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1. INTRODUCTION

A well-known and complex reliability design problem is the redundancy allocation

problem (RAP).  Realistic formulations of the RAP are characterized by a large combinatorial

search space with multiple constraints.  Generally, either system reliability is maximized or

system cost is minimized given system level constraints on reliability, cost, weight, power, etc.

The problem has previously been solved using many different optimization approaches and for

different problem formulations [1].  Tabu search (TS) has several potential advantages for

solving this problem yet it has not previously been demonstrated or extensively tested to evaluate

its effectiveness in this particular setting.  An efficient TS is described and demonstrated here,

named TSRAP, and the results are compared with other published approaches to the problem.

The RAP is useful for system designs that are largely assembled and manufactured using

off-the-shelf components, and also, have very high reliability requirements.  Most electronic

systems are in this category.  Redundancy allocation involves the selection of components from

among discrete choices to perform defined functions.  For each required component, there are
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multiple, or even numerous, possible selections available from different component vendors,

with different costs, manufacturing, testing and quality assurance provisions.  Additionally, for

systems to achieve the required reliability levels, there is often the need to implement

redundancy where multiple components are available to continue to perform the required

functions in the event of a component failure.  Solutions to the RAP intend to identify the

optimal combination of component selections and redundancy levels given constraints on the

overall system.

Mathematical programming techniques, such as dynamic programming and integer

programming (IP) have been successfully applied to variations of the problem.  Often to apply

these methods, it has been necessary to artificially restrict the search space to solutions where

only one component type can be selected for each subsystem, and then the same type can be used

to provide redundancy.  Once this restriction has been imposed, transformations can be applied

to the objective function, and then, mathematical programming used to obtain the optimal

solution.  Unfortunately, these restrictions are necessary for application of the optimization

strategies, but not for the actual engineering design problem.  In practice, different components,

performing the same function, can be used within a system to provide high reliability.  For

example, many airplanes are designed with both an electronic and mechanical gyroscope.  They

perform the same function but they have other characteristics that are different.  Thus,

mathematical programming approaches to the problem yield “optimal solutions,” but for an

artificially restricted search space.  In practice, it is possible to obtain solutions that are superior

by relaxing the restriction, as noted by Coit & Smith [2].

Genetic algorithms (GAs) have been able to overcome some the deficiencies of

mathematical programming approaches, and for many problems, the use of GAs has provided
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excellent results.  However, GA is a population-based search requiring the evaluation of multiple

prospective solutions (i.e., a population) over many generations.  Thus, for some complex

problems, this results in significant computational effort and a more efficient approach to the

problem is desirable if it can yield comparable, or even better, results.

TS is a competing meta-heuristic method for many of the same large and complex

combinatorial optimization problems that have been optimized by GA.  It is a conceptually

simple solution technique that moves deterministically through successive iterations by

considering neighboring moves.  (Probabilistic versions of TS also exist.)  Although its origins

go back to the late 1960s and early 1970s, TS was proposed in its current form in the late 1980s

by Glover [3].  Like other meta-heuristics, it is difficult to specify a “canonical form.”  However,

most TS versions can be characterized by the following two important properties: i)

complementing local search (the neighborhood concept), and ii) prohibiting moves that have

been previously selected (the adaptive memory concept).  General material and additional

background information on TS is available from several references [4 - 8], the most

comprehensive being Glover & Laguna [7].

Beginning with an initial feasible solution, successive “moves” to superior solutions are

made within a neighborhood.  To avoid convergence to a local optimum, particular moves (most

often those recently taken) are temporarily deemed to be “tabu” or forbidden, allowing for a

more diverse search.  Implementation of TS requires problem-specific definition of a

neighborhood, memory through use of a tabu list, and aspiration criteria that may override the

tabu list (e.g., if the solution is the best yet identified).  Like GAs, TS does not require objective

function gradient information.  This is particularly important because the objective function for

some forms of the RAP, such as the multiple k-out-of-n problem, is not differentiable.  Unlike
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GAs, TS is not population-based, and successively moves from solution to solution.  This offers

some potential for improved efficiency if it also provides the same quality of solutions.  (It

should be noted that a population-based version has been effectively implemented for TS by

means of the scatter search and path relinking strategies, whose applications are surveyed by

Glover & Laguna [9].)

Given the natural neighborhood structure of the RAP, it seems particularly amenable to

TS.  If the neighborhood is defined within a single subsystem, as done in this paper, when the

search moves to a new solution, then only the design for one subsystem is affected, and the

objective function can be updated efficiently without re-calculation of the unaffected subsystems.

However, because of the global changes effected through the crossover and mutation of GA,

each newly produced solution within a GA requires re-calculation of the system reliability.

1.1       Notation

R(t,x) system reliability at time t, depending on x

x (x11, x12, ..., x1,m1
, x21, x22, ..., x2,m2

, x31, ..., xs,ms
)T

xij quantity of the jth available component used in subsystem i

mi number of available components for subsystem i

s number of subsystems

n (n1, n2, ..., ns)

ni total number of components used in subsystem i , 
1

im

i ij
j

n x
=

= ∑
nmax,i upper bound for ni (ni ≤ nmax,i  ∀ i)

C(x) system cost depending on x

W(x) system weight depending on x

C, W, R  system-level constraint limits for cost, weight, and reliability

cij, wij, rij  cost, weight, and reliability for the jth available component for subsystem i

to mission time (fixed)

k (k1, k2, ..., ks)

ki minimum number of operating components required for subsystem i
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λij parameter for exponential distribution, ( )ttf ijijij λ−λ= exp)(

NFTi,j Near Feasible Threshold for the ith constraint at the jth move of the TS

Fj number of feasible solutions on the tabu list

Tj total number of solutions on the tabu list

ρj feasibility ratio, ρj = Fj/Tj

2. REDUNDANCY ALLOCATION PROBLEM

The most studied design configuration of the RAP is a series system of s independent k-

out-of-n:G subsystems (Figure 1).  A subsystem is functioning properly if at least ki of its ni

components are operational.  If ki is one for all subsystems, then it is a series-parallel system.

