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Abstract

We present an automatic and efficient method to register and

stitch thousands of video frames into a large panoramic mo-

saic. Our method preserves the robustness and accuracy of

image stitchers that match all pairs of images while utiliz-

ing the ordering information provided by video. We reduce

the cost of searching for matches between video frames by

adaptively identifying key frames based on the amount of

image-to-image overlap. Key frames are matched to all

other key frames, but intermediate video frames are only

matched to temporally neighboring key frames and inter-

mediate frames. Image orientations can be estimated from

this sparse set of matches in time quadratic to cubic in the

number of key frames but only linear in the number of inter-

mediate frames. Additionally, the matches between pairs of

images are compressed by replacing measurements within

small windows in the image with a single representative

measurement. We show that this approach substantially re-

duces the time required to estimate the image orientations

with minimal loss of accuracy. Finally, we demonstrate both

the efficiency and quality of our results by registering sev-

eral long video sequences.

1 Introduction

The automatic construction of large, high-quality panora-

mas from regular hand-held photographs is one of the recent

success stories of computer vision, with stitching software

bundled with many digital cameras and photo editors. How-

ever, approaches for automatic high-quality registration and

stitching of video sequences have so far been hindered by

high computational costs and thus simplifications in motion

models or restrictive assumptions are typically required to

make such algorithms run in reasonable time. Registering

all the frames of a video into a panoramic mosaic [24, 16]

(as opposed to just select frames of the video) enables many

new creative possibilities. For example, many applications,

such as high dynamic range imaging [4, 11] and video tex-

tures [22], can be extended to panoramas [1]. Furthermore,

registering video frames can facilitate applications such as

indexing [7], image stabilization [3], and compression [8].

While existing methods [2, 26] for constructing large

panoramas in a “batch” fashion from static images can be

quite robust, they are typically not efficient for aligning and

stitching all the frames of a high-quality video sequence.

While fast techniques do exist for stitching video [17], such

methods typically use more restricted motion models and

produce final panoramic representations that are less accu-

rate than static image-based batch processing approaches.

In this paper, we present a new automatic method that is

much more computationally efficient than existing batch ap-

proaches. We demonstrate that we can gain this efficiency

without sacrificing registration quality. We use our method

to register a number of test video sequences on the order of

a thousand frames. For n frames and k key frames, the com-

plexity of matching in our approach is O(n + k2) and the

complexity of the bundle adjustment is O(n+k3). Thus, for

many video registration applications, our approach scales

well for a thousand frames and beyond. As a result, we

can register very long video sequences into panoramic rep-

resentations and enable many new applications and repre-

sentations of video.

1.1 Motivating Approaches

Recently, Brown and Lowe demonstrated how panoramas

contained in a set of unordered images can be automatically

identified, registered and stitched [2]. This approach allows

a user to take a number of images with a still camera, au-

tomatically identify clusters of images that came from the

same underlying panoramic scene, then stitch each clus-

ter into a panorama. Their general approach for panorama

recognition can be summarized as follows: First, an “inter-

est point” detector is applied to the image (see [21] for a

review of interest point detection methods). Then, invari-

ant features such as those based on Lowe’s Scale Invariant

Feature Transform (SIFT) [13] are extracted. For each fea-

ture, the k nearest neighbors are matched and a connected

component approach is used to identify separate panoramas.

The images associated with each cluster are then aligned



using bundle adjustment [28]. Finally, the images in each

cluster are warped and blended onto a compositing surface

[25].

A number of approaches have been proposed for regis-

tering and stitching panoramas from video [15, 17, 24]. The

way in which such mosaics are constructed, the underlying

camera motion models employed, and the details of the al-

gorithms vary considerably. In [9], an affine motion model

is used for an image resolution enhancement application.

In [15], an 8 parameter perspective transformation model

is used. In [17], a simple translation only camera motion

model is employed and a “manifold projection” approach is

taken. This approach results in a fast algorithm for video

stitching in which narrow strips of pixels from the the un-

derlying scene are used to form the composite panoramic

image. The approach thus avoids computing the more com-

plex 3D camera motion [10].

