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Abstract

Three transmission schemes over a new type of multiple-access channel (MAC) model with inter-source

communication links are proposed and investigated in this paper. This new channel model is well motivated by, e.g.,

wireless distributed storage networks, where communication to repair a lost node takes place from helper nodes to a

repairing node over a wireless channel. Since in many wireless networks nodes can come and go in an arbitrary

manner, there must be an inherent capability of inter-node communication between every pair of nodes.

Assuming that communication is possible between every pair of helper nodes, the newly proposed schemes are

based on various smart time-sharing and relaying strategies. In other words, certain helper nodes will be regarded as

relays, thereby converting the conventional uncooperative multiple-access channel to a multiple-access relay channel

(MARC). The diversity-multiplexing gain tradeoff (DMT) of the system together with efficient sphere-decodability and

low structural complexity in terms of the number of antennas required at each end is used as the main design

objectives. While the optimal DMT for the new channel model is fully open, it is shown that the proposed schemes

outperform the DMT of the simple time-sharing protocol and, in some cases, even the optimal uncooperative MAC

DMT.

While using a wireless distributed storage network as a motivating example throughout the paper, the MAC

transmission techniques proposed here are completely general and as such applicable to any MAC communication

with inter-source communication links.

Keywords: Distributed communications, Distributed storage systems, Diversity-multiplexing gain tradeoff, MIMO,

Multiple-access channel, Relay channel, Sphere decoding, Wireless networks

1 Introduction
The amount of data in cloud storage systems and world-

wide data traffic have reached incredible numbers. It was

estimated that in 2011, 1.8 ·1021 bytes of data needed to be
stored worldwide [1], a number that grew to an astonish-

ing 4.4 · 1021 bytes in 2013, and which is further expected

to grow tenfold by 2020 [2]. The availability of such an

astronomical amount of data and rapid progress in (wire-

less) communications engineering explain the observed

growth of mobile data traffic, which increased by 69 % in

2014, reaching 2.5 · 1018 bytes per month at the end of
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the year. This amount of data traffic, which is expected to

increase tenfold until 2019, corresponds to nearly 30 times

the size of the entire internet in 2000. In addition, about

497 million mobile devices and connections were added

globally in 2014, of which smart phones account for 88 %,

so that—as foreseen—the number of mobile-connected

devices exceeded the number of people on earth by the

end of 2014 [3].

Themassive amount of available data demands that data

no longer be stored on a single device, but rather dis-

tributed among several storage nodes in a network, hence

usually referred to as distributed storage systems (DSSs)

(see [4] for a nice introduction). One of the main advan-

tages of storing information in a distributedmanner is that

the storage system can be made robust against failures by

introducing some level of redundancy. Some examples of

© Lu et al. 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-016-0334-2&domain=pdf
mailto: camilla.hollanti@aalto.fi
http://creativecommons.org/licenses/by/4.0/


Lu et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:56 Page 2 of 19

real-life distributed storage systems are Apache Cassandra

[5], which is a DSS initially developed at Facebook, and

Windows Azure [6], created by Microsoft.

More formally, a DSS consists of n storage nodes over

which a file is stored in a redundant manner by dividing

it into fragments and distributing the fragments among

n nodes using, for instance, a (n, k) maximum distance

separable (MDS) erasure code [7]. MDS codes satisfy the

Singleton bound and have the convenient property of

being able to reconstruct the file by contacting any k of

the nodes. Another key feature of a DSS is the ability to

repair, meaning that when a node fails (that is a device

breaks down or leaves the network), the failed node can

be repaired or replaced. If an (n, k) storage code further

satisfies the condition that any failed node can be repaired

or replaced by contacting any K of the remaining nodes,

termed helpers, the code is called an (n, k,K) storage code,

and the node replacing the failed one is called a repair-

ing node, or a newcomer [8], if it is not one of the already

existing nodes in the network.

Sophisticated storage protocols have been developed,

always giving a tradeoff between the amount of data that

needs to be stored in any of the storage nodes, and the

amount of data that needs to be retrieved for repair-

ing a lost node, also called repair bandwidth (see e.g.

[8, 9]. for details), and codes lying on the storage-repair

bandwidth tradeoff curve [8, 10] are called regenerating

codes. Explicit, tradeoff achieving regenerating codes can

be found in the literature, see [9, 11], among others.

One important aspect of future DSSs lies in the ability

to communicate over wireless channels, making it possi-

ble to store or retrieve a file using a wireless connection,

even if the storage cloud itself might be wired. This is a

feature related to themore general concept ofwireless edge

[12–15]. The mobility of a user has become crucial in

everyday life, and wireless channels are used for data

transmission for increased flexibility. However, it is well-

known that communicating over a fading channel in a

wireless DSS [16, 17] makes repair transmissions prone to

physical layer errors.

Consider the wireless repair transmission of a DSS, that

is, the case of repairing a failed/lost node and replacing it

with a repairing node by contacting any K of remaining

storage (helper) nodes via wireless links. We assume that

both types of nodes may be equipped with multiple anten-

nas. Then, the transmission from the K helpers to the

repairing node can be regarded as wireless multiple-input

multiple-output (MIMO)multiple-access communication

[18–20] with an additional feature of inter-helper commu-

nication among the K helpers. To see this, note that the

MIMO multiple-access channel (MAC) studied in clas-

sical information theory [21] assumes only the existence

of communication links from the helpers to the repair-

ing node, or equivalently from sources to destination. Yet

in many wireless distributed storage networks1, there are

often more nodes present and connected than those stor-

ing data, i.e., there are blank nodes in addition to the actual

storage nodes. The total number of nodes can be dynamic

even though the number of storage nodes would be fixed,

see Fig. 1 for illustration. Now, the loss of a node can hap-

pen to any of the n storage nodes, and the K helpers can

be any subset of the remaining storage nodes. The role of

a repairing node can be taken by any of the blank nodes

(also a new node entering the system will be blank in the

beginning). This implies that an inherent communication

link exists between the blank nodes and the storage nodes.

After repair, a node that was previously blank becomes a

storage node, and after this can assume the role of a helper

node. Storage nodes may also erase their stored data and

become blank, after which they can also assume the role

of a repairing node, etc. This means that an inter-node

communication capability actually exists between every

pair of helper nodes, therefore calling for the design of

efficient transmission schemes when the sources are fur-

ther allowed to communicate with each other in a wireless

MIMO-MAC.

Yet another example to motivate such inter-helper links

is as follows. Notice that each of the n wireless storage

nodes in the network consists of a wireless component and

a memory component. In case of the wireless component

of a node failing, we simply replace it with a new wireless

component, and there is no need to contact the helpers

to reconstruct the data. On the other hand, if the mem-

ory component fails, the “repair” of the node (hence the

name of repairing node) happens by repairing thememory

component of the node with the aid of helper nodes. That

is, the node is not replaced by a completely new node. In

this sense, the failed node is still one of the original n stor-

age nodes, and the repairing process is done by contacting

any K of the remaining nodes. In other words, the failed

node and the repairing node are the same node with the

same wireless component. This justifies the requirement

that the inter-helper link must exist between every pair of

nodes.

When communicating over a wireless channel between

terminals equipped with multiple antennas, space-time

codes [22–26] are often employed to protect the trans-

mitted information from adverse channel effects such as

fading and noise. The asymptotic error-performance of

space-time codes is commonly dictated by the diversity-

multiplexing gain tradeoff (DMT) [27]. Assume each of

the K helper nodes has nt transmit antennas and trans-

mits simultaneously at the same rate of R = r log2 SNR in

bits per channel use to the repairing node with nr receive

antennas, where SNR is the signal-to-noise power ratio,

and r is commonly referred to as the multiplexing gain

[27]. The optimal MIMO-MAC DMT was given by Tse

et al. in [28] and characterizes the maximal diversity gain,
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Fig. 1Wireless storage network. A dynamic network with a varying number of nodes, out of which a fixed number of n nodes are storing data and

the rest are inactive (blank)

or equivalently the smallest error probability, that can pos-

sibly be achieved by any space-time code. A general con-

struction ofMIMO-MACDMToptimal space-time codes

was proposed in [26] for any triple (nt , nr ,K) and multi-

plexing gain r. These MIMO-MAC codes are constructed

from cyclic division algebras [23, 29] and have a linear-

dispersion form [30]. Therefore, they can be decoded in

the maximal-likelihood (ML) sense by a sphere decoder

[31]. While sphere decoding is known to be an efficient

implementation of ML decoding, it is unfortunate that

when Knt > nr , decoding these DMT-optimal codes

requires at least partial brute-force decoding before the

sphere decoder begins to function [32], or alternatively

one has to allow for suboptimal decoding methods, incur-

ring degraded performance [33]. The former approach,

though achieving the optimal performance, results in an

exponential increase of decoding complexity when Knt
becomes large and nt remains fixed [32].