The RAP is NP-hard [10] and has been studied in many different forms.  An overview and

summary of work for different approaches to RAP is presented in Tillman, Hwang & Kuo [11],

and more recently by Kuo & Prasad [1].

The RAP can be formulated with system reliability as the objective function (more

typically found in the literature) or in the constraint set (often found in actual engineering design

problems).  Problem P1 maximizes system reliability given overall restrictions on system cost of

C and system weight of W.  Problem P2 minimizes system cost given overall restrictions on

maximum system weight of W and minimum system reliability R.  For these formulations, it is

assumed that system weight and system cost are linear combinations of component weight and

cost.  However, this is not a restriction for the TS methodology.  It can easily accommodate more

constraints and more complex functions, as well.

Problem P1: reliability maximization

max R(to;x)

s.t.
1 1

ims

ij ij
i j

c x C
= =

≤∑∑
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1 1

ims

ij ij
i j

w x W
= =

≤∑∑

1

im

ij i
j

x k
=

≥∑  for i = 1, …, s

xij ∈ {0, 1, 2, …}

Problem P2: cost minimization

min C(x) = 
1 1

ims

ij ij
i j

c x
= =
∑∑

s.t. R(to;x) ≥ R

1 1

ims

ij ij
i j

w x W
= =

≤∑∑

1

im

ij i
j

x k
=

≥∑  for i = 1, …, s

xij ∈ {0, 1, 2, …}

The series-parallel RAP (i.e., ki = 1 ∀ i) has been widely studied.  The different

approaches including dynamic programming (Bellman [12], Bellman & Dreyfus [13, 14], Fyffe,

Hines & Lee [15], Nakagawa & Miyazaki [16]), IP (Ghare & Taylor [17], Bulfin & Liu [18],

Misra & Sharma [19], Gen et al. [20]), and mixed-integer and nonlinear programming (Tillman,

Hwang & Kuo [21]).  More recently, meta-heuristic methods such as GA (Painton & Campbell

[22], Coit & Smith [2, 23], Coit et al. [24]), TS (Kulturel-Konak et al. [25]), and the Ant System

Algorithm (Liang & Smith [26]) have been applied to the problem.

An IP approach was used by Coit & Liu [27] to solve the RAP with k-out-of-n

subsystems and exponential component failure times.  For this formulation, it was necessary to

assume that only one component type (of the mi options) is allowed in a particular subsystem.

The problem was transformed to the form of a standard 0-1 IP problem with ∑
=

+−
s

i
iii mkn

1
max, )1(
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decision variables.  Optimal solutions can be found using standard algorithms developed

specifically for 0-1 IP.  In this paper, TS is applied to this same problem class.  It is no longer

necessary to restrict the solution space when using TS, and better solutions (i.e., higher system

reliability) can be identified.

For the restricted search space (no component mixing), reliability for a k-out-of-n

subsystem with active redundancy is calculated as the sum of (ni-ki+1) binomial probability mass

functions.  The system reliability is the product of the subsystem reliability values, and is given

by:

( ) ( )
1

( )

( ; ) exp( ) 1 exp( )
ij

ij

i

ij i

xs l x lij
r ij ij

l ki
x k

x
R t S t t

l

−

==
≥

 
∈ = −λ − −λ 

 
∑∏x (1)

Sr is a restricted solution set.  Sr is restricted to solutions such that for all i, there exists a

unique p (p∈{1, 2, …, mi}) with xip ≥ ki and xij = 0 ∀ j ≠ p.  The set Sr requires that only one

component type is chosen for each subsystem.

The RAP has been solved using many different approaches.  One reason why this

problem has been so extensively studied is because there does not seem to be a solution

methodology that is universally superior.  TS offers another alternative that provides greater

flexibility than mathematical programming, but potentially greater efficiency than GA.

According to Kuo & Prasad [1], “a well designed TS can offer excellent solutions in large

system reliability optimization.”  Despite this recommendation of the promise of TS, its

effectiveness in solving the RAP has not been sufficiently documented, nor demonstrated.

While TS has not been extensively tested on the RAP, it has been applied successively to

related problems.  TS has been demonstrated on structural design problems with reliability

constraints by Bland [28, 29], and telecommunications network design problems with unreliable

components by Xu et al [30] and Pierre & Elgibaoui [31].  Brooks et al. [32] demonstrated the
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use of TS to determine the optimal configuration of distributed sensors based on the sensor

reliability.  Despite the demonstrated usefulness of TS, a primary deficiency, also found in other

meta-heuristics, is that there is no guarantee that the global optimal solution will be identified.

3.  TABU SEARCH APPROACH

The RAP has an inherent neighborhood structure that engenders single solution meta-

heuristics such as simulated annealing (SA) and TS.  While many papers have reported good

results with SA, there is also common agreement that the method can be quite sensitive to

annealing schedule.  SA makes stochastic moves using an acceptance probability.  However the

moves of TS are deterministic, reducing variability to both initial solution and to other search

parameters.  These considerations motivated the selection of TS as a promising meta-heuristic

for solving the RAP.  The TS presented here, TSRAP, is based on the implementation developed

by Kulturel-Konak et al. [25].

3.1 Tabu Search Meta-Heuristic for the RAP

For the series parallel version of the RAP, the encoding is a permutation encoding of size

∑
=

s

i
in

1
max,  representing a concatenation of the components in each subsystem including non-used

components (i.e., defined as “blanks” when ni < nmax,i).

