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Abstract

Ad hoc querying is difficult on very large datasets, since it

is usually not possible to have the entire dataset on disk.
While compression can be used to decrease the size of the

dataset, compressed data is notoriously difficult to index
or access.

In this paper we consider a very large dataaet compris-
ing multiple distinct time sequences. Each point in the

sequence is a numerical value. We show how to compress
such a dataset into a format that supports ad hoc query-

ing, provided that a small error can be tolerated when the
data is uncompressed. Experiments on large, real world

datasets (AT&T customer calling patterns) show that the
proposed method achieves an average of less thau 570 error

in any data value after compressing to a mere 2.5~o of the
original space (i. e., a 40:1 compression ratio), with these

numbers not very sensitive to dataset size. Experiments

on aggregate queries achieved a 0.570 reconstruction error

with a space requirement under 270.

1 Introduction

The bulk of the data in most data warehouses has a time

component (e. g., sales per week, transactions per minute,
phone calls per day, etc.). More formally, these datasets
are of N time sequences, each of duratiou M, organized in

an N x M matrix (N row vectors of dimensionality M). In
such databases, decision support (i. e., statistical analysis)

requires the ability to perform ad hoc queries. What one
would like is a way to compress data in such a way that ad
hoc queries are still supported efficiently. In this paper, we

“ Work performed while visiting AT&T.
twork perfomed while visiting AT&T. Partially supported by

NSF grants EEC-94-023S4,IRI-9205273, IRI.9625428.

Permissionto make digitallhardcopy of part or all this work for

personalor classroomuse is granted without fee providedthat

copieesre not made or distributedfor profit or commercialadvan-

tage, the cop~ight notice, the titleof the publicationand ita dete

appear, and noticeis given that copying ia by permissionof ACM,

Inc. To copy otherwise, to republish,to post on aervera,or to

redistributeto Iiets,requiresprior specificpermissionandlor a fee.

SIGMOD ’97 AZ,USA

01997 ACM 0-89791 -911 -419710005...$3.50

introduce a way to do this, for numerical (time sequence)
data, at the cost of a small loss in numerical accuracy.

When the data.set is very large, accessing specific data
values is a difficult problem. For instante, if the data is

on tape, such access is next to impossible. When the data
is all on disk, the cost of disk storage, even with today’s

falling disk prices, is typically a major concern, and any-
thing one can do to decrease the amount of disk storage

required is of value. We, the authors, ourselves have ex-
perience with more than one dataset that ran into hun-

dreds of gigabytes, making storage of the data on disk

prohibitively expensive. Unfortunately, most data com-
pression techniques require large blocks of data to be ef-
fective, so that random access to arbitrary pieces of the

data is no longer conveniently possible. This makes it dif-
ficult to issue ad hoc queries, and therefore most techniques

do not support the sort of random ad hoc access desired
for data mining and for many forms of decision support.

Instead, the query style is forced to be one of careful plan-

ning for a “processing run” in which large chunks of data
are temporarily uncompressed, examined as needed, and

then compressed back immediately.

The goal of this paper is to develop techniques that will

permit the compression of such large datasets in a manner
that continues to permit random access to the cells of the

matrix. By the term “random access” we mean that the
time to reconstruct the value of any single cell is constant

with respect to the number of rows N and columns M,
with a small proportionality constant. Ideally, it should

require 1 or 2 disk accesses (versus 1 disk access that the

uncompressed file would require if the whole file could fit
on the disk). This is what is required to support ad hoc
queries efficiently.

Table 1 provides an example of the kind of matrix that
is typical in warehousing applications, where rows are cus-
tomers, columns are days, and the values are the dollar
amounts spent on phone calls each day. Alternatively,

rows could correspond to patients, with hourly recordings
of their temperature for the past 48 hours, or companies,

with stock closing prices over the past 365 days. Such

a setting also appears in other contexts. In information

retrieval systems rows could be text documents, columns
could be vocabulary terms, with the (i, j) entry showing
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the importance of the j-th term for the i-th document.

customer

ABC Inc.
DEF Ltd.
GHI Inc.

