is a simple function of the stationary distribution of
observations ET [ot]. The third line follows by the lim-
iting properties of our expectations: we assume that
ET [st] = ET [st−1] because as T → ∞, both represent
the stationary distribution of states.

The result is that ET [st] can be computed as the so-
lution to a linear system of equations. Note that
G(ET [ot]) will typically be very sparse, and a designer
may force the A part to be sparse or low-rank. If so,
a matrix-vector product can be computed efficiently,
and an iterative solver should be used to solve Eq. 5.

Computing Derivatives. We now compute the
derivatives of L̂L with respect to A and B:

∂L̂L

∂{A,B}
=

∂L̂L

∂ET [st]

⊤
∂ET [st]

∂{A,B}

We begin with the left-hand term:

∂L̂L

∂ET [st]
= EET [st] [φ(F)]− ET [φ(ft)] ≡ ∆

This result has an appealing intuitive interpretation.
EET [st][φ(F)] can be interpreted as the expected fea-
tures that would be obtained if inference were per-
formed using ET [st] as the state – in other words, it
represents the stationary distribution of features un-
der the model. Since ET [φ(ft)] represents the em-
pirically observed stationary distribution, we see that
the gradient wishes to match the two. If we use a
variational method to compute the log partition func-
tion log Z(ET [st]), which is needed to determine the
value of the log-likelihood, then the expected features
EET [st][φ(F)] are available as a byproduct of the opti-
mization. This is a pleasing efficiency.

However, we are not done. We still must find the tran-
sition parameters which allow us to move the expected
sufficient statistics closer:

∂ET [st]

∂A
= (I −G(E[ot])A)

−1

(
∂

∂A
G(E[ot])A

)
ET [st]

We now find it convenient to remember that the
full derivative also includes the term ∂L̂L/∂ET [st] ≡
∆, which is a column vector. Let Γ ≡
∆⊤ (I −G(E[ot])A)

⊤−1
G(E[ot]). Then:

∆⊤ ∂ET [st]

∂A
=

∂

∂A
ΓAET [st] = Γ⊤ET [st]

⊤

Algorithm 2 GRADS-OF-APPROX-LL

Input: ET [ot], ET [φ(ft)], A, B

// Compute stationary distribution of states

ET [st] = (I −G(ET [ot])A)
−1

B

// Use ET [st] to perform inference
Compute EET [st][φ(F)] and log Z(ET [st])

// Compute the approximate log-likelihood:

L̂L = −ET [st]
⊤

EET [st][φ(F)]− log Z(ET [st]).

// Compute the gradient:
∆ = E[φ(ft)]− EET [st][φ(F)].

Γ = ∆⊤ (I −G(E[ot])A)
⊤−1

G(E[ot])

∇AL̂L = Γ⊤ET [st]
⊤

← note: a rank-one matrix

∇BL̂L = G(ET [ot])
⊤∆

Return L̂L,∇AL̂L,∇BL̂L

The derivative with respect to B is similar:

∆⊤ ∂ET [st]

∂B
= ∆⊤ ∂

∂B
[G(E[ot])(AET [st] + B)]

=
∂

∂B
∆⊤G(E[ot])B = ∆⊤G(E[ot])

The completed algorithm is shown in Algorithm 2.

Acknowledgments

Both authors were supported by NSF grant IIS-
0413004. Any opinions, findings, and conclusions or
recommendations expressed are those of the authors
and do not necessarily reflect the views of the NSF.

References

Brand, M. (2006). Fast low-rank modifications of the thin
singular value decomposition. Linear Algebra and its
Applications, 415, 20–30.

Dagum, P., & Luby, M. (1993). Approximate probabilistic
reasoning in bayesian belief networks is NP-hard. Arti-
ficial Intelligence, 60, 141–153.

Littman, M. L., Sutton, R. S., & Singh, S. (2002). Predic-
tive representations of state. Neural Information Pro-
cessing Systems (NIPS) (pp. 1555–1561).

Peters, J., Vijayakumar, S., & Schaal, S. (2005). Natural
actor-critic. European Conference on Machine Learning
(ECML) (pp. 280–291).

Rudary, M. R., Singh, S., & Wingate, D. (2005). Predictive
linear-Gaussian models of stochastic dynamical systems.
Uncertainty in Artificial Intelligence (pp. 501–508).

Wingate, D. (2008). Exponential family predictive repre-
sentations of state. PhD thesis, University of Michigan.