TS involves the determination of a tabu list of unavailable moves.  For TSRAP, the

structure (encoding) of the subsystem that has been changed in the accepted move is added to the

tabu list.  The content of the tabu list is very influential on the performance of TS.  In this case, a

more specific entry (such as the structure of all subsystems for an accepted move) would not be

limiting enough.  An insufficient number of moves would be tabu, having the potential effect of

stalling the search in a local optimum.  A less specific entry (such as the components altered in

the accepted move) would constrain the non-tabu moves available too greatly.  This may have
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the effect of a coarse search; that is, one that gets near the global optimum, but cannot arrive at

the exact optimal configuration due to move restrictions.  Since moves operate on subsystems, it

was natural to also use a subsystem based tabu entry.  A dynamic length tabu list is used as it

usually found that this reduces sensitivity of the algorithm to selection of the tabu list length.

The tabu list length is re-set every 20 iterations to an integer value distributed uniformly between

[s, 3s] and [14s, 18s] for Problems P1 (s=14) and P2 (s=2), respectively.  This resulted in tabu

list sizes from 14 to 42 in the first instance and from 28 to 36 in the second instance.  The

algorithm is not sensitive to list size and a correlation with s is not necessary.  An aspiration

criterion is also required to determine when a particular move on the tabu list becomes available

again.

The following terms are used below: BEST MOVE (this is the best solution that would

result from taking any of the currently available moves), BEST SO FAR (this is the best solution

found so far in the search – it may be feasible or infeasible), and BEST FEASIBLE SO FAR (this is

the best feasible solution found so far in the search).  TSRAP proceeds as follows:

Step 0 Generate a feasible random initial solution

To obtain an initial feasible solution, s integers between ki+1 and nmax,i–2 (inclusive) are

chosen according to a discrete uniform distribution to represent the number of components

in parallel (ni) for each subsystem.  The algorithm is not sensitive to starting solution; this

procedure typically generates a solution with an average number of components per

subsystem.  Then, the ni components are assigned according to a discrete uniform

distribution to the mi different types.  If feasible, it becomes the initial solution.  If not, then

the process is repeated until a feasible solution is found.
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Step 1 Search the neighborhood of all possible defined moves for each subsystem1

Moves operate on subsystems only and two kinds are used.

a) For the TSRAP that allows component mixing within a subsystem, the first type of

move is to change the number (i.e., quantity) of a particular component type by adding

or subtracting one (xij→xij+1, or xij→xij - 1).  These moves are considered individually

for all available component types within all subsystems.  The second type of move is to

simultaneously add one component to a certain subsystem and delete another

component, of a different type, within the same subsystem (xij→xij+1, and xik→xik - 1

for j≠k, enumerating all possibilities).

b) For the TSRAP without allowing component mixing, the first type of move is to change

the number of components by adding or subtracting one (xij→xij+1, or xij→xij - 1), for

all subsystems.  These moves are considered individually for all available component

types within all subsystems.  The second type of move is to change the type of

component choice (xij→ xik for j ≠ k), for each subsystem, by trying all available

component choices.

An important advantage of these types of moves is that they do not require recalculating the

entire system reliability.  Subsystems are changed one-at-a-time.  Therefore, only the

reliability of the changed subsystem is recalculated and system reliability is updated

accordingly.  The two types of moves are performed independently on the current solution,

and the best among them is selected.2  If this solution, the BEST MOVE, is tabu and the

corresponding solution is not better than the BEST SO FAR solution (i.e., the aspiration

                                                            
1  For larger problems, it will be necessary to limit the neighborhood other than by the move definitions, as done
here.  An effective method to accomplish this is through use of a candidate list [7].
2  Note that the selected move is not necessarily better than the current solution – it is simply the best available
move.
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criterion is not satisfied), then the move is disallowed, and Step 1 is repeated.  If the

solution is not tabu or if it is tabu, but also better than the BEST SO FAR solution, then it is

accepted.

Step 2 Update the tabu list

The structure of the subsystem that has been changed in the accepted move is added to the

tabu list.  If the tabu list is full, the oldest tabu list entry is deleted.  To know if an entry on

the tabu list is feasible or infeasible, the system cost and weight are stored with the

subsystem structure involved in the move within the tabu list.

Step 3 Check stopping criterion

Next, the stopping criterion is checked.  It is defined as the maximum number of iterations

without finding an improvement in the BEST FEASIBLE SO FAR.  If it is reached, the search is

concluded and the BEST FEASIBLE SO FAR solution is the TSRAP recommended solution.

Otherwise, return to Step 1.

3.2 Penalty Function

The search intends to find the best feasible solution.  To maintain feasibility, all

infeasible solutions could be rejected when encountered or they could be penalized and allowed

within the search.  For solving the RAP with a GA search, Coit & Smith [23] observed that better

final feasible solutions could be found by allowing the search to proceed through the infeasible

region, but by penalizing those solutions based on the degree of infeasibility.  The best results

were observed when the search was intensified near the feasible/infeasible boundary, considering

prospective solutions on both sides of the boundary.  The idea of exploring around boundaries is

an old one in TS, and is refined in the TS notion of strategic oscillation.  (See, for example,

Section 4.4 of Glover & Laguna [7].)  Based on numerous findings of its value, a similar
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approach has been adopted.

An adaptive penalty method has been developed [25] specifically for combinatorial

problems solved by TS.  This approach makes use of the TS property of short-term memory, i.e.,

the tabu list.  It also makes use of the TS property of long-term memory by incorporating the best

solutions found so far (both feasible and infeasible) into the penalty function.

