
Efficiently Prefetching Complex Address Patterns

Manjunath Shevgoor†, Sahil Koladiya†, Rajeev Balasubramonian†, Zeshan Chishti‡
†University of Utah, ‡Intel Labs

Abstract

Prefetching continues to be an active area for research,
given the memory-intensive nature of several relevant work-
loads. Prior work has focused on predicting streams with
uniform strides, or predicting irregular access patterns at the
cost of large hardware structures. This paper introduces the
Variable Length Delta Prefetcher (VLDP). VLDP correlates
address deltas between successive cache line accesses that are
seen across many physical pages, and then uses those correla-
tions to issue prefetches in new pages. These correlations are
built up in several tables, and each table corresponds to a his-
tory of delta patterns with a different length. For example, the
shortest history table uses only the most recent access delta
to make a prediction, but the longest history table uses the
most recent three access deltas to make a prediction. Longer
histories generally yield more accurate predictions, so VLDP
fits the current delta history into the longest history table that
has a matching entry. Using a global history of patterns it
has seen in the past, VLDP is able to issue prefetches without
having to wait for additional confirmation, and it is even able
to prefetch some patterns which show no repetition within a
physical page.

1. Introduction

Memory latency continues to be a significant bottleneck in
today’s processors. Work addressing this bottleneck ranges
from building DRAM caches and exotic new memories, to
continuing efforts to improve mature technologies such as
replacement and prefetching algorithms. Prefetching in partic-
ular is a well-studied, complex problem with several aspects
that have first-order effects on performance. For example,
where the prefetcher is located in the memory hierarchy will
constrain the information available to it. Prefetching from
DRAM into the lowest level of the cache, introduces a number
of unique challenges.

First, in most high volume CPU designs the program counter
(PC) is unavailable at this level in the cache hierarchy. This
can make PC-based patterns more difficult to detect. Second,
a prefetcher located at the last level cache must deal with
physical addresses directly without the benefit of a TLB or
other page table information. This means that address patterns
must be discovered using only sequences of physical addresses.
Since virtual to physical page mapping is often arbitrary, easily
predictable sequences of virtual addresses spread over differ-
ent pages may not exhibit discernible patterns after translation

to the physical address space. This presents a particular prob-
lem for prefetchers that rely on discovering common deltas
between consecutive requested addresses and applying them
to future requests. In light of these constraints, many mod-
ern prefetchers track addresses on a per physical page basis,
discovering patterns and prefetching within multiple simulta-
neously tracked physical pages.

Multi-Delta Sequences: In this paper, we define a delta to
be the difference between the addresses of successive accesses
to the same physical page. One common approach to discov-
ering patterns in a sequence of physical addresses is to isolate
the addresses in different regions (often physical pages) and
identify sequences of addresses in those regions with repeating
deltas. For example, the delta +2 would be identified in the
address sequence A, A+2, A+4 and used to prefetch A+6, A+8
and so on, depending on the degree. The drawback of this
approach is that it can only identify patterns consisting of a
single repeated delta.

We define a multi delta sequence as a repeating sequence
of different deltas. To discover patterns with multi delta se-
quences, a prefetcher would need two key features. First,
it would need the ability to track multiple streams within a
physical page. Second, it would need the ability to compare
new access address with multiple prior addresses in a window,
comparing A and A+1, for example, to identify the +1 stream
starting with A. Commonly implemented prefetchers, such
as Intel’s stream prefetcher [4], lack both of these capabili-
ties and would therefore be unable to prefetch these address
sequences. However, prior work has described more sophisti-
cated prefetchers such as AMPM [2] that do support both of
these capabilities.

The key disadvantage of algorithms like AMPM is training
time; only when a stream has been confirmed, can it start
prefetching. We therefore introduce the Variable Length Delta
Prefetcher (VLDP), which is designed to efficiently predict
multi-delta sequences. The VLDP learns from multi-delta
sequences by remembering previously occurring delta pairs.
VLDP has the ability to learn these patterns from one physical
page, and apply them in every new physical page it encounters
without having to re-learn them.

The following key observations motivate this work. First,
virtual memory restricts pattern discovery to occur only within
the boundaries of a physical page. Second, the discovered
patterns will often be short, because they are interrupted by
transitions between physical pages. Third, in light of the pre-
vious two observations, maximizing prefetch coverage relies

1

on minimizing the training time in a newly accessed physical
page. Fourth, many workloads contain multi-delta sequences,
in addition to the more commonly exploited single delta se-
quences.