KLM Co.
Smith

Johnson
Thompson

We Th Fr Sa Su
7f10 7jll 7/12 7/13 7/14

1 1 1 0 0

2 2 20 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

Table 1: Example ofa (customer-day) matrix

To make our discussion more concrete, we will refer to
rows as “customers” and to columns as “days”. The math-

ematical machinery inapplicable to many different applica-
tions, such asthose mentioned in the preceding paragraph,

including ones where there is no notion of a customer or
a day, as long as the problem involves a set of vectors or,
equivsJently, an N x M matrix X.

Decision support and data mining on large datssets

often involves, at the lowest level, obtaining answers to

queries, both exploratory queries as well as queries tover-

ify hypotheses. These queries may require access to data

records, either individually or in the aggregate: for one,

some, or all customers; for one, some, or all days. Two
typicaJ queries are:

● Queries on specific cells of the data matrix: ‘what
was the amount of sales to GHI Inc. on July 11,

1996 ?’
● Aggregate queries unselected rows and columns: ‘find

the total sales to business customers (ABC, DEF,

GHI, and h’LM) for the week ending July 12, 1996.’

We study these two main classes of queries in this paper.

There are three underlying assumptions/motivations be-

hind

●

●

●

the present work:

The data matrix is huge, of the order of several Giga-

Bytes. For example, in large corporations like AT&T,
there are millions of customers (= rows);
The number of rows N is much larger than the num-
ber of columns M:

NBM (1)
As mentioned, N is on the order of millions; we ex-

pect that the number of columns M is of the order of
hundreds. For example, M=365 if we maintain daily

data for a year’s duration and 10*12 if we maintain
monthly data for the last decade;
There are no updates on the data matrix, or they
are so rare that they can be batched and performed

off-line.

In this paper we explore the application of a variety

of lossy compression techniques that permit quick recon-
struction of arbitrary parts of the dataset. We find that

Singular Value Decomposition of the given data matrix,
followed by retention of only the few most important prin-

cipal components, works rather well, resulting in a com-

pressed version that can be used to reconstruct an arbi-
trary value with only one disk look-up, and with small

average error in the reconstructed value. We develop an
enhanced algorithm, which we call SVDD, that exhibits

not only a smaller average reconstruction error than SVD
(and the other compression techniques we tried), but also

a very good bound on the error of the reconstructed data
value. We present computation of SVDD with only three

passes over the matrix.

No previous work, to our knowledge, has addressed the
problem we study in this paper, even though work on data

compression abounds. Some interesting work has been
done on compression with fast searching in a large database
of bit vectors [12, 5]. Our work is different because our fo-

cus is on a dataset of real-vaJued numbers rather than bit
vectors.

Wefl-designed index structures are necessary to sup-

port ad hoc queries. There has been much work on index

structures, including some excellent recent work specifi-
cally aimed at decision support [8, 10]. However, the de-
sign of indices is not the focus of this paper. Our concern
is actuafly getting the data records once they have been

identified, which we expect would typically be by means
of an index, but could, for the purposes of this paper, be

by any other means just as well.

The paper is organized as follows: Section 2 gives the

survey. Section 3 describes the mathematical background
for the singular value decomposition (SVD). Section 4

gives the algorithms and the proposed enhancements. Sec-
tion 5 gives experimental results on reaJdatasets. Section 6

lists the conclusions and directions for future research.

2 Survey - Alternative Methods

The problem we address in this paper is the compression of

a set of time sequences (or vectors), in a potentirdly lossy
manner, while maintaining “random access”, that is, fast

reconstruction of any desired cell of the matrix. Severaf
popular data representation techniques from different ar-
eas come to mind, including (lossless) string compression,

Fourier analysis, clustering, and singular value decompo-

sition (SVD). We examine the first three in the next three
subsections, and present SV D in detail in the next section.

2.1 String Corn preasion

Algorithms for lossless string compression are widely avail-
able (e.g., gzip, based on the well-known Lempel-Ziv algo-

rithm [29], Huffman coding, arithmetic coding, etc.; see [23]).