The objective function for infeasible solutions is penalized through the use of a

subtractive (Problem P1) or additive (Problem P2) penalty function.  The penalty imposed on

each constraint violation increases and decreases adaptively over the search according to

information stored in the short and long term memories.  This is done through the notion of a

Near Feasible Threshold (NFT), a boundary just outside of the feasible region.  Infeasible

solutions are lightly penalized within the NFT region and heavily penalized beyond it.  If the

search is having difficulty finding good feasible solutions and needs to move closer to the

feasible region, then NFT is move closer to feasibility adaptively as the search progresses.  On

the other hand, if it is desirable to search further through the infeasible region to promote

diversity, then NFT is moved further from the feasible boundary.  It is important to note that no

user intervention is required to update NFT as the search progresses.  It is done adaptively based

on the relative success of the search using pre-defined rules.

The penalized objective function is based on the unpenalized objective function, the

degree of infeasibility and information from the TS short term and long term memory.  For

Problem P1, the RAP is formulated with two independent constraints (cost and weight) and the

objective function is:

1 2

o( ; ) ( ; ) ( )
NFT NFT

K K

p all feas
w c

w c
R t R t R R

    ∆ ∆ = − − +        
x x (2)

Rp(to;x) is the penalized objective function.  Rall is the unpenalized (feasible or infeasible)
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system reliability of the best solution found so far, and Rfeas is the system reliability of the best

feasible solution found so far.  ∆c and ∆w represent the magnitude of the cost and the weight

constraint violations.  If a constraint is not violated, then ∆c and/or ∆w is zero.  K1 and K2 are

amplification exponents.  The amplification exponents, Ki, are set to 2 for all work in this paper.

However, the method is quite robust to exact value of K.

If Rall and Rfeas are equal or similar in value, then the search continues essentially as an

unconstrained search because good feasible solutions are being found.  Alternatively, if Rall is

much larger than Rfeas, then the search is having more difficulty in finding good feasible

solutions and the penalty is larger to force the search into the feasible region.

For Problem P2, the RAP is formulated with two independent constraints (reliability and

weight), the objective function is:

21

( ) ( ) ( )
NFT NFT

KK

p feas all
r w

r w
C C C C

   ∆ ∆ = + − +        
x x (3)

Cp(x) is the penalized objective function.  Call is the unpenalized (feasible or infeasible)

system cost of the best solution found so far, and Cfeas is the system cost of the best feasible

solution found so far.  ∆w and ∆r represent the magnitude of the weight and the reliability

constraint violations (if any).

NFTi,j is adaptively updated as the search progresses based on the results encountered in the

search.  For each constraint, a specific NFTi,o is initially selected.  The tabu list size at any given

iteration, j, is defined as Tj and the number of feasible solutions on the current tabu list is defined

as Fj.  A feasibility ratio at iteration j, ρj, is defined as:

j
j

j

F

T
ρ = (4)

For constraint i, if the current move is to a feasible solution:
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, 1 ,NFT NFT 1
2

j
i j i j+

ρ 
= + 

 
(5)

For constraint i, if the current move is to an infeasible solution:

, 1 ,

1
NFT NFT

2
j

i j i j+

+ ρ 
=  

 
(6)

For a given constraint, NFT changes according to the count of the feasible vs. infeasible

solutions on the tabu list.  The method of Gendreau et al. [33] uses a somewhat similar concept

in that the penalty changes with recent constraint violations of the last predefined number of

solutions.  In Gendreau’s method, weight for a constraint that was always violated during the

past h iterations is multiplied by two.  A weight for a constraint that was never violated during

the past h iterations is divided by two.  Otherwise, the weights remain unchanged.  This has the

property of inflating (deflating) the penalty imposed if the recent search history is entirely within

the infeasible (feasible) region.  Alternatively, the method based on the ρj ratio uses a continuous

metric for the feasibility/infeasibility constituency of the tabu list and additionally considers the

feasibility of the current move.

Consider the behavior of NFT for a single constraint.  If all moves on the tabu list are

infeasible and the current move is also infeasible, NFT decreases by a factor of 0.5.  This

increases the penalty for an infeasible solution and moves the search towards the feasible region.

This geometric change in NFT creates a lower bound on NFT of 0.  Alternatively, if all moves on

the tabu list are feasible and the current move is also feasible, then it may be beneficial to

promote search into the infeasible region.  In this case, NFT increases by a factor of 1.5.  This

has the property of encouraging search towards the infeasible region; thereby promoting

diversity of prospective solution candidates.

If all moves on the tabu list are feasible and the current move is infeasible, NFT remains
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unchanged.  Similarly, if all moves on the tabu list are infeasible and the current move is

feasible, NFT remains unchanged.  In these cases, the value of NFT is appropriate as it has

moved the search towards the recently unvisited region, either feasible or infeasible.  In the next

move, if the same region as the last move is chosen, NFT is slightly increased (in the case of

recent feasible moves) or slightly decreased (in the case of recent infeasible moves).

An initial value of NFTi,j needs to be set for each constraint, although the method has

been observed to be insensitive to this value.  One simple approach is to take a percent of each

constraint as an initial value.  For example, the initial values, NFTr,o and NFTw,o, are set to 0.1%

of R and 50% of W for Problem P2.  This formulation can easily handle dynamic tabu list sizes

by using the current size, Tj.  Multiple constraints are handled independently and constraints that

are discrete or continuous can be accommodated.