Motivated by these realistic problems in wireless DSSs,

new transmission schemes based on various strategies are

proposed in this paper. The DMT, together with efficient

sphere-decodability and low transmitter and receiver

structural complexity in terms of the number of anten-

nas required at each end, are used as the main design

objectives, thus naturally establishing a DMT-complexity

tradeoff.

1.1 Contributions and related work

In most of the storage and network-coding related

research the focus is on the (logical) network layer,

while the physical layer functionality is usually ignored or

assumed perfect. An exception is [16], where a so-called

partial downloading scheme is proposed, which allows

for data reconstruction with limited bandwidth by down-

loading only parts of the content of helper nodes. This

is relevant in the fading channel scenario, and the idea

can potentially be combined with the present work. In

[17], optimal storage codes are constructed for the error-

and-erasure scenario, but fading is not addressed. Isolated

from the storage point of view, a lot of research has been

carried out in physical layer wireless communications, see

e.g. [34] and the references therein.

Remark 1. An obvious, but naïve attempt would be to

try to simply combine an optimal storage code on the net-

work layer and an optimal space-time code on the physical

layer. The reason for avoiding this approach is both its

structural (many antennas) and computational (decoding

subject to partial brute-force) complexity.

In this paper2, we propose a class of transmission

schemes for MIMO-MAC when communication links

among the sources (helper nodes) do exist, which is

generally true in many wireless storage networks. The

proposed schemes allow for the design of efficiently

sphere-decodable space-time codes3 with only one or two

receive antennas. This is in contrast to the state-of-the-art

MIMO-MAC codes [26] that have extremely good per-

formance but require Knt receive antennas at the repair-

ing node to enable efficient sphere decoding. This is of

course unacceptable even for a relatively small value of K,

since wireless networks are often heterogenous and might

include nodes with only few or even just one antenna. At

the moment, to the best of the authors’ knowledge, no

such scheme exists for large value of K when the receiver

has only 1 or 2 antennas, except for the trivial scheme of

time-sharing among K helper nodes.

This paper is organized as follows. In Section 2, we will

present the channel model for DSS repair transmission,

which can be seen as a MIMO-MAC in the presence of

communication links among helper nodes. A brief intro-

duction on DMT will also be given therein. Section 2.2

briefly reviews the notion of complexity exponent, which

was established by Jaldén and Elia [35] for measuring
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theminimal computational complexity required by sphere

decoders in order to achieve a certain diversity per-

formance. The complexity exponent of existing MIMO-

MAC DMT optimal codes [26, 32, 36] is also given to

further motivate our design objectives that are presented

in Section 3 and to serve as a baseline for comparing

the complexity of the first proposed scheme given in

Section 4. The first scheme is based on a simple time shar-

ing among pairs of helpers, when nt = 1, nr = 2 and

K ≥ 2. The resulting DMT falls between the simple time

sharing DMT and optimal MIMO-MAC DMT [28].

We then present two more elaborate schemes extending

the first one, achieving a higher DMT by taking advan-

tage of the inter-helper communication links and trans-

forming the overall DSS network into a series of relay

networks, where conventional half-duplex4 cooperative-

communication protocols such as the non-orthogonal

amplify-and-forward (NAF) strategy [37, 38] will be used.

In particular, it will be seen that these schemes can out-

perform the MIMO-MAC DMT at certain multiplexing

gains, simply due to the use of inter-helper communi-

cations in the DSS. Moreover, our results on the DMTs

for NAF-based relay networks not only improve, but

also extend the ones presented in related works, such as

[39, 40].

2 Transmissionmodel and preliminaries
Consider a wireless DSS with K helper nodes, equipped

with nt transmit antennas each, and a repairing node with

nr receive antennas. Let Hi ∈ C
nr×nt be the channel

matrix, and Xi ∈ C
nt×T the code matrix associated with

the ith helper node, whereT is the number of channel uses

needed for transmitting Xi. The received signal matrix at

the repairing node is given by

Y =
K
∑

i=1

HiXi + W , (1)

where W ∈ C
nr×T is a matrix modeling complex addi-

tive white Gaussian noise (AWGN). The entries of Hi

and Wi are independent and identically distributed (i.i.d.)

circularly symmetric complex Gaussian random variables

with zero mean and unit variance, a distribution which we

henceforth denote as CN (0, 1). The code matrices Xi are

required to satisfy the average power constraintE||Xi||2 ≤
T · SNR. It is also assumed throughout the paper that the

repairing node has a complete knowledge of channel state

information {Hi : i = 1, . . . ,K}.
Due to the nature of the DSS, the helper nodes can

communicate with each other, a feature not seen in clas-

sical MIMO-MAC. Focusing on the ith helper node, let

Gi,j ∈ C
nt×nt be the channel matrix and Sj ∈ C

nt×T ′
be the

code matrix sent by the jth helper node, j �= i; then, the

signal matrix received at the ith helper node is given by

Yi =
K
∑

j=1
j �=i

Gi,jSj + Zi, (2)

where the entries of Gi,j and Zi are again modeled as i.i.d.

CN (0, 1) random variables, and the signal matrices Sj sat-

isfy E||Sj||2 ≤ T ′ · SNR. A complete knowledge of {Gi,j}
is assumed to be available at the ith node. Finally, it is

assumed throughout the paper that all communication

links are half-duplex. A pictorial description of the above

channel model is given in Fig. 2.

2.1 The DMT

One of the design objectives in this paper is to provide

high performance transmission schemes for wireless DSS

repair transmissions. The performance of each scheme

will be measured by the DMT [27, 34]. In order to sim-

plify the discussion of DMT, let us ignore the existence of

the inter-helper channels for the moment and focus only

on the channel input-output relation (1), where only the

direct channels from the K helper nodes to the repairing

node are of concern. Assuming each helper node trans-

mits at the same multiplexing gain r to the repairing node,

we say a scheme achieves diversity gain d(r) if its out-

age probability Pout(r), which is defined as the probability

of mutual information I
(

Xi1 , . . . ,Xis ;Y |H1, . . . ,HK

)

being

strictly less than s · r log2 SNR for some {i1, . . . , is} ⊆
{1, . . . ,K}, satisfies

− lim
SNR→∞

logPout(r)

log SNR
= d(r), (3)

and we will write the above as

Pout(r)
.= SNR−d(r). (4)

The outage probability Pout(r) is an asymptotic lower

bound on the error probability of the scheme [27, 34]

Fig. 2 DSS repair transmission. Complete channel model for DSS

repair transmission with K helper nodes, each having nt transmit

antennas, and with nr receiver antennas at the repairing node
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when SNR is large and the multiplexing gain r remains

fixed.

For objectivity, we will compare the performance of the

proposed schemes with the following optimal DMT [28]

for MIMO-MAC5

d∗
nt ,nr ,K

(r) = min
{

d∗
nt ,nr

(r), d∗
Knt ,nr

(Kr)
}

, (5)

where d∗
m,n(r) is the optimal DMT for an (nt × nr) point-

to-point MIMO channel and is given by the piecewise

linear function connecting the points (r, (nt − r)(nr − r))

for r = 0, 1, . . . , min{nt , nr} [27]. We must emphasize

that (5) is known to be optimal for the non-cooperative

MIMO-MAC, that is, the case when the K helper nodes

share no common information, meaning that the inter-

helper channels (2) do not exist, and the file fragments

stored at the K helper nodes are all statistically indepen-

dent6. Therefore, with a properly designed scheme, it is

expected that a higher DMT performance than (5) can be

achieved in DSS repair transmission.

2.2 Sphere decoding complexity of state-of-the-art

MIMO-MAC codes

A general construction of MIMO-MAC space-time codes

was proposed in [26] and was shown to achieve the opti-

mal DMT (5) for any triple (nt , nr ,K) and multiplexing

gain r. More specifically, given nt and K, the component

code Ci of the ith helper node is taken from an algebraic

lattice of lattice rank7 2ntK
2
o in [26], and Ci consists of

(nt ×T) matrices with |Ci|
.= SNRrT and T = ntKo, where

Ko is the smallest odd integer ≥ K .

To estimate the complexity of decoding the overall code

C1×· · ·×CK using a joint sphere decoder, we follow [35] by

using the notion of complexity exponent as a complexity

measure.