Whife these techniques can achieve fairly good compres-

sion, the difficulty with them has to do with reconstruc-
tion of the compressed data. Given a query that asks about
some customers or some days, we have to uncompress the
entire database, for all customers and all days, to be able

to answer the query. When there is a continuous stream of
queries, as one would expect in data anaJysis, it effectively

becomes the case that the data is retained uncompressed

much (or all) of the time,

One attempt to work around this problem is to segment
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the data and then compress each segment independently.

If the segments are large enough, good compression may be

achieved while making it sufficient to uncompress only the

relevant segments. This idea works only if most queries fol-

low a particular form that matches the segmentation. For
truly ad hoc querying, as is often the case in data analysis,

such segment ation is not effective. A large fraction of the

queries cut across many segments, so that large fractions
of the database have to be reconstructed.

For the above reasons, we do not examine lossless com-

pression methods in more detail here.

2.2 Clustering

A different approach is to exploit the observation that the
behavior of many customers is likely to be similar. If sim-

ilar customers can be clustered together, a single cluster
representative could serve as a good approximation of the
others. Other customers need only have a reference to

specify the correct cluster representative. Reconstruction
in this case is particularly simple: To find the value of cell

~i,3, find the cluster-representative for the i-th customer,
and return its j-th entry. This application of clustering is

known in the signal processing literature as vector guanti-

zation [16].

Clustering has attracted tremendous interest, from di-
verse fields and for diverse applications: in information

retrieval for grouping together documents represented as
vectors [20]; in pattern mat thing, for grouping together

samples of the training set [3]; in the social and natural
sciences for statistical analysis [9]. Excellent surveys on

clustering include [18, 13, 26].

Although useful in numerous applications, in our set-

ting clustering might not scale-up. The so-caUed “sound”

clustering algorithms, which presumably give the highest

quality clusters [26], are typically O(IV2 ) or O(iV log IV).

Faster, approximate algorithms include the popular “k-

means” algorithm [I 7], which requires a constant, but large

number of passes over the dat aset, thus becoming im-

practical for the huge datasets we have in mind. Re-
cent fast clustering algorithms for huge databaaes include

CLARANS [14], BIRCH [28], and CLUDIS [6]. However,
these have only been tried for M=2 dimensions. They will

probably suffer in high dimensionalities (e.g., M x 100), if
they are based on R*-trees [6] or any other related spatial
access method [28].

In our experiments we used an off-the-shelf clustering

method from the ‘S’ statistical package [2]. The method
is quadratic on the number of records N, and it builds

a cluster-hierarchy, which we truncate at the appropriate
levels, to obtain the desirable number of clusters. We set
the distance function to be the Euclidean distance, and the
“element-to-cluster” distance function to be the maximum
distance between the element and the members of the clus-

ter. This results in many tight

to small reconstruction error.

lems with high dimensions, at
to scale-up for large N.

clusters, which should lead

The package had no prob

the expense of its inabihty

2.3 Spectral Methods

The lossy spectral representation of real time sequences
has been studied extensively in the signal processing lit-
erature. Fourier analysis is perhaps the best known of
the standard techniques, although there is a plethora of

other techniques, such as wavelets [19], linear predictive

coding [16], and so forth.

Consider Fourier analysis, where a given time signal
is “transformed” to obtain a set of Fourier coefficients.

In many practical signals, it is the case that most of the
“energy” (or “information” ) is concentrated in the first

few Fourier coefficients [21]. One can then throw away the
remaining coefficients. This effect has also been observed
in the data mining context[l].

The DFT and other associated methods (e.g., DCT,

DWT) are all linear transformations, which effectively con-
sider an M-long time sequence as a point in M-d space,
and rotate the axes. This is exactly what SVD does, but

in an opt irnal (in the sense of LZ-norm approximation) way
for the given dataset (Figure 1 gives an illustration). Thus,
we expect that all these methods will be inferior to SVD.
This is the main reason that we don’t put much emphasis

on spectral methods. Additional reasons are the following:

Spectral methods are tuned for time sequences, ide-

ally with a few low-frequency harmonics. Thus, they
won’t perform well if the input signals have several

spikes or abrupt jumps. Therefore, one should expect
SVD to handle discontinuities better than spectral

methods.
SVD can be applied not only to time sequences, but

to any arbitrw-y, even heterogeneous, M-”dmensional
vectors. For example, a patient record could be a
“vector” comprising elements age, weight, height, choles-

terol level, etc.. In such a setting, spectral methods

do not apply.