3.3 Example Problem

To illustrate the encoding, move operator, evaluation and tabu list, consider a problem

with two subsystems, nmax = 4 for both subsystems, and the component choices shown in Table

4.  If P1 is being solved with C=400 and W=300, an initial feasible solution might be:

3 7 11 11 5 5 11 11

which consists of one component type 3 and one component type 7 in subsystem one, and two of

component type 5 in subsystem two (since there are ten component choices, entry 11 denotes an

empty space, or a blank component).  In this case, system cost = 320, system weight = 320 and

system reliability = 0.882459.  Since component mixing is allowed within subsystems, two types

of moves are considered.  The neighborhood of the first type of move (adding or subtracting the

number of a component type) is:

Solution Encoding (x) C(x) W(x) R(x)
3 3 7 11 5 5 11 11 400 352 0.948630
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7 11 11 11 5 5 11 11 240 288 0.637383
3 7 7 11 5 5 11 11 360 418 0.941832
3 11 11 11 5 5 11 11 280 222 0.710366
3 7 11 11 5 5 5 11 420 415 0.902850
3 7 11 11 5 11 11 11 220 225 0.758127

The second kind of move is to replace a component with another type of component.  The

neighborhood of this move type is:

Solution Encoding (x) C(x) W(x) R(x)
1 7 11 11 5 5 11 11 335 340 0.966725
2 7 11 11 5 5 11 11 326 382 0.950611
4 7 11 11 5 5 11 11 315 380 0.879102
5 7 11 11 5 5 11 11 301 329 0.875074
6 7 11 11 5 5 11 11 285 321 0.872052
7 7 11 11 5 5 11 11 280 386 0.857280
8 7 11 11 5 5 11 11 276 384 0.846202
9 7 11 11 5 5 11 11 271 371 0.840159
10 7 11 11 5 5 11 11 266 354 0.755557
11 7 11 11 5 5 11 11 240 288 0.637383
3 1 11 11 5 5 11 11 375 274 0.968112
3 2 11 11 5 5 11 11 366 316 0.955501
3 3 11 11 5 5 11 11 360 254 0.902165
3 4 11 11 5 5 11 11 355 314 0.899537
3 5 11 11 5 5 11 11 341 263 0.896384
3 6 11 11 5 5 11 11 325 255 0.894020
3 8 11 11 5 5 11 11 316 318 0.873789
3 9 11 11 5 5 11 11 311 305 0.869060
3 10 11 11 5 5 11 11 306 288 0.802850
3 11 11 11 5 5 11 11 280 222 0.710366
3 7 11 11 1 5 11 11 357 308 0.896588
3 7 11 11 2 5 11 11 352 321 0.894506
3 7 11 11 3 5 11 11 347 319 0.889747
3 7 11 11 4 5 11 11 342 318 0.885583
3 7 11 11 6 5 11 11 279 288 0.878741
3 7 11 11 7 5 11 11 274 290 0.849145
3 7 11 11 8 5 11 11 261 274 0.822375
3 7 11 11 9 5 11 11 256 258 0.815980
3 7 11 11 10 5 11 11 250 276 0.808544
3 7 11 11 11 5 11 11 220 225 0.758127
3 7 11 11 5 1 11 11 357 308 0.896588
3 7 11 11 5 2 11 11 352 321 0.894506
3 7 11 11 5 3 11 11 347 319 0.889747
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3 7 11 11 5 4 11 11 342 318 0.885583
3 7 11 11 5 6 11 11 279 288 0.878741
3 7 11 11 5 7 11 11 274 290 0.849145
3 7 11 11 5 8 11 11 261 274 0.822375
3 7 11 11 5 9 11 11 256 258 0.815980
3 7 11 11 5 10 11 11 250 276 0.808544
3 7 11 11 5 11 11 11 220 225 0.758127

Among the solutions of both neighborhoods, the best one is

3 1 11 11 5 5 11 11

Therefore, a move is made to this solution.

The tabu list is now updated to reflect the most recent move.  The tabu list is composed

of the most recent subsystem configuration that has been changed.  In the example, the first

subsystem was previously composed of components 3 and 7 in parallel.  The best move was to

change it to components 1 and 3 in parallel.  Specifically, tabu list entries include the subsystem

number, the component selections (including blanks), and the system cost and weight, which are

necessary to denote the feasibility of the solution.  For the example move, the following entry is

added to the tabu list.

1 | 3 1 11 11 | 375 | 274

4. TEST PROBLEMS AND RESULTS

TSRAP was demonstrated and evaluated using three general problems and a total of 72

variations.  The results were compared to genetic algorithm and exact solutions using an IP

model.  The results indicate that the TS methodology offers advantages over the other

approaches.

4.1 Test Problem 1

The first test problems used to demonstrate TSRAP for Problem P1 were originally

proposed by Fyffe et al. [15] and modified by Nakagawa & Miyazaki [16].  Fyffe et al. specified
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constraint limits of 130 units of system cost, 170 units of system weight and ki = 1 (i.e., 1-out-of-

n:G subsystems).  Nakagawa & Miyazaki developed 33 variations of the original problem, where

the cost constraint is maintained at 130 and the weight constraint varies from 191 to 159.  The

component cost, weight and reliability values were originally presented in Fyffe [15] and they

are not reproduced here.

Earlier approaches to the problem determined optimal solutions through dynamic

programming and IP models, but only a restricted set of solutions was considered due to

computational or formulation limitations of exact solution methods.  Coit & Smith [2] solved this

problem with a GA without restricting the search space.  These are the results used as a basis for

TSRAP and GA comparisons.

TSRAP was applied 10 times with different starting solutions.  The results are given in

Table 1.  The best solution found among the 10 runs is presented as well as the standard

deviation of the 10 final solutions.  The standard deviation is an important measure of the

robustness of the search to the starting solution.  The table also presents the corresponding results

from the GA [2] where 10 runs of the algorithm were also performed.  In this table, the

maximum possible improvement (MPI), is the percent that one solution improves upon another

considering that reliability is bounded by one.