Definition 1 (Complexity exponent [35]). Given the

multiplexing gain r, let Cr,k be a lattice code consisting of

(nt × T) codeword matrices with |Cr,k|
.= SNRrT , k =

1, . . . ,K. Let Dr be a decoder for the overall code Cr =
Cr,1 × · · · × Cr,K , subject to a computational constraint

Nmax(r), in floating point operations (flops) per T channel

uses, in the sense that after Nmax(r) flops, the decoder Dr

must simply terminate, potentially prematurely and before

completing the task, thus declaring an error. We then say

Dr achieves diversity order d(r) with complexity exponent

c(r) ifDr achieves error probability Pe
.= SNR−d(r) using at

most Nmax(r)
.= SNRc(r) (cf. (3),(4)) flops of computational

reserves. �

The above definition means that in order to decode the

code Cr using a joint sphere decoder, one does not have

to decode every received signal matrix, especially when

the communication channel is deeply faded. Instead, one

can enforce a complexity constraint (also called a halting

policy) at the sphere decoder, say at most Nmax(r) flops

of computational reserves. By choosing Nmax(r) large

enough such that the probability of any premature termi-

nation of the sphere decoder is asymptotically no larger

than SNR
−d∗

nt ,nr ,K
(r)
, the overall error probability at most

2 · SNR
−d∗

nt ,nr ,K
(r)
, thereby achieving the same diversity

d∗
nt ,nr ,K

(r).

It was shown in [32, 36] that the complexity exponent

for decoding the DMT optimal code [26] is given by

cnt ,nr ,K (r) = Kor(Knt − nr) · 1 (Knt > nr)

+ sup
μ∈B(r)

Kont

v
∑

i=1

(
r

nt
− (1 − μi)

+
)+

,
(6)

where 1(·) is the usual indicator function, v =
min{Knt , nr}, (x)+ := max{x, 0} and
B(r)

=

{

μ = [μ1 · · ·μv]
⊤ ∈ R

v :
μ1 ≥ · · · ≥ μv ≥ 0,
∑v

i=1 (|Knt − nr | + 2i − 1) μi ≤ d∗
nt ,nr ,K

(r)

}

.

(7)

There is an intuitive explanation for the term

Kor (Knt − nr) in (6) when Knt > nr . Recall that the

component code Ci is taken from a certain subset

of an algebraic lattice �i of rank 2n2tKo. This means

that each codeword matrix Xi of Ci is of the form

Xi =
∑n2t Ko

ℓ=1 xi,ℓCi,ℓ, where {Ci,ℓ : ℓ = 1, . . . , n2tKo} is a

basis for �i, and the xi,ℓ are independent QAM sym-

bols taken from a certain set A ⊂ Z[ ı ] of size SNR
r
nt ,

ı =
√

−1. Thus, we can rewrite (1) as

Y =
K
∑

i=1

n2t Ko
∑

ℓ=1

HiCi,ℓxi,ℓ + W , (8)

or equivalently in a vector form

y = Hx + w, (9)

where x =
[

x1,1, . . . x1,n2t Ko
, . . . xK ,n2t Ko

]⊤
, y is the vector-

ization of the matrix Y, andH is the corresponding matrix

of size
(

nrKont × Kn2tKo

)

by (8). When decoding (9) using

a sphere decoder, one first performs a QR-decomposition

of the matrix H, say H = QR. If Knt > nr , the matrix R is

no longer upper triangular; it is a trapezoidal matrix with

Kn2tKo − nrKont + 1 = Kont (Knt − nr) + 1

nonzero entries in the bottom row. Hence, any sphere

decoder for (9) must first resolve – perhaps by brute-

force – the |A|Kont(Knt−nr) = SNRKor(Knt−nr) ambiguities

before processing the root of the sphere decoding tree.

The number of ambiguities then forms the first term in

(6).

Remark 2. A different definition of complexity expo-

nent has appeared in [41], where Damen et al. studied the
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number of flops required by a sphere decoder to decode

a fixed-rate space-time code at various finite SNR val-

ues. In particular, they defined the complexity exponent as

the logarithm to base m of the number of flops required

by a sphere decoder to complete its task, where m is the

length of vector x defined in (9). Below we highlight some of

the major differences between Damens’ definition of com-

plexity exponent and the one considered in this paper (cf.

Definition 1).

• Damens’ definition focuses on a code with a fixed
rate, and Definition 1 concerns more with the
theoretical asymptote at high SNR regime when the
rate scales linearly with log2 SNR.

• Definition 1 considers the possibility of having a
halting policy, while Damens’ definition requires the
sphere decoder to complete its task at all channel
realizations.

Remark 3. In [42] Damen et al. proposed to decode

(9) by using GDFE-MMSE preprocessing followed by the

sphere decoder when Knt > nr , in hope of making the

matrix R upper-triangular and avoiding the need of resolv-

ing the ambiguities. However, it can be seen from [32, 36]

that at high SNR regime the matrix R – afterMMSE-GDFE

preprocessing – is ill-conditioned with Kont(Knt−nr) num-

ber of singular values arbitrarily close to zero. This also

explains the appearance of the first term in (6).

On the other hand, when the code has a fixed rate and

operates in the low or moderate SNR regime, the MMSE-

GDFE approach does offer a certain complexity reduction

with a negligible performance loss, as the singular val-

ues of R are numerically well-behaved in general. Other

approaches for further complexity reductions under such

premises are also available in the literature. For instance,

Barbero and Thompson [43] proposed a fixed-complexity

sphere decoder, where the number of candidates to be

searched at the i-th level of sphere decoding tree is at most

ni, thereby yielding a constant complexity
∏

i ni. Another

way to reduce complexity is through the various orderings

of singular values of R. A comprehensive study in this direc-

tion can be found for example in [44]. We shall empha-

size that the complexity exponents simulated in [43, 44]

are both based on Damens’ definition [41] (cf. Remark 2)

because of the aforementioned premises.

In Fig. 3, we plot the complexity exponents for the

sphere decoding of MAC DMT optimal codes Cr [26]

when nt = 2, K = 5, and nr = 2, 10, 100, respec-

tively. It can be seen that these codes can be efficiently

decoded by sphere decoders only when nr ≫ Knt . Such a

requirement is often impossible in practice, particularly in

heterogeneous storage networks, where nodes may have

only a small number of antennas in use.

Fig. 3 Complexity exponent comparison. Complexity exponents for

the sphere decoding of MAC-DMT optimal codes [26] when nt = 2,

K = 5 and nr = 2, 10, 100

Remark 4. In case of nr ≥ Knt , it has been shown [45,

46] that the DMT optimal MIMO-MAC lattice codes can

be decoded with sub-exponential complexity, i.e., having a

complexity exponent asymptotically equal to 0, using the

Lenstra-Lenstra-Lovász-based lattice reduction aided reg-

ularized lattice decoder. The decoder is a combination of

GDFE-MMSE, lattice reduction and sphere decoding, and

it has a vanishing gap of performance loss to the exact ML

decoding as SNR approaches infinity.

3 Objectives for the design of transmission
schemes

In Section 2, we have seen that there is a fundamental

difference between the channel for DSS repair transmis-

sion and the classical MIMO-MAC, in the sense that the

former includes additional inter-helper communication

links. Thus, the MIMO-MAC DMT (5) and the MIMO-

MAC codes [26] are no longer optimal in scenarios such

as DSS repair transmission. Moreover, due to these addi-

tional inter-helper channels, it is expected that the DSS

repair transmission can have a higher optimal DMT than

(5). This then calls for the design of new transmission

schemes with good DMT performance for DSS repairing,

which is the first design objective considered in this paper.

The second design objective comes from the observa-

tion of high decoding complexity of MIMO-MAC codes

[26] in Fig. 3 when Knt > nr . In a DSS, it is often

possible that K is large, and nr is relatively small and

fixed. This then calls for the design of new transmission

schemes that can yield efficiently sphere-decodable space-

time codes avoiding the need to process the ambiguities by

brute-force. Potentially, such an aim could be achieved by

reducing the number of “active” helper nodes, i.e., reduc-

ing the effective value of K in (1), such that the average
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number of independent QAM symbols received by the

repairing node at each channel use be no larger than nr , as

observed from (6).

In the subsequent sections, we will focus on the case of

nt = 1 and K ≫ nr , and we will provide three trans-

mission schemes, each for a different configuration of the

wireless DSS network and for a different design objective.

The first scheme is given in Section 4 for the case of two

receive antennas and an arbitrary number of helper nodes,

each having one transmit antenna. It is based on a sim-

ple time sharing among pairs of helpers and is aimed at

having a low sphere-decoding complexity at a cost of cer-

tain DMT performance-loss due to its neglect of existing

inter-helper links. The DMT for this scheme falls between

the simple time sharing DMT and optimal MIMO-MAC

DMT (5).