In light of these observations, our proposed Variable Length
Delta Prefetcher (VLDP) has the following features not found
in other prefetchers. First, VLDP enables the prediction of
complex multi-delta access patterns. Second, VLDP works
on a per-page basis, and it can prefetch a different complex
pattern for each page. Third, VLDP uses multiple global
prediction tables that can learn common access patterns across
many pages. Fourth, these prediction tables are indexed by
varying lengths of delta histories, using the longest history
match found in the prediction tables to make the most accurate
prediction. This combination of features allows VLDP to
outperform the evaluated previously proposed regular data
prefetchers like AMPM, across our suite of workloads.

2. Proposal
The Variable Length Delta Prefetcher (VLDP) relies on history
to predict and prefetch future memory requests, as seen in
Figure 1. A separate local history is maintained for each active
physical page in a small structure we refer to as the Delta
History Buffer (DHB). When a reference to one of the active
pages results in a prefetching opportunity, the Delta History
is used to look up a prediction in the Delta Prediction Table
(DPT). The DPT consists of a number of key-value pairs with
the intent of correlating previously occurring delta history with
a subsequently occurring delta. This allows the DPT to make
history based predictions about future deltas.

In this section, we describe the organization of VLDP in
more detail, beginning with the DHB in Section 2.1, followed
by the DPT in Section 2.2, and finally describing a variant
of the DPT we refer to as the Offset Prediction Table (OPT)
in Section 2.3. In each of these sections, we have made the
following assumptions about how the VLDP interacts with the
rest of the memory hierarchy. First, we assume that each core
is allocated a separate VLDP. Second, we evaluate a 2 level
cache hierarchy and we assume all prefetches bring data into
the L2 cache.

2.1. Delta History Buffer

The Delta History Buffer (DHB) tracks delta histories for
recently accessed pages. These histories, in turn, are used to
lookup the DPT and predict future memory requests. Figure 2
shows an entry in the DHB. Each entry in the DHB contains
the following data for a tracked physical page: (i) page number,
(ii) page offset of the last address accessed in this page, (iii)
sequence of up to 3 recently observed deltas, and (iv) the DPT
level used for the latest delta prediction.

When a cache access occurs, the page number is looked up
in the DHB. If no matching entry is found (DHB miss), then
the oldest DHB entry is evicted and assigned to the new page
number (FIFO replacement policy). The page offset of the
cache line is recorded in the last address field. On subsequent

hits to this page in the DHB, a delta is computed between the
current access and the last address. This delta is then added
to the delta sequence (last 3 deltas), and the offset of the most
recent cache line (last add) is updated to reflect the current
access. The delta history maintained in the DHB is limited
to the 3 most recent deltas and is tracked with a 3-entry shift
register.

On a DHB hit, after the DHB entry has been updated with
the most recent delta, the newly updated delta history is used
to index the DPT (Section 2.2). The DHB entry for a page
also stores the ID of the DPT table which was most recently
used to predict the prefetch candidates for this page. This ID is
used to update the accuracy of the DPT and will be described
in more detail in the next section.

2.2. Delta Prediction Table.

Although the DHB maintains separate histories for different
physical pages, there is only a single DPT, shared by all active
pages. In fact, predictions stored in the DPT may survive
across many instances of DHB entries being allocated and
evicted. This enables delta histories observed in some pages in
the past to be used for prefetching new pages that have never
been encountered before. Each of the DPT tables contains
multiple rows, with each row comprised of a key-value pair.
The delta histories obtained from the DHB are used as the keys,
and the delta predictions stored in the DPT are the values. An
additional key feature of the DPT is that it is not just a single
table, but rather a set of cascaded tables, where each table
handles a different length of delta history, as seen in Figure 3.

The need for multiple DPTs can be explained with an ex-
ample. If the delta (2) is followed by (3) in one case and (4) in
the other case, the accuracy of the first DPT table is at most
50%. The addition of a second table, which uses a two-delta
history, can distinguish the (1,2,3) pattern from the (5,2,4)
pattern, enabling accurate prediction of the delta following (2)
in both cases.
2.2.1. Managing Cascaded Tables. Our DPT implementa-
tion uses a set of 3 DPT tables, allowing the use of histories up
to 3 deltas long. When a cache access occurs, we look for delta
history matches in all tables. If multiple tables have a match,
VLDP prioritizes predictions made by the table which uses the
longest matching delta history, which maximizes accuracy.