As the results in Table 1 indicate, TSRAP generally outperformed the GA.  TSRAP

obtained a higher reliability in 22 of 33 test cases.  Additionally, it had a lower standard

deviation in 21 of 33 test cases.  Thus, TSRAP generally yielded solutions with higher reliability

and was more consistent.  Since GA contains many more stochastic elements, it is not surprising

that TSRAP is more consistent across initial solution.

A comparison of algorithm efficiency is often made based on computer CPU time.  That



19

would not be meaningful for this comparison because the algorithms were run on different

computers (mainframes, PCs) with different operating systems and processors.  Alternatively, a

comparison can be made based on the number of objective function evaluations required, as it is

this calculation which takes most of the CPU time.  In many respects, this is more meaningful

because it provides an absolute measure that maintains relevance as computer processing time

continues to decrease.  For the GA, the stopping criterion was always 1,200 and every GA run

had 48,040 function evaluations.  The TSRAP stopping criterion was based on the number of

moves without improvement so it varied.

Table 1 displays the average number of function evaluations for each of the 33 test

problems.  While these average numbers are consistently larger than the corresponding number

of GA function evaluations, they actually do provide evidence that TSRAP is more efficient.

Each move within TSRAP required the re-calculation of only one (of 14) subsystems, while

every new child or mutant solutions from the GA required the calculation of all 14 subsystems.

Thus, each function evaluation within TSRAP requires approximately 14 times less computation

time.  In reviewing the number of solutions searched between GA and TSRAP and the reduction

of TSRAP per solution, TSRAP reduced computation time approximately 40% over the test

suite.  While these results are encouraging, they can not necessarily be generalized to all RAP

problem formulations, particularly considering the different stopping criterion.

4.2 Test Problem 2

Coit & Liu [27] proposed a problem to optimize the system reliability of a system with 14

k-out-of-n:G subsystems with ki∈{1,2,3} and exponential distributed failure times.  Their

problem is a modified version of the 33 problem variations originally given by Nakagawa &

Miyazaki [16].  For each of 14 subsystems, component choices with cost, weight and exponential
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distribution parameter (λij) are given in Table 2.  The objective is to maximize system reliability

at the time of 100 hours subject to given cost and weight constraints, C and W, respectively.

They solved the problem for a restricted search space so exact optimization could be used.

A primary advantage of TSRAP for problems of this type are that the restriction, that

disallows mixing of component types within a subsystem, is not necessary.  Thus, potentially

better solutions, with higher system reliability can be found.  Nevertheless, the same restriction

can be imposed on TSRAP to allow a direct comparison.  For the restricted search space, the IP

results are known to be optimal so a direct comparison of results provides a credible indication of

TSRAP performance.  (Note that a comparison of computational effort is not germane to this

problem.  When an exact method, such as IP, can be used for design, it should be preferred as

optimality will be assured.  However, as search space grows, the computational effort required

by exact methods becomes prohibitive.  That is why only the comparison that does not allow

mixing can be made here.  If mixing were allowed, it would be impossible to run to completion.)

The 33 problem variations from Coit & Liu [27] were solved based on active redundancy

for all subsystems.  The results of TSRAP with and without component mixing within subsystem

and the corresponding IP results are presented in Table 2.  Ten runs of TSRAP were performed

for each problem with different initial solutions.  The results without component mixing are the

same as the optimum results for all 33 cases.  This is very encouraging because it provides an

indication that TSRAP is providing optimal solutions.  For many other problems, as in test

problem 1, the optimal solution is not known or cannot be calculated because of computational

limits.

When component mixing is allowed in the subsystems, the system reliability improves in

25 of the 33 variations.  This demonstrates the value of expanding the search space to consider



21

different components within a single subsystem.  While the improvements might seem very

small, recall that these apply to system operation.  If, for an example, we take a hypothetical fleet

of 60 767s.  A mission time of eight hours might be selected as a typical overseas flight.  (Fyffe

et al. [15] nor Nakagawa & Miyazaki [16] stated a mission time.)  If each aircraft makes six

overseas flights per week, an increase in system reliability of 0.00308, as achieved in the last

instance, would translate to an expected 58 fewer failures over the course of a year

(60x6x52x.00308).  Also, when system failure is of high consequence, as in a nuclear power

plant for instance, that any improvement in reliability is worthwhile.

4.3 Test Problem 3

TSRAP performance for Problem P2 was studied by using the corresponding example

problem from Coit & Smith [2].  The component choices are shown in Table 4.  This sample

problem was designed with two subsystems where k1 is 4 and k2 is 2 (with nmax,i = 8).  For each

subsystem, there are 10 component choices with different cost, weight, and reliability values.

This problem is difficult in several respects since both subsystems are k-out-of-n:G redundancy

with k > 1.  Also for each subsystem, there are ten different component choices available,

allowing for numerous design possibilities.

By changing the reliability and weight constraints, six different cases were defined as

shown in Table 5.  Twenty runs of TSRAP were performed and compared with the previous GA

results [2] in Table 6 along with the optimal solutions found by enumeration.  The meta-

heuristics perform very similarly and computational comparisons are similar to those reported in

section 3.1 with TS requiring more solutions, but gaining the considerable efficiency of

recalculating reliability using only one subsystem.  Again, allowing component mixing in

subsystems yields costs which are better than that which could be obtained by using any of the
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previously presented formulations.