Two more elaborate schemes will be presented in

Sections 5 and 6, respectively, where we aim to improve

the DMT performance at the possible cost8 of higher

decoding complexity. These schemes take advantage of

inter-helper channels and transform the overall DSS net-

work into a series of relay networks, where the conven-

tional half-duplex NAF protocol [37, 38] will be used. In

particular, we will see that these schemes can outperform

the MIMO-MAC DMT (5) at certain multiplexing gains,

simply by exploiting inter-helper communications in the

DSS.

4 Scheme 1: nt = 1, nr = 2, and K helper nodes
We have seen in Section 2.2 that the existing state-of-

the-art MIMO-MAC space-time codes [26] could incur

an extremely high decoding complexity when the repair-

ing node has only a few number of antennas. Thus, our

major aim in this section is to provide a new trans-

mission scheme that can yield space-time codes with

reduced decoding complexity. In particular, we would like

these potential codes to be efficiently sphere-decodable,

by which we mean that the H matrix, when writing the

channel input-output relation in a vector form (cf. (9)), has

linearly independent columns with probability one.

Besides the desired property of being efficiently sphere-

decodable, the complexity of the transmission schemes

should also be considered. In other words, if we ignore

the existence of inter-helper links (2), then the schemes

for DSS repair transmission can be made relatively simple.

These are the main objectives of Scheme 1.

Let K = {1, 2, . . . ,K} denote the set of K helper nodes,

and let U be a collection of two subsets sof K, defined as

below

U :=

{

{{1, 2}, {3, 4, }, . . . , {K − 1,K}} , if K even,

{{1, 2}, . . . , {K − 2,K − 1}, {K , 1}, {2, 3}, . . . , {K − 1,K}} , if K odd.

With the above, the proposed scheme is the following.

For each U = {u1,u2} ∈ U , only helper nodes u1 and

u2 are allowed to transmit during the active period of U.

This implies that the probability of helper node k trans-

mitting equals 2
K for every k ∈ K. In order to achieve an

averagemultiplexing gain r, each helper node k, when cho-

sen according to U, i.e. k ∈ U , should actually transmit at

a higher multiplexing gain Kr
2 . We summarize the above

scheme below, and a pictorial description of Scheme 1 is

given in Fig. 4.

Scheme 1

1: for each U = {u1,u2} ∈ U do

2: Helper-nodes u1 and u2 transmit using the

MIMO-MAC code given in [26, Eq. (20)] for

nt = 1, two users and multiplexing gain Kr
2 .

3: end for

The following theorem is a straightforward conse-

quence of [34].

Theorem 1. The DMT performance achieved by

Scheme 1 is

d1(r) = min

{

d∗
1,2

(
Kr

2

)

, d∗
2,2 (Kr)

}

(10)

In Fig. 5, we consider the case nt = 1, nr = 2 and

K = 10, and compare d1(r) to d∗
1,2,10(r), which is the

DMT corresponding to all 10 helper nodes transmitting

simultaneously. The function d0(r) is the DMT for the

time-division multiple-access (TDMA)-based scheme, by

which we mean that each helper node takes turns in an

orthogonal manner to transmit information to the repair-

ing node at multiplexing gain Kr. It can be seen that the

first proposed scheme outperforms the TDMA scheme in

terms of the DMT, and there is a considerable gap between

d1(r) and d∗
1,2,10(r). However, the comparison is unfair

in the sense that in order to achieve d∗
1,2,10(r) the codes

in [26] would require exponentially large computational

reserves, or equivalently an exponentially long time, for

decoding.

Fig. 4 Channel model of Scheme 1. Channel model for Scheme 1 at

the Uth step, U = {u1 , u2} ⊂ {1, 2, . . . , K}
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Fig. 5 Scheme 1: DMT comparison. DMT performances achieved by

MIMO-MAC, Scheme 1 and time-sharing scheme for K = 10 helper

nodes, nt = 1, and nr = 2

Continuing the example of nt = 1, nr = 2 and K =
10, by modifying the two-user MIMO-MAC code given

in [26] according to Scheme 1, it can be directly seen

from (6) that the resulting code achieves DMT d1(r) with

complexity exponent

c1(r) := 3 sup
μ∈B1(r)

2
∑

i=1

[

min

{
rK

2
,
Kr

2
+ μi − 1

}]+
, (11)

where

B1(r)=
{

μ= [μ1 μ2]
⊤∈R

2 :μ1≥μ2≥0,μ1+3μ2≤d1(r)
}

,

(12)

when it is decoded using a sphere decoder with halting

policies. In Fig. 6, we compare c1(r) to the complexity

exponent c1,2,10(r) of the MIMO-MAC code given in [26]

for the case nt = 1, nr = 2 and K = 10. It can be clearly

seen that the proposed scheme can yield a code with with

a much lower decoding complexity.

5 Scheme 2: nt = 1, general nr, and K helper
nodes

The aim of Scheme 1 presented in the previous section

was to have a small decoding complexity, at a cost of

certain DMT performance loss due to the neglect of inter-

helper links in DSS repair-communication. In this section

as well as the next, we will shift our focus to designing

transmission schemes that take into account these inter-

helper links and beat the DMT performance d∗
nt ,nr ,K

(r).

Consider a DSS repair channel withK helpers, each hav-

ing nt = 1 transmit antenna, and a repairing node with

nr receive antennas. To make good use of the inter-helper

links, we interpret in Scheme 2 some of the links as links

Fig. 6 Complexity exponent comparison. Complexity exponents for

the sphere decoding of the MIMO-MAC code given in [26] (c1,2,10(r))

and the proposed code (c1(r)) based on Scheme 1 for the case of

nt = 1, nr = 2 and K = 10

of a relay channel. More specifically, in this scheme each of

the K helper nodes will take turns acting as the source in a

cooperative relay network [37], while the remaining K − 1

helper nodes play the role of relays helping the source to

send information to the repairing node.

With the above, the proposed scheme is a modification

of the NAF protocol [37, 38] for a cooperative relay net-

work with K − 1 relays. It consists of K phases, and each

phase requires at least 2(K − 1) channel uses. Thus, the

total number of channel uses required by Scheme 2 is at

least 2K(K − 1).

Let K = {1, 2, . . . ,K} denote the set of K helper nodes.

Given k ∈ K, the scheme is at the kth phase, and helper

node k acts as the source of a relay network. The remain-

ing helper nodes Rk := K \ {k} = {u1, . . . ,uK−1} are

the relays. At the tth channel use of the kth phase, t =
1, 2, . . . , 2(K − 1), node k broadcasts a signal xk,t , sub-

ject to the power constraint E|xk,t|2 ≤ SNR, to all nodes

in Rk as well as to the repairing node. Due to the half-

duplex assumption in Section 2, the nodes in Rk can

either receive or transmit, but not both at the same time.

Therefore, the behavior of each node ui ∈ Rk is set such

that it receives the signal from node k when t = 2i−1 and

transmits to the repairing node when t = 2i. More specif-

ically, the signal received by node ui at t = 2i − 1 is given

by

rui,2i−1 = gui,kxk,2i−1 + zui,k,2i−1, (13)

where gui,k and zui,k,2i−1 are i.i.d. CN (0, 1) random vari-

ables representing the channel gain from node k to node ui
and the additive noise, respectively, as defined in (2). Node
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ui then amplifies the signal rui,2i−1 with an amplification

factor aui,k set such that

E|aui ,krui ,2i−1|2 ≤ SNR, (14)

where the expectation is taken with respect to xk,2i−1

and zui,k,2i−1, since gui,k is already known to node ui.

Equivalently, we have

|aui ,k |
2 ≤

SNR

1 + SNR|gui ,k |2
. (15)

Then, at channel use t = 2i, node ui joins node k and

sends the amplified signal aui,krui,2i−1 to the repairing

node.

Since each helper node k is allowed to transmit its own

message to the repairing node during the kth phase, its

multiplexing gain must be increased to K · r in order

to achieve the desired average multiplexing gain r. We

now summarize the steps of Scheme 2 below. A pictorial

description of Scheme 2 is given in Fig. 7.

Scheme 2

1: for each k = 1, 2, . . . ,K do

2: Set K \ {k} = {u1, . . . ,uK−1}
3: for i = 1, 2, . . . , (K − 1) do

4: Node k broadcasts a signal xk,2i−1 at multi-

plexing gain Kr to all nodes at channel use

t = 2i − 1. The signals received by node ui
and the repairing node are respectively given

by

rui,2i−1 = gui,kxk,2i−1 + zui,k,2i−1, (16)

y
k,2i−1

= hkxk,2i−1 + wk,2i−1. (17)

5: Node k broadcasts a signal xk,2i to all

nodes at channel use t = 2i, and node ui
simultaneously sends aui,krui,2i−1. The signal

received by the repairing node when t = 2i

is

y
k,2i

= hkxk,2i + huiaui,krui,2i−1 + wk,2i.