Alternatively, we could treat our two-dimensional ma-

trix as a “photograph image”, the values of the cells being
the gray-scrde values, and apply ideas from two-dimensional

signal processing, such as a 2-D Fourier Transform. This
is a bad idea because one is now transforming the entire
dataset globally, and this is clearly worse than doing it a
row at a time: The reason is that adjacent customers need

not be related, making the columns look like white-noise
signals, which are the worst case for compression. Also,

reconstruction of any chosen data cell requires more work.

In conclusion, spectrrd methods on a row-basis are a

good idea; however, their reconstruction performance will
never exceed the one for SVD, which constitutes the op-

timal linear transformation for a given dataset. In our
experiments, we use DCT as representative of the spectral
methods because it is very close to optimal when the data
is correlated [7, p. 109], as is the case in our data.sets.

3 Introduction to SVD

The proposed method is based on the so-called Singuiar

Value Decomposition (S VD)of the data matrix. SVD is
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Symbol

N

M

k

x
x

L
~112

x’
z,,,

i,,,

x,,.
x.,, G x.

J

7,

RMSPE

s 70

Definition

number of records/time sequences

duration (length) of each sequence

cutoff (number of principaJ components

retained during compression)

the N x M data matrix

the N x M reconstruction of the
data matrix

rank of the data matrix
diagonal matrix with eigenvalues

Euclidean (= Lz) norm
matrix multiplication

the transposeof X
value at row i
and column j of the matrix X

reconstructed (approximate) value at
row i and column j

the i-th row of thematrix X

thej-th column of the matrix X

the mean cell value of X

number (=count) of outlier cells for which
deltas ar~stored’in SVDD given that i

principal components have been retained
normalized root mean squared error
disk space after compression, % of original

Table 2: Symbols, definitions and notation from matrix
algebra.

a popular and powerful operation, and it has been used

in numerous applications, such as statistical analysis (as
the driving engine behind the Principal Component Anal-

ysis [1I]), text retrieval under the name of Latent Semantic

Zndezing [4], pattern recognition and dlmensionality reduc-
tion as the Karhunen-Loeve (KL) transform [3], and face

recognition [25]. SVD is particularly useful in settings that

involve least-squares optimization such as in linear regres-
sion, dimensionalit y reduction, and matrix approximation.

See [24] or [15] for more details. The latter citation also

gives ‘C’ code.

3.1 Preliminaries

We shall use the following notational conventions from lin-

ear algebra:

● Bold capital letters denote matrices, e.g., U, X.

● Bold lower-case letters denote column vectors, e.g.,

u, v.
● The “x” symbol indicates explicitly the multiplica-

tion of two matrices, two vectors, or a matrix and a
vector.

Table 2 gives a list of symbols and their definitions

The SVD is based on the concepts of eigenvalues and eigen-
vectors:

Definition 3.1 For a square n x n matrix S, a unit vector

u and a scalar A that satisfy

SXU=AXU (2)
are called an eigenvector and its corresponding eigenvalue,

respectively, oj the matriz S.

3.2 Intuition behind SVD

Before we give the definition of SVD, it is best that we try
to give the intuition behind it. Consider a set of points as

before, represented as an N x M matrix X. In our running
example, such a matrix would represent for N customers

and M days, the dollar amount spent by each customer

on each day. It would be desirable to group similar cus-
tomers as well as similar days together. This is exactly

what SVD does. Each group corresponds to a “pattern”
or a “principal component”, i.e., an important grouping of

days that is a “good feature” to use, because it has a high
discriminatory power and is orthogonal to the other such

groups.

Figure 1 illustrates the rotation of axis that SVD im-

plies: suppose that we have M=2 dimensions; then our
customers are 2-d points, as in Figure 1. The correspond-

ing 2 directions (z’ and y’) that SVD suggests are shown.

The meaning is that, if we are allowed only k=l, the best
direction to project on is the direction of z’; the next best

is y’, etc.