5. CONCLUSIONS

TS has previously been demonstrated to be a successful optimization approach for many

diverse problem domains.  However, its ability to provide sound solutions to the RAP had not

previously been reported.  Within this paper, a TS is described that is designed for the RAP with

the use of a penalty function to allow, and even promote, search in the infeasible region with an

adaptively changing NFT.  TSRAP was demonstrated on three test problems with encouraging

results.  Like GA, the TS methodology can be applied to many diverse reliability optimization

problems where mathematical programming approaches have not been successful.  When

compared to GA, TSRAP results in superior performance in terms of best solutions found and

reduced variability and greater efficiency.  The TS reported herein is rather simple, that is, some

features normally used effectively in complex problems such as candidate lists and long term

memory strategies, are not incorporated.  There are opportunities for improved effectiveness and

efficiency by considering the addition of these features to the TS devised here.
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Table 1. Test Problem 1 - Comparison of GA [2] and TSRAP.

GA [2] – 10 runs TSRAP – 10 runs

No C W max R Std Dev max R Std Dev average
evaluations

%MPI

1 130 191 0.98670 0.000422 0.986811 0.000644 347,969 0.83%
2 130 190 0.98570 0.000595 0.986416 0.000000 503,369 5.01%
3 130 189 0.98560 0.000853 0.985922 0.000000 484,283 2.24%

4 130 188 0.98500 0.000306 0.985378 0.000765 387,029 2.52%
5 130 187 0.98440 0.000748 0.984688 0.000307 347,116 1.85%
6 130 186 0.98360 0.000586 0.984176 0.000386 413,235 3.51%
7 130 185 0.98310 0.000856 0.983505 0.000510 366,652 2.40%
8 130 184 0.98230 0.000465 0.982994 0.000450 367,142 3.92%
9 130 183 0.98190 0.000389 0.982256 0.000628 361,935 1.97%

10 130 182 0.98110 0.000381 0.981518 0.000428 402,144 2.21%
11 130 181 0.98020 0.000842 0.981027 0.000356 367,933 4.18%
12 130 180 0.97970 0.000791 0.980290 0.000469 436,098 2.91%
13 130 179 0.97910 0.000538 0.979505 0.000341 303,575 1.94%
14 130 178 0.97830 0.000701 0.978400 0.000143 262,093 0.46%
15 130 177 0.97720 0.001031 0.977474 0.000198 344,122 1.20%

16 130 176 0.97640 0.000751 0.976690 0.000669 301,944 1.23%
17 130 175 0.97530 0.000795 0.975708 0.000288 345,226 1.65%
18 130 174 0.97435 0.000812 0.974788 0.000610 276,510 1.71%
19 130 173 0.97362 0.000753 0.973827 0.000534 260,570 0.78%
20 130 172 0.97266 0.001083 0.973027 0.000166 355,909 1.34%
21 130 171 0.97186 0.000812 0.971929 0.000000 334,564 0.25%

22 130 170 0.97076 0.000821 0.970760 0.000490 311,927 0.00%
23 130 169 0.96922 0.000415 0.969291 0.000351 310,691 0.23%
24 130 168 0.96813 0.000596 0.968125 0.000957 320,568 -0.02%
25 130 167 0.96634 0.000304 0.966335 0.000739 395,987 -0.01%
26 130 166 0.96504 0.000569 0.965042 0.000616 322,723 0.01%
27 130 165 0.96371 0.000474 0.963712 0.000932 315,828 0.01%

28 130 164 0.96242 0.000659 0.962422 0.001044 413,602 0.01%
29 130 163 0.96064 0.000401 0.959980 0.000176 347,964 -1.68%
30 130 162 0.95912 0.000833 0.958205 0.000053 305,090 -2.24%
31 130 161 0.95803 0.000808 0.956922 0.001230 256,383 -2.64%
32 130 160 0.95567 0.000473 0.955604 0.001424 343,186 -0.15%
33 130 159 0.95432 0.000363 0.954325 0.002004 346,894 0.01%

%MPI = 100% * (TSRAP max - GA max) / (1 - GA max)
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Table 2. Component Data for Test Problem 2.

sub component choices

system 1 2 3 4

i ki λ1j
* c1j w1j λ2j c2j w2j λ3j c3j w3j λ4j c4j w4j

1 1 .001054 1 3 .000726 1 4 .000943 2 2 .000513 2 5
2 2 .000513 2 8 .000619 1 10 .000726 1 9 - -
3 1 .001625 2 7 .001054 3 5 .001393 1 6 .000834 4 4
4 2 .001863 3 5 .001393 4 6 .001625 5 4 - -

5 1 .000619 2 4 .000726 2 3 .000513 3 5 - -
6 2 .000101 3 5 .000202 3 4 .000305 2 5 .000408 2 4
7 1 .000943 4 7 .000834 4 8 .000619 5 9 - -
8 2 .002107 3 4 .001054 5 7 .000943 6 6 - -
9 3 .000305 2 8 .000101 3 9 .000408 4 7 .000943 3 8
10 3 .001863 4 6 .001625 4 5 .001054 5 6 - -

11 3 .000619 3 5 .000513 4 6 .000408 5 6 - -
12 1 .002357 2 4 .001985 3 5 .001625 4 6 .001054 5 7
13 2 .000202 2 5 .000101 3 5 .000305 2 6 - -
14 3 .001054 4 6 .000834 4 7 .000513 5 6 .000101 6 9

          *units for λij are failures/hour
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Table 3. Test Problem 2 - Comparisons of IP and TSRAP.