(18)

6: end for

7: end for

5.1 DMT achieved by Scheme 2

Note firstly that by the symmetry among the phases of

Scheme 2, it suffices to analyze the DMT achieved within

the first phase, i.e., for k = 1, where the helper node 1 acts

as the source, and the remaining helper nodes are relays.

Thus, for notational convenience, we will henceforth drop

the subindex k.

Set N = 2(K − 1), and let xt be a CN (0, SNR) ran-

dom variable, representing the signal sent by helper node

1 at time instance t for t = 1, 2, . . . ,N . Then, the signal

received by the repairing node at the tth channel use is

y
t
=
{

h1xt + wt , t odd,

h1xt + aihi
(

gixt−1 + zi
)

+ wt , t even and i = t
2+1,

(19)

where gi and zi’s are i.i.d. CN (0, 1) random variables

obtained by re-indexing the corresponding variables in

(16) for notational convenience. The amplification factor

ai ∈ R
+, i = 2, . . . ,K , is set such that

|ai|2 ≤
SNR

1 + SNR|gi|2
.

We can equivalently reformulate the received vectors y
t
in

(19) in matrix form, as

y =
[

y
1
y
2

· · · y
N

]⊤

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

h1 0 · · · 0 0

a2g2h2 h1 · · · 0 0
...

...
. . .

...
...

0 0 · · · h1 0

0 0 · · · aKgKhK h1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

H

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
...

xN−1

xN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

x

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1

a2z2h2 + w2

w3

a3z3h3 + w4
...

wN−1

aKzKhK + wN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

v

.

(20)

Given H, the instantaneous mutual information between

the transmitted signal x and the received signal y is

I(x; y | H) = log2 det
(

Kv + SNRHH†
)

− log2 det(Kv)

=
K
∑

i=2

log2 det
(

I2 + SNRH†
i K

−1
i Hi

)

, (21)

where

Kv=E(v v†), Hi=
[

h1 0

aigihi h1

]

, and Ki=
[
Inr

Inr + |ai|2hih
†

i

]

.

(22)

Thus, the outage probability for Scheme 2 is given by

Pr

⎧

⎪
⎨

⎪
⎩

H : sup
|ai |2≤ SNR

1+SNR|gi |2

I
(

x; y | H
)

< 2K(K − 1)r log2 SNR

⎫

⎪
⎬

⎪
⎭

.= SNR−d2(r),

(23)

where the target information rate 2K(K − 1)r log2 SNR

arises from the facts that

(i) the scheme takes K phases to complete, and

(ii) each phase requires 2(K − 1) channel uses.
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Fig. 7 Channel model of Scheme 2. Channel model for Scheme 2 at kth phase

5.2 DMT achieved by Scheme 2 when nr = 1

When nr = 1, it can be seen that the DMT achieved

by Scheme 2 is exactly the DMT for the NAF protocol

derived by Azarian et al. [38] with K − 1 relays and multi-

plexing gain Kr. Hence, the following result is immediate

from [38].

Theorem 2. The DMT achieved by Scheme 2 when nr =
1 is the following

d2(r)

∣
∣
∣
∣
nr=1

= (1 − Kr)+ + (K − 1)(1 − 2Kr)+. (24)

In Fig. 8, we plot the DMT performance achieved by

this scheme for the case of K = 10 helper nodes. We also

include the base-line TDMA scheme for comparison. It

can be seen that the proposed scheme has a better DMT

performance than d∗
nt ,nr ,K

(r) for r ≤ 1
2K+1 = 1

21 , due to

the use of additional inter-helper links.

Fig. 8 Scheme 2: DMT comparison. DMT performances achieved by

Scheme 2, MIMO-MAC and time-sharing scheme for K = 10 helper

nodes, nt = 1, and nr = 1

5.3 Upper and lower bounds on d2(r)with general nr
Analyzing the outage probability (23) turns out to be very

challenging in general when the repairing node has multi-

ple antennas, i.e., nr ≥ 2. Almost all existing works such

as [38, 47] consider only the case nr = 1. In [39] Yang and

Belfiore investigated the DMT for the MIMO-NAF pro-

tocol and provided a lower bound for such DMT. Their

result can be modified to yield a lower bound for d2(r).

We will comment more on that particular lower bound at

the end of this subsection.

To provide bounds on the DMT d2(r) for general val-

ues of nr , let U be an (nr × nr) unitary matrix such that

U h1 = [ ||h1|| 0 · · · 0 ]⊤ := h.

For Hi defined in (22), i = 2, . . . ,K , we get

diag(U ,U)Hi =
[

U

U

]

Hi =
[

h 0

aigiℓi h

]

= Si, (25)

where ℓi = Uhi has the same probability density func-

tion as hi, i = 2, . . . ,K . Let �i := Inr + |ai|2hih
†
i . Clearly,

we have the following partial ordering for positive-definite

matrices,

Inr ≺ �i ≺
(

1 + |ai|2||hi||
2
)

Inr =
(

1 + |ai|2||ℓi||
2
)

Inr ,

which in turn implies 1
1+|ai|2||ℓi||2

Inr ≺ �−1
i ≺ Inr . With

the above, I(x; y | H) can be upper bounded by

I(x; y | H)

≤
K
∑

i=2

log2 det
(

I2 + SNRH†
i Hi

)

(26)

=
K
∑

i=2

log2

[
(

1 + SNR||h||2
)2 + SNR|aigi|2||ℓi||

2

+ SNR2|aigi|2||h||2
nr∑

j=2

|ℓi,j|2
]

. (27)
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Similarly, set ci = 1
1+|ai|2||ℓi||2

, and I(x; y | H) is lower

bounded by

I(x; y | H)

≥
K
∑

i=2

log2 det

(

I2 + SNRS†
i

[

Inr
ciInr

]

Si

)

(28)

=
K
∑

i=2

log2

[

1 + (1 + ci)SNR||h||2 + ci|aigi|2||ℓi||
2SNR

+ ciSNR2||h||4 + c2i |aigi|
2SNR2||h||2

nr∑

j=2

|ℓi,j|2
]

. (29)

Equations (27) and (29) then yield the following theorem

for bounding the DMT d2(r) for Scheme 2.

Theorem 3. The DMT d2(r) of Scheme 2 for a general

number nr ≥ 1 of receive antennas at the repairing node

has the following upper bound d2,U(r) and lower bound

d2,L(r) :

d2,U(r) := inf
g

sup
b≤g

inf
(α,β1,β2)∈AU (r,b,g)

nrα + (K − 1)β1

+ (nr − 1)(K − 1)β2 + (K − 1)g

(30)

d2,L(r) := inf
g
sup
b≤g

inf
(α,β1,β2)∈AL(r,b,g)

nrα + (K − 1)β1

+(nr − 1)(K − 1)β2 + (K − 1)g

(31)

where

AU (r, b, g)

=

⎧

⎪
⎨

⎪
⎩

α,β1,β2 ∈[ 0, 1] : max

⎧

⎪
⎨

⎪
⎩

2(1 − α),

1 + b − g − min {β1,β2} ,
2 + b − g − β2

⎫

⎪
⎬

⎪
⎭

≤ 2Kr

⎫

⎪
⎬

⎪
⎭

(32)

and

AL(r, b, g)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

α,β1 ,β2 ∈[ 0, 1] : max

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

1 − α,

2 − 2α − (b − β)+ ,

1 − β + b − g − (b − β)+ ,

2 − α + b − g − β2 − 2(b − β)+

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

≤ 2Kr

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

.

(33)

Proof. Note that the random variables gi’s are i.i.d.,

hence there is no need to distinguish them in (27) and

(29) when deriving the DMT. The same holds also true for

ai, ℓi, and its elements ℓi,j for i = 2, . . . ,K . Thus, we set

|ai|2
.= SNRb, |gi|2

.= SNR−g , ||h||2 .= SNR−α , ||ℓi||2
.=

SNR−β , and |ℓi,j|2
.= SNR−βj with β = minj=1,...,nr βj.