With a still camera, users typically only take up to a

few dozen images to create a panorama. However, with a

video camera, it is easy to generate thousands of images

each minute. This causes difficulties when directly applying

the techniques from [2] to video sequences. While invari-

ant feature detectors are fairly immune to image warps, in

practice they match best to features from images that are not

warped with respect to each other. This means the k nearest

neighbors of a feature tend to come from the k images with

the most overlap.

When estimating the image warps, matches between im-

ages with small overlap provide much stronger constraints

than matches between images with large overlaps. This

results in systematically less accurate image registrations.

For example, if the camera pans across the scene in swaths,

nearest neighbor matching may result in many matches be-

tween temporal neighbors but very few, if any, matches be-

tween swaths. The matches between swaths are needed to

prevent drift due to error accumulation. These matches can

potentially be found by performing O(n2) matching be-

tween all image pairs, but this is impractical for our goal

of creating panoramas from all the frames of a video.

Video sequences are not just unordered sets of images,

since adjacent video frames typically have significant over-

lap. In [19, 20], video stitching is performed by initially

only stitching together adjacent frames of the video se-

quence, thereby making the matching problem linear in the

number of images. This ignores matches due to the camera

crossing back over its path. By not including these matches,

components of the panorama can drift due to error accumu-

lation. It is possible to compensate for this somewhat by

interleaving the matching process and alignment process as

in [19, 20]. After each new image is aligned to its tempo-

ral neighbor, spatial neighbors can be identified and used to

refine the orientation estimate of the new image.

In contrast to these approaches, we present an efficient

method for registering all frames of a video sequence,

which is generally applicable and has been implemented for

a number of camera motion models, such as 2D similarities,

3D rotations, affine warps and full homographies. (See [6]

for a review of these and other models.) The approach we

present here has been used to register on the order of a thou-

sand frames from a video sequence.

In the following sections we present a number of novel

contributions we used to construct a working system ad-

dressing these video stitching goals. In Section 2, we de-

scribe our method for using the ordering of frames in a

video sequence to reduce the number of image pair com-

parisons. This speeds up the matching phase. In Section

3, we represent the matches between a pair of images us-

ing a few representative matches, which reduces the time

required to align the images. In Section 5 we present effi-

ciency and quality results of our method for aligning video

frames and stitching panoramas from video.

2 Efficient Match Structures for Video

In order to avoid matching all pairs of frames, some as-

sumption about the correlation between temporal and spa-

tial adjacency must be made. Ideally, we would like to

only search for matches between images that actually over-

lap spatially. For example, if the images were taken from

a pan-tilt-zoom camera or we knew that the capture had

been done in a raster-scan manner, we would know ap-

proximately where the images were taken relative to each

other and would be able to predict which frames overlap.

Strong assumptions about the correlation allow the search

for matches to be more restrictive but also make the auto-

matic stitching process more brittle. We want to allow as

much freedom as possible when capturing panoramas, so

these are not acceptable options.

By interleaving the image matching and orientation es-

timation steps, [19, 20] make the fairly weak assumption

that temporally adjacent images are spatially adjacent. They

also make the assumption that any loops in the camera path

are small enough that the accumulated error, or drift, can be

ignored. Even these assumptions are more restrictive than

we would like. When filming a 360 degree panorama with

a long focal length, the two ends of the panorama are espe-

cially susceptible to error accumulation. Also, the position

of the endpoints is strongly affected by misestimation of the

focal length [12]. This framework does not directly handle

breaks in the matching, as would occur with multiple videos

of the same panorama. Lastly, interleaving the matching

and alignment requires that the images be aligned in the

same order as the video. In our framework, we are able to

defer aligning the images until after the matching is done,

thereby allowing us to align images with more matches be-

fore images with fewer matches.



 

 

Figure 1: (top) The initial matching structure: video frames

are matched to their sequential neighbors and to the last key

frame. (middle) As new key frames are detected, forward

matches are added from intermediate frames to the new key

frame. (bottom) Key frames are densely matched, creating

the final key frame mesh.

So as to maintain the robustness of [2], we only assume that

most temporally adjacent frames are spatially adjacent. We

start by looking for matches between all pairs of temporally

adjacent images. We use the local matches to select key

frames based on the amount of overlap. To do this, our al-

gorithm starts by defining the first and last frame to be key

frames. Our algorithm then steps though the video label-

ing frames as key frames if they do not overlap the most

recently labeled key frame by some threshold (25% to 50%

for results shown here). The intermediate frames not la-

beled as key frames are matched to their temporally neigh-

boring key frames and intermediate frames. A key frame

mesh is then created by finding matches among pairs of key

frames.