Figure 3 illustrates the cascaded tables, showing the lowest
priority single-delta table on the left, and the highest priority
3-delta table on the right. Each entry in the table consists of
three basic elements: a delta history (delta), a delta prediction
(pred) and accuracy. On each cache access, the delta history in
the DPT will be compared to the delta history from the DHB.
When the histories match, a prediction will be made based on
the delta stored in the delta prediction field.

Since DPT lookups may produce multiple matches, many
DPT entries in the lower priority tables may become stale over
time. To prevent these dead entries from taking up space in
the DPT, we evict the oldest entry in the DPT.

The DPT is updated to reflect the accuracy of its previous

2

Core 1

L1
 C

ac
h

e

Per Page
Delta History

Tables

Predicted
Delta

P
re

fe
tc

h

Q
u

eu
e

V
irtu

al D
R

A
M

R

ead
 Q

u
eu

e

Delta/Offset
Prediction

Tables

Issue Prefetch

Queue Occupancy

Figure 1: Overview of the Variable Length Delta Prefetcher.

Page
Num.

Last
Add.

Last 4
Deltas

Last
Predictor

35Bits 7Bits 32Bits 2Bits 2Bits
Total of 78Bits/page tracked

Num. Times
Used

Figure 2: Delta History Buffer entry.

Delta(1) Pred. Accuracy

8 b 8 b 2 b

Deltas (4) Pred. Accuracy

8b 8b 8b 8b 8b 2b

Match?

Predicted Delta

16 Rows
per Table

Highest Priority (i=4)Lowest Priority (i=1)

MUX

…

Match?

Figure 3: Delta Prediction Tables.

predictions as well as update the DPT with new deltas. These
updates involve two steps: (i) updating the prediction delta
and accuracy, and (ii) updating the delta patterns themselves.
The accuracy of the delta predictions can only be updated
after the predicted address has been requested. When a cache
access occurs, the DPT must be checked to see if the request
had already been predicted by an earlier prefetch. Using the
last predictor field in the Delta History Buffer (DHB), we
can identify the DPT table responsible for the prediction, and
compare its prediction against the current address. If the DPT
table correctly anticipated the current address, the accuracy of
the DPT table is incremented, otherwise it is decremented.

Incorrect predictions in a DPT table T will prompt the pro-
motion of the delta to the next table (T+1). If the DPT table
T+1 is full, then the oldest entry is evicted. When the DPT is
updated, if the delta pattern is not present in any tables, then
an entry is created for the latest delta in the shortest-history
table.

2.2.2. Multi-Degree Prefetch. Once the VLDP has predicted
the next access in a sequence, the VLDP can predict even
further ahead by appending the predicted delta to the original
history from the DHB to recursively look up the DPT. This
process can be repeated as long as the predicted pattern is
found in the DPT. Note that consecutive lookups in the DPT
are sequential and each lookup adds latency to the subsequent
prefetch. In our modeling, we assume that each lookup re-
quires 5 cycles.

2.3. Offset Prediction Table.

One drawback to using deltas to make predictions is that we
must have at least two references to a page before we can
compute a delta. Some pages are sparsely used, and can
benefit from the ability to make prefetch decisions without
any delta information. To address this, we introduce the Offset
Prediction Table (OPT). In contrast to the DPT, which relies
on using deltas to make predictions, the OPT relies only on the
first cache line offset referenced in a page. Since the OPT can
make predictions with only a single offset (and not a delta),
prefetching requests can be made as early as the very first
reference to a new page.

2.4. Virtual Memory Read Queue.

Prefetchers add to the memory traffic, because most prefetch
predictions are within a page, there is a high chance that they
end up becoming row hits. If the memory scheduler uses an
FR-FCFS policy, this can lead to unfairness. Demand requests
which are row misses end up waiting for the row hits to be
serviced, hence increasing the latency for demand requests.
Kaseridis et al [3] proposed prioritizing demand requests over
prefetch requests even when the prefetch requests are row
hits. The memory scheduling policy used in the second Data
Prefetching Championship treats both demand requests and
prefetch requests in the same way. In order to prevent prefetch
requests from delaying service to demand requests, we imple-
ment a Virtual DRAM Queue (VDQ).

Whenever there is an L2 cache miss or when we issue
a prefetch, we add this request to the DRAM queue. The
length of the VDQ is used as the proxy for the traffic seen at
the memory system. When there is a cache fill into L2, the
corresponding entry is evicted from the VDQ.