Moreover, we note that ||h||2 is a χ2 random variable with

2nr degrees of freedom, hence it contributes the term nrα

to (27). Each ℓi consists of nr i.i.d. CN (0, 1) complex ran-

dom variables, and there is no need to distinguish ℓi,j for

i = 2, . . . ,K and for j = 2, . . . , nr as can be seen from

(27) and (29). Hence, we can set |ℓi,j|2
.= SNR−β2 for

i = 2, . . . ,K and for j = 2, . . . , nr . Similarly, there is no

need to distinguish ℓi,1 for i = 2, . . . ,K , hence we set

|ℓi,1|2
.= SNR−β1 for i = 2, . . . ,K . Finally, note that |gi|2

and |ℓi,j|2 are i.i.d. χ2 random variables with two degrees

of freedom. Plugging the above into (27) and (29) and

applying the Laplace principle as in [27] yield the desired

upper and lower bounds (30) and (31).

�

In Fig. 9, we plot the DMT bounds d2,L(r) and d2,U(r)

of Scheme 2 as well as the DMT d∗
1,2,10(r) with K = 10

helper nodes, nt = 1 and nr = 2. While there is a gap

between bounds d2,L(r) and d2,U(r) when the multiplex-

ing gain r is small, it can be clearly seen that Scheme 2 can

offer a better DMT performance than d∗
1,2,10(r) when r is

small. Regarding the sharpness of d2,L(r) and d2,U(r), let

us focus on the case when r is approaching zero from the

right, i.e., when r ↓ 0. Note that there are nine SISO chan-

nels from helper node 1 to the remaining helper nodes,

and the channel between node 1 and the repairing node

is a (1× 2) SIMO channel. Therefore, the communication

to the repairing node would be in outage if the nine SISO

channels and the (1×2) SIMO channel are all in deep fade,

thereby yielding a maximal diversity order of 9 + 2 = 11.

We therefore conclude that the upper bound d2,U(r) can

be further improved.

Fig. 9 Scheme 2: DMT bounds and comparison. DMT performances

achieved by Scheme 2 (lower bound and the first upper bound) and

MIMO-MAC for K = 10 helper nodes, nt = 1, and nr = 2
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As mentioned earlier, Yang and Belfiore ([39],

Theorem 2) provided a lower bound on the DMT for

MIMO-NAF protocol. Their bound can be modified to

become a lower bound for d2(r) and has the following

form

d2,L,YB(r) = nr · (1 − Kr)+ + (K − 1) · dRP(2Kr), (34)

where dRP(r) is the DMT for the Rayleigh product channel

hi · gi, and an exact expression for dRP(r) can be found in

([39], Proposition 1).

In Fig. 10, we compare our lower bound d2,L(r) to the

lower bound d2,L,YB(r) for the case nt = 1, nr = 2 and

K = 10. It can be clearly seen that, in this case, our bound

is shaper than the bound (34).

5.4 Another upper bound on d2(r)with general nr
To obtain another upper bound on the instantaneous

mutual information I(x; y | H), we consider the situation

that the repairing node has further knowledge of ri,t−1 =
gixt−1+zi when t = 2, 4, . . . ,N and i = t

2 +1. In this case,

define

y′
t

= h1xt + wt , t = 1, 2, . . . ,N . (35)

Writing y
t
= y′

t
+ aihiri,t−1 for t = 2(i− 1), it follows that

I
(

x; y | H
)

≤ I
(

x; y′
1
, . . . , y′

N
, r2,1, r3,3, . . . , rK ,N−1 | H

)

,

(36)

Fig. 10 Scheme 2: DMT bounds and comparison. A comparison

between Yang-Belfiore lower bound d2,L,YB(r) [39] and our lower

bound d2,L(r) in (31) for the DMT achieved by Scheme 2 when nt = 1,

nr = 2 and K = 10

and the upper bound has a much simpler expression than

I
(

x; y | H
)

. To see this, formulate the received vectors as

y
U
:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y′
1
y′
3
...

y′
N−1
y′
2
...

y′
N

r2,1
...

rK ,N−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1
_h1

. . .

h1
h1

. . .

h1
g2

. . .

gK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

HU

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x3
...

xN−1

x2
x4
...

xN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1

w3
...

wN−1

w2
...

wN

z2
...

zK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

(37)

then

H†
UHU =

⎡

⎢
⎢
⎢
⎣

||h1||2 + |g2|2
. . .

||h1||2 + |gK |2
||h1||2IK−1

⎤

⎥
⎥
⎥
⎦

.

(38)

This implies that

I
(

x; y | H
)

≤ I
(

x; y
U

| H
)

= (K − 1) log2(1 + SNR||h1||
2)

+
K
∑

i=2

log2
(

1 + SNR
(

||h1||
2 + |gi|2

))

.

(39)

Hence, the outage probability for the second scheme is

lower bounded by
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Pr

⎧

⎪
⎨

⎪
⎩

H : sup
|ai|2≤ SNR

1+SNR|gi |2

I
(

x; y | H
)

< 2K(K − 1)r log2 SNR

⎫

⎪
⎬

⎪
⎭

≥ Pr
{

H : I
(

x; y
U

| H
)

< 2K(K − 1)r log2 SNR
}

(40)

.= SNR−d2,U′ (r). (41)

Theorem 4. The DMT d2(r) for Scheme 2 for a general

number nr ≥ 1 of receive antennas at the repairing node is

upper bounded by

d2,U ′ (r) =

{

(nr + K − 1)(1 − Kr)+, if nr ≥ K − 1,

2nr(1 − Kr)+ + (K − 1 − nr)(1 − 2Kr)+, if nr ≤ K − 1.

(42)

Proof. Similar to the proof of Theorem 3, it is unnec-

essary to distinguish the random variables gi in (39) for

i = 2, . . . ,K when calculating the DMT. Thus, let ||h1||2 =
SNR−α and |gi|2 = SNR−β . Note ||h1||2 is a χ2 random

variable with 2nr degrees of freedom and |gi|2 is a χ2

random variable with 2 degrees of freedom. Plugging the

above into (41) and applying the Laplace principle as in

[27] gives

d2,U ′(r) = inf
B(r)

nrα + (K − 1)β ,

where

B(r) = {α,β ∈[ 0, 1] : 1 − α + max{1 − α, 1 − β} ≤ 2Kr}
=

{

α,β ∈[ 0, 1] : 2(1 − α) + (α − β)+ ≤ 2Kr
}

.

Solving the above optimization problem gives the

desired result. �

In Fig. 11, we plot d2,L(r), d2,U(r), and d2,U ′(r) for the

second proposed scheme with K = 10 helper nodes, nt =
1 and nr = 2. It can be seen that d2,L(r) = d2,U ′(r) for all

values of r, hence we have d2(r) = d2,L(r) = d2,U ′(r) in

this case.

5.5 Remarks on the complexity exponents of Scheme 2

Determining the complexity exponents of the second

scheme requires much more effort than determining the

DMT. At least two major difficulties must be resolved

before any identification of complexity exponents is pos-

sible. Notice that the notion of complexity exponents

resides in an actual construction of space-time codes for

the scheme, and that the complexity exponents can vary

from one code to another. Codes with a smaller com-

plexity exponent are more favorable in practice, provided

that the codes are optimal in the DMT sense, i.e., achieve

the DMT d2(r). Therefore, we have to at least identify

a space-time code for Scheme 2 first. In [39], Yang and

Belfiore provided a systematic construction of space-time

Fig. 11 Scheme 2: improved DMT bounds. DMT performances

achieved by Scheme 2 (two upper bounds and a lower bound) for

K = 10 helper nodes, nt = 1, and nr = 2

codes that is approximately universal [48] for NAF-based

cooperative relay communications. It is certainly possi-

ble to adapt their construction to the transmission using

Scheme 2.

The second issue complicating the investigation of com-

plexity exponents arises from the need of an exact char-

acterization of eigenvalues of the matrices H†
i K

−1
i Hi for

i = 2, . . . ,K , appearing in (21). Determining these eigen-

values is particularly difficult. It is in fact the main reason

preventing us from obtaining an exact expression for d2(r)

in previous subsections, and we are only able to provide

bounds on d2(r) in this paper.

Nevertheless, it can be seen from (20) that the equiva-

lent channel matrixH is of size (Nnr ×N) and has linearly

independent columns with probability 1. This implies that

when applying a sphere decoder to decode the codes—for

instance, the code constructed by Yang and Belfiore [39]—

transmitted using Scheme 2, the QR decomposition of the

matrix H would result in an upper triangular matrix R;

hence, there is no ambiguity to be resolved prior to pro-

cessing the root of the sphere decoding tree. Therefore,

the code must be efficiently sphere decodable.