The assumption underlying our approach is that neigh-

boring key frames almost completely cover the panorama.

In general, though, there will be portions of the panorama

that are not covered by any key frames and that will be left

out of the matching. As the overlap threshold is set tighter,

these potentially unmatched areas become smaller. On the

other hand, if the camera path travels over the panorama

many times, several key frames can be associated with

the same portion of the panorama. This will cause more

matches to be tried when generating the key frame mesh

than if the camera had panned over the panorama once.

Therefore the user pays a computational cost penalty for

covering the panorama more than once, although the same

can be said for taking more still images than needed to cover

the panorama in [2]. The ideas from [19] could be used to

prune out key frames that overlap other key frames, but we

simply left the extra key frames in.

Our algorithm for video alignment is outlined in Fig-

ure 2. We extract Multi-Scale Oriented Patches (MOPs)

Video Alignment Algorithm:

1. For each frame:

• Extract invariant features at interest points

• Match to previous frame

• Match to previous key frame

• Estimate overlap with previous key frame

• Mark as a key frame if overlap is too low

2. For each frame:

• Match to the next or “forward” key frame

3. For each key frame:

• Match to all other key frames

4. Compress match measurements as per Section 3

5. Estimate image orientations from compressed

matches using bundle adjustment

Figure 2: Our algorithm for efficiently constructing a sparse

match structure, compressing the matches and aligning

video frames.

[14] from each frame. RANSAC [5] is used to determine

sets of inlier and outlier features based on their geometric

compatibility with a pairwise homography as in [2]. The

top row of Figure 1 illustrates matching features in suc-

cessive frames back to the previous intermediate frame and

key frame. The middle row shows the additional forward

matches from each frame to the next key frame and moves

the local match arcs for clarity. Finally, the bottom row

shows all the matches after the key frame mesh is added

in. Importantly, we have found that each of these matching

steps are essential to achieve a globally robust registration.

In the next section, we discuss efficient ways to estimate the

camera orientations from this set of image matches.

3 Match Compression

Once feature matches have been established between pairs

of images, they can be used to estimate the camera orienta-

tions. Each feature match defines a measurement error that

depends on the relative orientations of the pair of images.

The relative camera orientations are estimated by minimiz-

ing the measurement error in a (robustified) least-squares

framework. An interest point detector will typically extract

several hundred features from each image, resulting in hun-

dreds of matches between image pairs with large overlaps.

If the matched features are well distributed across the im-



age, this strongly constrains the relative orientations of the

images. The large number of measurements is a computa-

tional bottleneck for many sequences.

We address this by replacing the measurements between

a pair of images with a much smaller number of repre-

sentative measurements. A similar idea was used in [27],

where hallucinated point measurements were added as a

simple way to incorporate planarity knowledge in structure

from motion. In contrast, we want to reduce the number

of point measurements, so we replace measurements with

a smaller number of hallucinated measurements. An ex-

ample of some original measurements and the replacement

measurements is shown in Figure 3. Both the original and

new measurements are represented by pairs of image points

and 2×2 covariance matrices. The new measurement is set

to the centroid of the original points and the covariance is

adjusted by summing the inverse covariance matrices. Our

match compression approach is thus related to the image

patch based method used in [23] where points associated

with low texture regions are down weighted or excluded.

By replacing the original measurements with a smaller

number of representative measurements, we are changing

the shape of the error surface. Therefore, we are paying

an accuracy penalty for the reduced computational cost. To

minimize the accuracy loss, we merge measurements which

span a small portion of the image. Measurements that span

a small angular window poorly constrain the parameters of a

homography other than the translational component. Repre-

senting a group of points by their centroid discards the con-

straints they provide on the non-translational components of

the warp. Only allowing points to merge if they have a small

extent reduces the amount of information we are throwing

out.

We select measurements to merge by placing a bound on

the window size they span in either image. Starting with all

the measurements in one group, we recursively split along

the largest axis-aligned dimension (in either image) until the

bound is met in both images for all groups. For each group,

a single measurement is created in each image positioned

at the centroid of the group. More sophisticated cluster-

ing techniques could potentially satisfy the bound constraint

with fewer clusters, but our greedy strategy performs well

and takes an insignificant amount of overhead time to com-

pute.