2.5. Issuing Prefetches.

When the OPT or the DPT makes a prediction, the prefetch is
not issued immediately. Instead, this prefetch is inserted into
the Prefetch Queue (PFQ). Prefetch requests from the PFQ
are issued only when the page to which the prefetch request
belongs to has less than 3 entries in the VDQ, and also when
the current VDQ occupancy is less than 100 requests. This is
done in order to prevent overloading the memory system with
prefetches.

3

3. Results

3.1. Prefetcher Configurations

VLDP was evaluated using the infrastructure released for the
2nd Data Prefetching Championship. We evaluate 11 work-
loads from the SPEC2006 benchmark suite [1]. All workloads
have been simulated for 1 Billion instructions after fast for-
warding each workload by 10B instructions. We simulate
VLDP with 1 offset prediction table and 3 delta prediction
tables. Each Delta prediction table has 64 entries, and offset
prediction table has 64 entries. The Delta History Buffer keeps
track of the last 128 pages that were accessed by the program.
On every cache access, prefetches up to the fourth degree may
be issued. Table 1 shows per core hardware area overhead for
VLDP.

Offset Prediction Table 392 B
Delta History Buffer 1648 B

Delta Prediction Table 552 B
Prefetch Queue 1675 B

Virtual Dram Queue 1250 B
Total 5.5 KB

Table 1: VLDP Hardware Area Overhead

AMPM stores an access map table, which tracks the status
of every line in an 850KB region. 2 bit counters are used to
track status of every cache line within 850KB region. The
total storage overhead of AMPM is 4KB per core.

3.2. Performance Evaluation

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

IP
C

NOPF AMPM VLDP

Figure 4: Mean IPC for all four Configurations

Figure 4 shows the IPC of VLDP in comparison to AMPM
and the baseline (no prefetch). On average, VLDP is better
than AMPM by 0.2% for all four configurations. The perfor-
mance gains seen by VLDP come as a result of two factors.

First, workloads with multi-delta sequences such as milc,
lbm, have long multi-delta sequences which repeat across
pages. VLDP is ideally suited to handle such access patterns.

Figure 5 shows the latency of demand misses of VLDP in
comparison with AMPM and the baseline for Configuration 1.
The L2 miss latency is a function of L3 hit rate, DRAM row
buffer hit rate and the queuing delay at the memory controller.
VLDP and AMPM prefetch to the L3 cache, when the L2 read

queue is nearing its maximum capacity. On average, VLDP
decreases L2 demand miss latencies by 3%.

0
50

100
150
200
250
300
350
400
450
500

C
yc
le
s

AMPM VLDP

Figure 5: Demand Miss Latencies for Configuration 1

Figure 6 shows the prefetch latencies. In the given infras-
tructure, it is not possible to know when a cache line is filled
into L3. For this reason, we only show the prefetch latency for
prefetches in to L2. Overall, the prefetch latency for VLDP is
less than AMPM by 89%.

0

250

500

750

1000

1250

1500

1750

2000

2250
C
yc
le
s

AMPM VLDP

18043

Figure 6: Prefetch Miss Latencies for Configuration 1

4. Conclusions
We’ve described the VLDP algorithm with several key im-
provements over prior work. First, it uses a delta history-based
prediction scheme, allowing the prediction of complex address
patterns. Second, we introduce the use of variable length his-
tories, maximizing both prefetching coverage and accuracy.
Overall, the improvement in both accuracy and coverage en-
able VLDP to improve overall performance by about 0.2%
over AMPM. VLDP produces these benefits at a significant
reduction in hardware overhead relative to AMPM and other
alternatives.

References
[1] “Standard Performance Evaluation Corporation CPU2006 Benchmark

Suite,” http://www.spec.org/cpu2006/.
[2] Y. Ishii, M. Inaba, and K. Hiraki, “Access Map Pattern Matching for

High Performance Data Cache Prefetch,” The Journal of Instruction-
Level Parallelism, vol. 13, January 2011.

[3] D. Kaseridis, J. Stuecheli, , and L. K. John, “Minimalist Open-page: A
DRAM Page-mode Scheduling Policy for the Many-Core Era,” in In
Proceedings of MICRO, 2011.

[4] Ravi Hegde, “Optimizing Application Performance on Intel Core Mi-
croarchitecture Using Hardware-Implemented Prefetchers,” 2008.

4

http://www.spec.org/cpu2006/

	Introduction
	Proposal
	Delta History Buffer
	Delta Prediction Table.
	Managing Cascaded Tables.
	Multi-Degree Prefetch.

	Offset Prediction Table.
	Virtual Memory Read Queue.
	Issuing Prefetches.

	Results
	Prefetcher Configurations
	Performance Evaluation

	Conclusions