4

Y’

●

●
●

x

Figure 1: Illustration of the rotation of axis that SVD

implies: the “best” axis to project is z’.

3.3 Definition of SVD

The formal definition for SVD follows:

Theorem 3.1 (SVEJ) Given an N x M real matriz X we

can ezpress it as

X= UXA XV’ (3)
where U is a column- orthonormal N x r matriz, r is the

rank of the matrix X, A is a diagonal r x r matriz of the

eigenvalues A: of X, and V is a column-orthonormal M x r

matrix.

Proofi See [15, p. 59]. ❑

Recall that a matrix U is called column-orthonormal

if its columns ui are mutually orthogonal unit vectors.
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Equivalently: U’ x U = I, where I is the identity ma-
trix. Also, recall that the rank of a matrix is the highest

number of linearly independent rows (or columns).

Eq. 3 equivalently states that a matrix X can be brought
in the following form, the so-called spectral decomposi-
tion [11, p. 11]:

X= AIU]XV: +A2U2 XV:+...+ Arur xv: (4)

where u,, and v, are column vectors of the U and V ma-

trices respectively, and Ai the diagonal elements of the ma-

trix A. Without loss of generality, we can assume that the

eigenvalues J, are sorted in decreasing order. Returning to
Figure 1, VI is exactly the unit vector of the best z’ axis;

V2 is the unit vector of the second best axis, y’, and so on.

Geometrically, A gives the strengths of the dimensions

(as eigenvalues), V gives the respective directions, and U x
A gives the locations along these dimensions where the

points occur.

In addition to axis rotation, another intuitive way of

thinking about SVD is that it tries to identify “rectangular
blobs” of related values in the matrix X. This is best

illustrated through an example.

Example: For example, for the above “toy” matrix of Ta-
ble 1, we have two “blobs” of values, while the rest of the

entries are zero. This is confirmed bv the SVD. which
identifies them both:

[

.18 0

.36 0 1

or, in “spect ml decomposition” form:

.58 0 t

.58 0

.58 0 1(5)
o .71

0 .71

X = 9.64 X

“r ‘I”!l+’’’’xlilx[:il’
1- o-1 L .27 J

Notice that the rank of the X matrix is r=2: there

are effectively 2 types of customers: weekday (business)

and weekend (residential) callers, and two patterns (i. e.,
groups-of-days): the “weekday pattern” (that is, the group
{’We’, ‘Th’, ‘Fr’}), and the “weekend pattern” (that is, the

group {’Sa’, ‘Su’}). The intuitive meaning of the U and
V matrices is as follows:

Observation 3.1 U can be thought of as the customer-

to-pattern similarity matrix,

Observation 3.2 Symmetrically, V is the day-to-pattern

similarity matrix.

For example, U1,Z = O means that the first day (’We’)
has zero similarity with the 2nd pattern (the “weekend

pattern”).

Observation 3.3 The column vectors v, (j = 1,2,.. .) of
the V are unit vectors that correspond to the directions
for optimal projection of the given set of points

For example, in Figure 1, v] and V2 are the unit vectors
on the directions z‘ and y’, respectively.

Observation 3.4 The i-th row vector of U x A gives the

coordinates of the i-th data vector (“customer”), when it
is projected in the new space dictated by SVD.

Lemma 3.2 The matrix C = Xt x X is a symmetric ma-
trix, whose eigenualues are the squares of the A, elements

of the A matriz of the SVD of X. Moreover, the columns

of the V rnatrir are the eigenuectors of the C matrix.
C= VXA2 XV’ (6)

Proofi See [7]. ❑

The intuitive meaning of the M x M matrix C = X“ x X

is that it gives the column-to-column similarities. In our

example, we have the day-to-day similarities:

[1
31313100
31313100

C=x’ xx= 31313100

00 0 14 14

00 0 14 14

A symmetric lemma can be defined with respect to a

“row-to-row similarity” matrix R = X x xt. We do not

present this lemma since it is not required below, whereas

Lemma 3.2 is the baais of the two-pass algorithm for the

computation of the SVD, which we present is subsection 4.1,

3.4 Outline of Proposed Method

In conclusion, the proposed method is to use the SVD of
the data matrix X (see Eq. 4),

.

x=~hxv; (7)

1=1
and truncate to the first k few terms (k < r s M):

k

X=~AiUiXVJ (8)

,=1

The idea is to keep as many eigenvectors as the space re-
strictions permit. The retained terms are known as the k

principal components. We refer to this method as “SVD”

for the rest of this work, or as “plain SVD” (in light of the
upcoming enhancements).