We also considered other ways to reduce the number of

measurements considered at each iteration. For instance,

each matched pair of images could be aligned and a linear

approximation to the error could be used to create a single,

linear measurement connecting the two images. There are

two benefits to using a few representative 2D points, though.

First, we are able to preserve some of the non-linearity of

the error surface and do not need to have the images aligned

before simplifying our representation. Second, much effort

 

 

Figure 3: (top) Groups of original measurements spanning

a small angular window for matches are replaced by their

centroid (bottom). In practice, window sizes that are much

smaller relative to the frame size are used.

has been put into speeding up the sparse non-linear mini-

mization code to estimate the camera poses [28]. Using our

approach, the optimization code does not need to be modi-

fied. It is simply a matter of compressing the measurements

between the matching and alignment steps.

4 Computational Cost

Using our matching method and compressed measure-

ments, camera orientations that minimize our objective

function are estimated using a second order, non-linear

technique such as Newton-Raphson [18]. For P image pairs

with Mi measurements between pair i, the objective func-

tion being minimized is

χ2 =
∑

i∈P

∑

j∈Mi

eT
ijΣ

−1

ij eij , (1)

where eij is the 2D measurement error due to match j in

pair i and Σij is the 2×2 measurement covariance. eij de-

pends on measurement ij and the relative orientations of

the images in pair i. We use the following symmetric error

function:

eij = w(xij ,pi) − w−1(x′

ij ,pi), (2)

where w() is the warping function, xij and x′

ij are the

points in each image being warped and pi is the vector

of warp parameters. Notice that pi represents a “halfway”

warp between the images in pair i. In the case of a rota-

tional panorama with a single unknown focal length, this
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Figure 4: The left plot shows matched frames from the LK sequence and, equivalently, the sparsity pattern of the Hessian.

Point (i, j) is filled in if there matches were found between image i and j. The temporal neighbor matches show up as a

line down the diagonal. The forward and backward matching to key frames show up as boxes on the diagonal with longer

camera pauses generating larger boxes. The key frame to key frame matches show up as sparse off-diagonal points. Since the

camera is panning slowly in one direction in the Locks sequence, the key frame to key frame matches between temporally

distant frames are outliers, which were rejected during the robust optimization. The right plot shows the sparsity pattern of

the factored Hessian after permuting the key frames to the end. The key frames cause fill ins in the bottom right corner and

up the right side.

means that the error is calculated on an image plane rotated

halfway between the two images with the warp function

given by

w(xij , [ω
T , f ]T ) = π

(

K(f)R(ω)K−1(f)

[

xij

1

])

,

(3)

where π([x, y, z]
T
) = [x/z, y/z]

T
, R(ω) is the halfway

rotation matrix and K(f) is the calibration matrix

K(f) =





f 0 px

0 f py

0 0 1



 (4)

Homographies, 2D similarities and rotation only motion

models result in different forms of w().
At each iteration of the minimization, the gradient and

Hessian of the objective function, g and H respectively, are

calculated and used to solve for an update step. Using a

linear approximation for eij , g and H are given by

g =
∂χ2

∂θ
and H =

∂2χ2

∂θ∂θ
T

, (5)

and the update step, δ, is obtained by solving

Hδ = −g. (6)

The Hessian is a sparse Nd × Nd matrix, where N is the

number of cameras and d is the number of parameters used

to represent each camera (e.g., d = 3 for a rotating camera).

The computational cost of calculating H and g is linear in

the number of measurements since each measurement term

in (1) only depends on a single pair of images.

For panoramas in which there are measurements be-

tween all pairs of images, solving (6) is cubic in N . When

there are only connections between a small subset of all im-

age pairs, the sparsity pattern of H is similar to the left plot

of Figure 4. As documented in [28], we can take advantage

of the sparsity of H to reduce the computational complexity

of solving (6) using an LU decomposition to only cubic or

less in the number of key frames and linear in the number

of intermediate frames. By permuting the parameters of the

key frames to the end, we can limit the number of non-zero

entries, or fill ins, when factoring H. The sparsity pattern

of the factored Hessian from the Locks sequence is shown

on the right side of Figure 4.