6 Scheme 3: nt = 1, nr ≥ 2, and K helper nodes
In the previous section, we presented a powerful scheme

that makes a good use of the inter-helper links to improve

the DMT performance of DSS repair transmission. The

scheme allows one helper node to transmit information in

each phase, and the remaining helper nodes are regarded

as relays. Furthermore, we have introduced a novel tech-

nique that allows us to upper-bound the DMT for the

NAF protocol in a cooperative relay network with mul-

tiple antennas at the repairing node. In this section, we

will present our third scheme, which can be seen as an
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enhancement of Schemes 1 and 2 and can provide a

further improvement on the DMT performance.

The third proposed scheme concerns the case nt = 1,

nr ≥ 2 and K helper nodes. It allows L helper nodes,

L ≤ min{nr ,K − 1}, to transmit simultaneously and

non-cooperatively to the repairing node as well as to the

remaining (K − L) helper nodes, which will function as

relays9 in the network. To achieve an average multiplexing

gain r, each of the selected L helper nodes must transmit

at a higher multiplexing gain of K
L r. In particular, we could

later seek to improve the overall DMT performance by

optimizing over the choices of L. Therefore, L can actually

be a function of the multiplexing gain r.

Given L, the third scheme consists of
(K
L

)

phases, one for

each possible L-subset L = {i1, . . . , iL} of K, where K =
{1, 2, . . . ,K} is the set of helper nodes. The helper nodes

in set L transmit simultaneously and non-cooperatively

throughout the phase, which has a duration of N =
2(K − L) channel uses. The remaining nodes in K \ L =
{j1, . . . , jK−L} will function as relays following the NAF

protocol. Details of this scheme are given as below, and a

pictorial description of this scheme is given in Fig. 12.

Scheme 3

1: Let L be an integer with 1 ≤ L ≤ min{nr ,K − 1}.
2: for each L = {i1, . . . , iL} ⊆ K do

3: for t = 1, 2, . . . ,N = 2(K − L) do

4: At the tth channel use of the phase associ-

ated with L, each helper node iℓ ∈ L broad-

casts a signal xiℓ,t , with E|xiℓ,t|2 ≤ SNR, to

the nodes inK\L and to the repairing node

5: Helper-node js ∈ K \ L, s = 1, . . . , (K − L),

receives the following signal when t is odd

rjs ,t =
L
∑

ℓ=1

gjs ,iℓxiℓ ,t + zjs ,t , (43)

where gjs,iℓ and zjs,t are i.i.d. CN (0, 1) ran-

dom variables defined in (2). When t =
2s, node js broadcasts the signal ajsrjs,2s−1,

where ajs is chosen such that

|ajs |2 ≤
SNR

1 + SNR
∑L

ℓ=1 |gjs ,iℓ |2
. (44)

6: The signal received at the repairing node at

the t-th channel use of the phase associated

with L is

y
t

=

{∑L
ℓ=1 hiℓxiℓ ,t + wt , t odd

∑L
ℓ=1 hiℓxiℓ ,t + hjsajsrjs ,t−1 + wt , t = 2s

(45)

7: end for

8: end for

6.1 DMT analysis for Scheme 3

The communication channel deduced from Scheme 3

resembles the multiple-access relay channel (MARC),

which was first introduced by Kramer and van Wijngaar-

den [49]. The DMTs for the two-user and single-relay

MARC—in terms of our notation this means nt = 1,

nr = 1, K = 3 and L = 2—using various protocols

have been studied in the past. For instance, Azarian

et al. [50] investigated the DMT for such MARC using the

dynamic-decode-and-forward (DDF) strategy, and Yuk-

sel and Erkip [51] focused on the compress-forward (CF)

protocol. Furthermore, a protocol similar to Scheme 3

was proposed in [40] and was termed multiple-access

amplify-and-forward (MAF), which is a variation of the

NAF protocol. It was found in [40] that the MAF outper-

forms the DDF in the high multiplexing gain regime and

the CF protocol [51] in the low multiplexing gain regime

when nt = 1, nr = 1, K = 3, and L = 2. The MAF

thus provides a nice balance between complexity and

performance.

Scheme 3 considers a much more complicated scenario

than the one in [40], with nt = 1, and general val-

ues of nr , K and L ≤ min{nr ,K − 1}. To the best of

our knowledge, the DMT analysis for the MAF protocol

has never been taken to such complexity level. On the

other hand, our novel bounding technique employed in

the proof of Theorem 4 is extremely powerful and enables

us to analyze the DMT for general MARC using the MAF

protocol.

To this end, for any subset U = {u1, . . . ,uk} ⊆ L of the

selected helper nodes, let EU denote the event that helper

nodes u1, . . . ,uk are in outage. The probability for EU is

given by

Pr {EU }

=Pr

{
{

hi
}K

i=1
,
{

gi,j
}K

i,j=1
: sup

ajs
s=1,...,K−L

I

(
{

xu,t :u ∈ U
}N

t=1
; y

1
, . . . , y

N

∣
∣
∣
∣

{

xu,t : u ∈ L \ U
}N

t=1
,
{

hi
}K

i=1
,
{

gi,j
}K

i,j=1

)

<
NK

L
rk log2 SNR

}

,

(46)

where N = 2(K − L). The overall outage probability for

the third proposed scheme with given L is

Pout,3(L, r) := Pr

⎧

⎨

⎩

⋃

U⊆L

EU

⎫

⎬

⎭

.= max
U⊆L

Pr {EU } .= SNR−d3(L,r).

(47)

The technique introduced in Section 5.4 can be applied

to yield the following upper bound on d3(L, r).
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Fig. 12 Channel model of Scheme 3. Channel model for Scheme 3 at the phase associated withL = {i1 , . . . , iL}

Theorem 5. The DMT d3(L, r) can be upper bounded as

d3(L, r) ≤ d3,U(L, r) := min
k=1,...,L

inf
A(L,k,r)

k
∑

i=1

[ 2i − 1+(nr − k)]αi

+ (K − L)

⎡

⎣

k
∑

j=1

βj + (nr − k)βk+1

⎤

⎦ ,

(48)

where

A(L, k, r)

:=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

α1, · · · αk ,β1, · · · βk+1 :

1 ≥ α1 ≥ α2 ≥ · · · ≥ αk ≥ 0,

αi ≥ βi ≥ 0, i = 1, 2, . . . , k,

βk+1 ≥ 0and βk+1 = 0if nr = k,
∑k

i=1(1 − αi) + 1
2 max

{

α1 − β1, . . . ,αk − βk ,βk+1

}

< Krk
L

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

(49)

Proof. Given any U = {u1, . . . ,uk} ⊆ L of selected

helper nodes, we first reformulate the channel input-

output relations (45) in matrix form. For the sake of

notational convenience, we set rs = rjs ,2s−1, zs = zjs,2s−1,

xt :=

⎡

⎢
⎣

xu1,t
...

xuk ,t

⎤

⎥
⎦ , HU =

[

hu1 · · · huk
]

, and g
s
=

⎡

⎢
⎣

gjs,u1
...

gjs,uk

⎤

⎥
⎦ ,

for js ∈ K \ L and s = 1, . . . , (K − L). Following the

same approach as in Section 5.4, we assume the repairing

node has further knowledge of rs for s = 1, . . . , (K − L);

therefore, it knows y′
t

= HUxt + wt for t = 1, 2, . . . ,N .

We then have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y′
1
y′
3
...

y′
N−1
y′
2
...

y′
N
r1
...

rK−L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

y
U

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

HU

. . .

HU

HU

. . .

HU

g⊤
1

. . .

g⊤
K−L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Heq

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x3
...

xN−1

x2
x4
...

xN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

:=x

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1

w3
...

wN−1

w2
...

wN

z1
...

zK−L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(50)

It follows that

I
(
{

xu,t : u ∈ U
}N

t=1
; y

1
, . . . , y

N

∣
∣
∣

{

xu,t : u ∈ K \ U
}N

t=1
,

{hi}
K
i=1, {gi,j}

K
i,j=1

)

≤ I
(

x; y
U

| Heq

)

=
N

2
log2 det

(

Ik + SNRH†

U
HU

)

+

N
2∑

s=1

log2 det
(

Ik + SNRH†

U
HU + SNRg∗

s
g⊤
s

)

.