The original matrix X comprise N * M data elements;

the SVD representation, after truncating to k principal
components, will need N * k data elements for the U ma-

trix, k data elements for the eigenvalues, and k * M data
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elements for the V matrix. Thus the ratio s of space-after

over space-before is

N*k+k+k*M k
g=

N*M ‘~
(9)

where the approximation holds, since N >> M ~ k.

4 Algorithms and Enhancements: SVDD

In this section, we first present the algorithms for the

“plain SVD” method outlined above; afterwards, we pro-

pose an enhancement, the “SVDD” method, which gives

much better performance.

4.1 Algorithms for Plain SVD

Here we describe the efficient implementation of SVD for
large matrices. Specifically, we present a fast, 2-pass al-

gorithm to compute the U, A and V matrices. We also
discuss how to reconstruct a desired cell (i, j) from the
compressed structure. For the discussion below, recall that
k is the number of eigenvalues (and eigenvectors) retained.
Typically, k < M, resulting in a matrix U much smaller
than the original matrix X.

2-pass computation of SVD: We show that it takes only

two passes over the large data matrix to compute the SVD,

assuming that there is enough memory to hold the M x

M column-to-column similarity matrix C. The idea is to

exploit Lemma 3.2. The lemma tells us that we can work
with the smallest dimension (M, in our case), compute the

M x M column-to-column similarity matrix C (which can
be done in a single pass), and then compute its eigenvectors

(i.e., the V matrix) and its eigenvalues (i.e., the square of
the A matrix), in main-memory, since the C matrix is

small. Then ordy one more pass is required to determine
U, as explained next.

Computation of C: During the first pass, we construct

C. This is done by keeping track of the partial sum of each

element of C. One row (= M elements) of X is read in
at a time, after which every combination of two elements
in that row is multiplied and added to the appropriate

element of C. Pseudocode for the algorithm is given in
Figure 2.

Computation of U: Given that C is in main memory,

we find its eigenvalues and eigenvectors, by Lemma 3.2:

C = V x AZ x Vt. We are ultimately interested in finding
the SVD of the data matrix X = U x A x V*. Since we
already have A and Vt, U can be constructed as follows:

U= XX VX A-l (lo)

or, equivalently:

u,,, = 2
z,,m*vm,j/Jj i= 1,. ... N; j = 1,. ... k (11)

m=1
Pseudocode for this is given in Figure 3. Notice that the
computation of the i-th row uI,, of the matrix U needs

only the i-th row z,,. of the data matrix X (as well as the

matrix V and the eigenvalrres, which are assumed to be in

1’ input pointer to matrix X on disk “1

~“ output: column-to-column similarity matrix C *I

fori:=lto~do

forj:=ltoikfdo

C[i]~] -- O;

for]: =lto~do

Read i-th row of X from the disk (X[i][l], . . . . X[i]w])

forj:=l toM do

forl:=lto A4do

C~][l] += X~]~]*X[i][l];

Figure 2: Algorithm for computing the column-to-

column similarity matrix C in one pass.

main memory). This is the reason that we need only one
more pass over the rows of the X, in our goal to compute
and print U.

/“ input: pointer to X on disk, eigenvectors (V matrix),

and e)genvalues Aj */

/“ output row-to-pattern similarity matr,x U ‘/

fori:=l toNdo

Read Xfi][*] from disk; /“ row vector of X “/

for J:=ltokdo

U[i]~] t O;

forl:=l toMdo

U[i]~] += X~][l]*V[l] ~];

U~]~] + U[i]fi] / Aj ;

I
Figure 3: Algorithm for computing the “row-to-

pattern similarity matrix” U.