IP TSRAP (no mixing) - 10 runs TSRAP (mixing) -10 runs

No C W R
Max

R
Std
Dev

average
evaluations

Max
R

Std
Dev

average
evaluations %MPI

1 130 191 0.60665 0.60665 0.000000 83876 0.60766 0.000000 343333 0.26%
2 130 190 0.59064 0.59064 0.000583 123766 0.59538 0.000610 377963 1.16%
3 130 189 0.58105 0.58105 0.000345 91708 0.58827 0.000000 368893 1.72%
4 130 188 0.57327 0.57327 0.001371 96616 0.57734 0.001508 289590 0.95%
5 130 187 0.56250 0.56250 0.000491 106152 0.57044 0.002255 265562 1.81%
6 130 186 0.55498 0.55498 0.000000 90123 0.55892 0.000910 292436 0.88%
7 130 185 0.54285 0.54285 0.000698 105121 0.54936 0.000523 279319 1.42%
8 130 184 0.53401 0.53401 0.000238 83484 0.54112 0.001718 287372 1.53%
9 130 183 0.52981 0.52981 0.000000 104231 0.53226 0.000194 367116 0.52%
10 130 182 0.52272 0.52272 0.000000 95722 0.52385 0.002439 282638 0.24%
11 130 181 0.51290 0.51290 0.000549 86564 0.51528 0.002924 311123 0.49%
12 130 180 0.50604 0.50604 0.000000 106757 0.50604 0.002000 232905 0.00%
13 130 179 0.49057 0.49057 0.001899 85898 0.49402 0.002297 263555 0.68%
14 130 178 0.48468 0.48468 0.000000 90370 0.48573 0.001836 291947 0.20%
15 130 177 0.47491 0.47491 0.000277 109807 0.47778 0.004778 290110 0.55%
16 130 176 0.46922 0.46922 0.000000 85526 0.46922 0.005300 258560 0.00%
17 130 175 0.45298 0.45298 0.000000 94737 0.45743 0.000327 222826 0.81%
18 130 174 0.44878 0.44878 0.001711 116496 0.44975 0.006295 243874 0.18%
19 130 173 0.43923 0.43923 0.000226 97602 0.44239 0.005074 312906 0.56%
20 130 172 0.43446 0.43446 0.000000 98716 0.43446 0.005173 266489 0.00%
21 130 171 0.41942 0.41942 0.001902 97759 0.42033 0.003418 255287 0.16%
22 130 170 0.41050 0.41050 0.000030 107748 0.41345 0.002625 245476 0.50%
23 130 169 0.40604 0.40604 0.003841 72328 0.40604 0.004025 220822 0.00%
24 130 168 0.39025 0.39025 0.000000 88613 0.39109 0.000000 287080 0.14%
25 130 167 0.38194 0.38194 0.000000 80788 0.38469 0.000000 244641 0.44%
26 130 166 0.37779 0.37779 0.000000 117293 0.37779 0.000000 251777 0.00%
27 130 165 0.36472 0.36472 0.000000 83956 0.36550 0.000729 263279 0.12%
28 130 164 0.35696 0.35696 0.001869 85885 0.35952 0.000000 309496 0.40%
29 130 163 0.35308 0.35308 0.000000 100222 0.35308 0.000000 241806 0.00%
30 130 162 0.33243 0.33243 0.000000 103432 0.33243 0.001725 243964 0.00%
31 130 161 0.32392 0.32392 0.000000 97440 0.32392 0.002312 275075 0.00%
32 130 160 0.30908 0.30908 0.001085 96723 0.31209 0.000000 309487 0.43%
33 130 159 0.30250 0.30250 0.009224 75507 0.30558 0.000000 230889 0.44%

%MPI = 100% * (TSRAP max rel. - IP rel.) / (1 - IP rel.)
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Table 4. Component Data for Test Problem 3.

Subsystem (i)

1 (k1 = 4) 2 (k2 = 2)

component
choice

(j)
r1j c1j w1j r2j c2j w2j

1 0.981 95 52 0.931 137 83
2 0.933 86 94 0.917 132 96
3 0.730 80 32 0.885 127 94
4 0.720 75 92 0.857 122 93
5 0.708 61 41 0.836 100 95
6 0.699 45 33 0.811 59 63

7 0.655 40 98 0.612 54 65
8 0.622 36 96 0.432 41 49
9 0.604 31 83 0.389 36 33
10 0.352 26 66 0.339 30 51

Table 5. Comparison of GA and TSRAP for Test Problem 3.

Problem Description C&S GA [2] - 20 runs TSRAP - 20 runs
Case R W Global

Minimum
Previous

Best*
Minimum

Cost
Average

Cost
Number
Optimal

Number
Feasible

Minimum
Cost

Average
Cost

Number
Optimal

Number
Feasible

1 0.98 650 727 770 727 727.25 18/20 20/20 727 727.80 18/20 20/20
2 0.98 600 736 770 736 736.90 11/20 20/20 736 737.00 12/20 20/20
3 0.98 550 747 871 747 747.00 20/20 20/20 747 749.35 19/20 20/20
4 0.95 600 656 711 656 656.00 20/20 20/20 656 658.10 18/20 20/20
5 0.95 550 661 711 661 661.00 20/20 20/20 661 661.00 20/20 20/20
6 0.95 500 661 none 661 680.80 18/20 20/20 661 661.00 20/20 20/20

*The lowest minimum cost could be found by N&M [16] and Bulfin and Liu [18] formulations

Table 6. Optimal Solutions for Test Problem 3.

Component Choices
subsystem 1(k = 4) subsystem 2 (k = 2)

Case Cost Reliability Weight 1 6 7 8 6 9 10

1 727 0.975 640 4 1 0 1 4 0 1
2 736 0.9768 577 4 2 0 0 4 0 1
3 747 0.9819 545 5 0 0 0 4 1 0
4 656 0.9506 558 4 0 1 0 4 0 0
5 661 0.9537 661 4 1 0 0 4 0 0
6 661 0.9537 661 4 1 0 0 4 0 0
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Figure 1: System Configuration with k-out-of-n Subsystems.