(51)

Let H†
U
HU = E�E† be the eigen-decomposition of

H†
U
HU , where E is a (k × k) unitary matrix, � =

diag(λ1, · · · , λk), and 0 < λ1 ≤ · · · ≤ λk are the nonzero
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ordered eigenvalues of H†
U
HU , since rank(H†

U
HU ) = k

with probability one. The instantaneous mutual informa-

tion I
(

x; y
U

| Heq

)

can be further simplified to

I
(

x; y
U

| Heq

)

= N

k
∑

s=1

log2(1 + SNRλs)

+

N
2∑

s=1

log2

(

Ik + (Ik + SNR�)−1 SNRE†g∗
s
g⊤
s
E
)

= N

k
∑

s=1

log2(1 + SNRλs)

+

N
2∑

s=1

log2

⎛

⎝1+
k
∑

j=1

SNR

1 + SNR λj
|vs,j|2+

nr∑

j=k+1

SNR|vs,j|2
⎞

⎠,

(52)

where we have set vs = E†g∗
s
, which is a length-nr random

vector with i.i.d. CN (0, 1) entries. It follows that

Pr {EU }≥Pr

{

I
(

x; y
U

| Heq

)

<
NK

L
rk log2 SNR

}

.= SNR−dU (r).

(53)
We set

• λs = SNR−αs for s = 1, . . . , N2 , with each αs

contributing the term (2s − 1 + (nr − k))αs to the

overall diversity order.
• |vs,j|2 = SNR−βs,j = SNR−βj for s = 1, . . . , N2 and

j = 1, . . . , k, since there is no need to distinguish vs,j
in these cases when applying the Laplace principle to

(53). Each βj, j = 1, . . . , k, contributes the term N
2 βj

to the overall diversity order.
• |vs,j|2 = SNR−βs,j = SNR−βk+1 for s = 1, . . . , N2 and

j = k + 1, . . . , nr , for the same reason. The factor

βk+1 contributes the term
N
2 (nr − k)βk+1 to the

overall diversity order.

It follows from the above that

dU (r) := inf
A′(L,k,r)

k
∑

i=1

[ 2i − 1 + (nr − k)]αi + (K − L)

k
∑

j=1

βj

+ (K − L)(nr − k)βk+1 ,

(54)

where

A
′(L, k, r) :=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

α1, . . . ,αk ,β1, . . . ,βk+1 ∈ R :

α1 ≥ α2 ≥ · · · ≥ αk ≥ 0, β1,β2, . . . ,βk+1 ≥ 0,

βk+1 = 0if nr = k,
∑k

i=1(1 − αi)
+ + 1

2 max
{

(1 − βj − (1 − αj)
+)+, . . . ,

(1 − βk − (1 − αk)
+)+,βk+1

}

< Krk
L

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

(55)

Finally, the upper bound d3,U(L, r) is obtained after

minimizing dU (r) for all possible subsets U ⊆ L (or equiv-

alently for all k = 1, . . . , L) and after simplifying the

constraints in (55). �

By optimizing over all possible L = 1, 2, . . . , min{nr ,K−
1} for d3,U(r), we obtain an upper bound on the DMT

performance for the third scheme.

Corollary 6. The DMT performance for Scheme 3 is

upper bounded by

d3,U(r) := max
L=1,...,min{K−1,nr}

d3,U(L, r). (56)

In Fig. 13, we illustrate the overall picture for the case

of nt = 1, nr = 2, and K = 10. While we do not yet

have a lower bound or a tight DMT result, we believe

that Scheme 3 is indeed likely to be superior10 to all

other schemes presented in this paper, namely the TDMA

scheme, Schemes 1 and 2.

In particular, we note that the DMT upper bound

for Scheme 3 achieves the maximal possible multi-

plexing gain of 2
10 = 0.2, which is the same as

the TDMA scheme and the MIMO-MAC. Such pos-

sibility for the optimality of Scheme 3 turns out to

be generally true, at least from the viewpoint of the

upper bound (51). To see this, note that by (51), we

have

Fig. 13 Overall DMT comparison. DMT performances achieved by the

MIMO-MAC, time-sharing scheme and Schemes 1,2, and 3, for K = 10

helper nodes, nt = 1, and nr = 2
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E

⎡

⎣

I
(

x; y
L
|Heq

)

N log2 SNR

⎤

⎦

=
E

1
2 log2 det

(

IL + SNRH†
L
HL

)

+ 1
2E log2 det

(

IL + SNRH†
L
HL + SNRg∗

1
g⊤
1

)

log2 SNR

=
1

2
min{L, nr} +

1

2
min{L, nr + 1} + o(1), (57)

as SNR → ∞, where the last equality follows from the

asymptotic analysis of the degrees-of-freedom (DoF) for

the MIMO channel [27, 52] and from the fact that HL is a

channel matrix of size (nr × L), and H†
L
HL + g∗

1
g⊤
1

= FF†

with F = [H†
L
g∗
1
] is a matrix of size (L × (nr + 1)). Eq. 57

shows that the channel capacity resulting from Scheme 3

equals L · log2 SNR + O(log2 SNR) in high SNR regime

for L ≤ min{nr ,K − 1}, and such an amount of capacity

is shared by the L selected helper nodes. In other words,

each selected helper node gets 1 · log2 SNR+O(log2 SNR)

bits per channel use as the maximal achievable transmis-

sion rate. Note that in Scheme 3 the selected helper node

must transmit at a higher multiplexing gain K
L r such that

the average multiplexing gain equals r. This then implies

K

L
r log2 SNR ≤ 1 · log2 SNR + o(log2 SNR), (58)

i.e., r ≤ L
K . Now, with L = nr < K we see that

Scheme 3 achieves themaximal possiblemultiplexing gain

of nr
K for each helper node, same as MIMO-MAC [28],

where the maximal possible multiplexing gain is given by
min{Knt ,nr}

K = nr
K .

7 Conclusions
The communications within a wireless storage network

can be modeled as a multiple-access channel with addi-

tional inter-source communication links. Motivated by

this observation, we have proposed three physical layer

transmission schemes based on different time-sharing and

relaying strategies that are suitable for the given chan-

nel model. In contrast to the state-of-the-art MAC DMT

optimal algebraic space-time codes, our schemes are effi-

ciently sphere-decodable with only one or two anten-

nas. Their DMT performance reaches between the time-

sharing DMT and the optimal MAC DMT—the one for

conventional MIMO-MAC having no inter-source links—

in the high-multiplexing gain regime. When the desired

multiplexing gain is low, the schemes even outperform the

optimal MACDMT. Naturally, the schemes are also appli-

cable to DSS file reconstruction, as well as to any MAC

communications with inter-source links.

In the future, even small devices with very limited power

may be equipped with several antennas thanks to massive

MIMO at 60 Hz. However, implementation of a practi-

cal massive MIMO system still calls for a considerable

amount of research efforts regarding pilot design, chan-

nel estimation, and code design. Before all that is realized,

we believe that the proposed schemes provide a good and

efficient alternative.

Endnotes
1Device-to-device (D2D) communication networks pro-

vide one such example, see e.g. [53, 54].
2Preliminary results related to this work were reported

in the Global Wireless Summit 2014 GWS’14 [18]

(invited abstract which is considered a preprint), 21st

International Symposium on Mathematical Theory of

Networks and Systems MTNS’14 [19] (short invited

abstract, Scheme 1), and 2014 International Symposium

on Information Theory and Its Applications (ISITA) [20]

(Schemes 1–3, now combined to Scheme 2). We point out

that the numbering of the schemes has been changed so

that the schemes previously called 2 and 3 [20] have been

combined to Scheme 2, and the new scheme is hence now

called Scheme 3 and has not appeared anywhere before.

This paper extends the results by additional proofs for the

bounds related to Scheme 2, and with a completely new

scheme, Scheme 3, that improves upon the other schemes.
3By efficiently sphere-decodable space-time code we

mean that the code can be sphere-decoded without the

need of performing an exhaustive search for part of the

symbols before starting processing the root of a sphere-

decoding tree. See discussions in Section 2.2.
4By half-duplex we mean each node can choose to either

transmit or receive, but not both at the same time.
5Such a comparison might not seem fair to some readers

as (5) assumes no inter-helper links. However, the DMT

(5) is the best DMT result that can be found in the related

literature.
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6This latter condition might seem unrealistic in certain

(logical) distributed storage codes. However, it would be

extremely difficult to determine the mutual information

between the helpers and the repairing node if one takes

into account the shared information among helper nodes.
7A lattice is a discrete abelian subgroup of a real or com-

plex vector space, and its rank is given by its rank as a

module over Z. By an algebraic lattice we refer to one

constructed from a number field extension or a division

algebra, see e.g. [29].
8It is unfortunate that measuring the exact complexity

exponents for these schemes is extremely complicated,

and we are unable to complete the task in this paper.

Nevertheless, it can still be seen that these schemes can

yield efficiently sphere-decodable space-time codes with-

out the need of resolving ambiguities when processing the

sphere-decoding tree.
9Here we have implicitly assumed K − L ≥ 1 such that

at least one helper node will function as a relay.
10Cf. the corresponding upper bound d2,U ′(r) = d2(r)

for Scheme 3 that turned out to be tight.
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