Reconstruction: Given the truncated U, A and V ma-
trices, we can derive the reconstructed value i,,~ of any
desired cell (i, j) of the original matrix using Eq. 8, or,

identically:

“ k~m *usm *vJm
X,,j = i=l, . . ..N. j=l, ... ,M

m=]
(12)

This requires O(k) compute time, independent of N and
M. Assuming that V and A are already pinned in memory,

that the matrix U is stored row-wise on disk, and that an
entire row fits in one disk block, only a single disk access

is required to perform this reconstruction.

4.2 Proposed Enhancement: SVD with Deltas

There is always the possibility that some data may be ap-
proximated poorly. By storing this information separately,
we can establish a bound on the error of any individual

data element, and also get a reduction in the overall error.

We choose the cells for which the SVD reconstruction

shows the highest error, and maintain a set of triplets of
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the form ( row, column, delta), where delta is the differ-

ence between the actual value and the value that SVD re-

constructs. The motivation is that a given customer may
follow the patterns that SVD expects, with a few devia-

tions on some particular days. Thus, it is more reasonable
to store the deltas for those specific days, as opposed to

treating the whole customer as an outlier. With this, one
can “clean up” any gross errors that the SV D algorithm
may have been unable to handle. We call the resulting
method, “S VDD”, for “SVD with Deltas”.

The practical question that arises is how much storage

to allocate for keeping outlier information. In other words,

we have to tradeoff the number k of principal components
retained against the number of data cells that can be con-
sidered outliers. Formally, we must solve the following
problem:

Given: a desired compression ratio (say, compressed size

s’% of the originaf)
Find: the optimal number of principal components k~Pt

to keep,

Such That: the total reconstruction error is minimized
when we are allowed to store cell-level deltas.

Let k~a. be the largest value of k that does not vi~

late the space requirement, and y~ be the count of outlier
cells that we can afford to store, after we have chosen to

maintain k eigenvalues. A straightforward, inefficient way
to proceed is given in Figure 4.

/* input: pointer to X on disk, k~ar

/* output: ko,t ‘/

for k := 1 tok%a. do

determine the number of outliers Tk we can afford to store;

compute the SVD of the array with given k (two passes);

find the errors for every cell;

pick the -y~ largest ones (one more pass) and

compute the error measure t~

koP, - value of k with the smallest error measure Ck

input: pointerto X on disk, k~am

output: matrices A, V, and U

pass

pass

1:
0 compute A and V, keeping km. r elgenvalues;

● estimate the number of outliers ~k that we can afford

to store to stay within s%, for k=l, 2, ., k~~=;

● initialize k~c= priority queues to store the V~ largest

cell-out liers for each candidate value of k;
2: for each row of the data matrix,

D compute the error of each cell according to k=l ,2, ,.,

k~ax eigenvalues;

● insert tbe appropriate cells into the appropriate

priority-queue;

● accumulate the reconstruction error Ek for each k

value, so far;

c koP~ t the k value that gives the smallest error Ck;

● truncate A and V using koPt as the chosen cut-off

value k;
3:

● pass through each row of the data matrix, to compute

and print the corresponding row of U, usinp, Eq, 11.

Figure 5: 3-pass algorithm for SVDD.

addition, we have to store the ?k--. trirdets of the form

(row, column, delta) for the out~~~ells~ This should be
done in a hash table, where the key is the combination of

( row*M+ column), that is, the order of the cell in the row-

major scanning. Optionally, we could use a main-memory

Bloom filter [22], which would predict the majority of non-
outliers, and thus save several probes into the hash table.

Reconstruction: Reconstructing the value of a single cell,

say (i, j) now requires:

● one disk access to fetch the i-th row of U (as in plain

SVD), and then koP~ main memory operations with

A and V, to reconstruct the value of the cell that

plain SVD would have reconstructed. using Eq. 8 or
12;

● one probe of hash table to find whether this cell was

an outlier, in which case we add the corresponding

delta value, and enjoy error-free reconstruction.
Figure 4: Straightforward, inefficient algorithm for

SVDD.
5 Experiments

We can factor out several passes and do the whole op

eration in three passes rather than 3 * k~~r. The idea

is to create priority queues for the deltas (one queue for
each candidate value of k), and to compute all the neces-
sary deltas for all the queues in a single pass over the data

matrix. Figure 5 presents pseudocode.