The number of matching image pairs is at most quadratic

in the number of key frames (if they all overlap each other),

but more typically linear; it is also linear in the number of

intermediate frames. The number of feature matches per



Figure 5: Panoramic images generated from sequences LK

and WF (top to bottom).

image pair is a scalar multiplier on this portion of the com-

putational cost. In many cases, the cost of summing the

contributions of the measurements dominates the computa-

tional cost of solving the sparse linear system in the mo-

tion parameters. Reducing the number of per-image mea-

surements in such cases using feature match compression

results in substantial computational savings at little cost in

accuracy, as we demonstrate in the next section.

5 Results

To illustrate the quality of our registrations we have

stitched together and blended all the frames of several

video sequences using the techniques presented in this pa-

per. The characteristics of the video sequences are summa-

rized in Table 5. All of the sequences were captured with a

1280×720 video camera.

The final bundle adjustment results we present here used

a 3D camera rotation motion models with unknown but

fixed focal length, but our approach and system can han-

dle a variety of motion models such as those described in

[25]. The input images were then warped onto a spherical

surface and composited using a feathered blend for display

purposes. Sequences AC1, AC5, AC6, AC8, LK and

WF were captured in one swath. Sequences AGP2, GP1,

GP4 and GP5 were captured with multiple swaths. The se-

quences with a single swath were reconstructed with a key

frame overlap threshold of 50%. For sequences with multi-

ple swaths, the swath to swath correspondences were often

missed with an overlap threshold of 50%. By tightening

the overlap threshold to 25%, all of the swaths were con-

nected. In sequence AGP2, there are a few images where

only the very top of the cathedral is visible. Ghosting due

to their misregistration is visible in the output composite

Seq Width Height # Frames f # Swaths

AC1 2039 2399 568 2.27 1

AC5 1357 2050 862 3.94 1

AC6 1319 1883 183 2.34 1

AC8 1372 2998 568 2.30 1

AGP2 2052 2393 1023 2.82 3

GP1 3961 2495 620 3.30 5

GP4 4096 3494 723 6.34 15

GP5 3051 2284 621 3.94 3

WF 2650 1371 1147 2.98 1

LK 4096 1029 1563 2.10 1

Table 1: Summary of the characteristics of output

panoramic mosaics and input video used for our tests.

image. Sequence GP4 consisted of 15 horizontal swaths

taken with the camera zoomed in (f = 6.34). The noticable

blurring at the bottom of GP4 is due to motion blur in the

original video. A few inter-swath matches were dropped

during bundle adjustment at the left and right side of the

building, leading to some ghosting on the edges.

We evaluated the accuracy of merging measurements and

approximating them with a single point by compressing

measurements with a range of bounding box sizes. The re-

sults of sweeping the maximum bounding box size from 0%

(no compression) to 50% (up to one point in each quadrant

of the image) are given in Figure 8. We ran the sweep on

three of the sequences that could be optimized in memory

and not have to swap to disk. The amount of time taken

to optimize the compressed matches is plotted on the left.

The timings are normalized by the uncompressed time so

that the relative speedups from each sequence can be seen.

We evaluated the accuracy penalty by calculating the RMS

error of the original, uncompressed measurements using the

image orientations estimated from the compressed measure-

ments.

A window size of 20% seems to be a sweet spot where

performance increase has leveled off and the error has not

started to rise. This corresponds to about 25 matches be-

tween fully overlapping images and 12 matches between

images that overlap by 50%. For the camera motion model

used here, this is probably a good number to choose.

However, the window size might need to be smaller for

warps such as homographies where the minimum number

of matches is larger.

6 Summary and Conclusions

We have presented an efficient method for stitching long

video sequences into high-quality panoramic mosaics. The

approach presented here was used to achieve the large scale,

high quality individual frame registrations required for con-



Figure 6: Panoramic images generated from sequences AC1, AC5, AC6 and AC8 (left to right)

Figure 7: Panoramic images generated from sequences AGP2, GP1, GP4 and GP5 (left to right)

structing the panoramic video textures described in [1]. As

future work, our approach could be extended to more so-

phisticated key frame selection methods to ensure optimal

scene coverage during more complex camera panning sit-

uations. Finally, we believe there are many other promis-

ing avenues of exploration enabled by our technique rang-

ing from application in computer graphics, compression and

image enhancement.
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