Note that the definition of the reconstruction error is

orthogonal to the SVDD algorithm. We continue to use

the sum of squared errors (see Eq. 13) as our error metric,

as in the rest of this paper.

Data structures for SVDD: Clearly, we need to store

U, the koP, eigenvalues, and V, as in the plain SVD. In

We consider two types of queries in our experiments: queries

that seek a specific data value, for a specific customer and

a specific day; and queries that seek an aggregate over a

set of customers and a set of days. Clearly, these are not

the only query types supported by the techniques just de-
scribed. However, we use these two classes of queries as
representative.

We ran our experiments on a variety of real and syn-

thetic datasets, We present here results from two real

datasets, The general trends were similar in the other

datasets. Following is a description of them.

‘phonelOOK’ The first dataset is business data (specifi-

cally, AT&T customer calling data). For a selected
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set of customers, it contains the daily call volume

over some period. Given a large enough number of

customers and a long enough period of interest, the
size of this dataset makes it extremely unmanageable

for data analysis. We have N=lOO, OOOcustomers

and M=366 days (a leap year) for each. The size of

‘phoneIOOK’ is 0.2 GigaBytes. We also used sub-
sets of this dataset, called ‘phone1000’ (1000 rows),
‘phone2000’ (2OOOrows), etc.

‘stocks’ The second dataset is a list of daily stock closing

prices for a number of stocks, again over a specific

period. There are N=381 stocks, with iM=128 days

each. The size of ‘stocks’ is 341 KBytes.

Methods: We used plain SVD, the proposed SVDD (SVD
with deltas), the hierarchical clustering method (described

in Sec. 2.2), and the Discrete Cosine Transform (DCT)
from the spectral methods (Sec. 2.3).

Error measure: There are many different measures that

one could use for reconstruction error, based on different

application needs. The root-mean-squared-error (absolute
or relative) is the typical error measure for forecasting ap-

plications in time series [27]. We use this metric, once
again, normalized with respect to the standard deviation

of the data vrdues being recorded. We call this the root

mean square percent error (RMSPE).l

For any method, let ~~,? be the reconstructed value of
the i, j cell, when the ongmal value was X,,J and let T be

the mean cell value of X.

Definition 5.1 The RMSPE is dejined as the normalized

root mean squared error:

~~1 ~:,(~:J - ‘v)’

(13)

Zfll Eg, (”l - ~)’

We ran three sets of experiments: The first was to de-

termine the accuracy vs. space tradeoff for the competing
methods. The second was to see how the error changes for

aggregate queries involving multiple cells. The last WaSto
see how our method scales up with dataset size. These are

the topics of the upcoming subsections, correspondingly.

5.1 Accuracy vs. Space Trade-off

Here we compare the reconstruction error vs. required

storage space of four compression methods: hierarchical

1The ~jgn~ processing community uses the signal strength(mean
squared amplitude) as a standard normalization factor (for example,
in computing “signal-to-noise ratio” ). By analogy, our first instinct
was to divide by the root-mean-squared z,, . However, our sequence,
unlike audio or electromagnetic signals, do not have zero mean. So

we have chosen to subtract out the mean, thereby computing the

standard deviation rather than signal strength in the denominator.

Note that the choice of normalizing constant does not affect the

trends discovered in the experiments, but does impact the magni-

tude of the normalized error values reported. If we had used signal

strength rather than deviation as our normalization, the results we

report would appear even better.

clustering, DCT, SVD, and SVDD with b bytes of storage

space for each number stored. For the clustering method,

we store the cluster centroids and an array containing the

cluster number to which each point belongs. If there are k

clusters to be stored, then (b x k x M) + (IV x b) bytes are

required. For DCT, we store the low-frequency coefficients;

if k coefficients are kept for each row, then N x k x b space
is required. The space requirements for SVD are given by

Eq. 9; the space requirements for SVDD involve the same
formula (but for fewer PCs) and then O(b) bytes for each
delta stored. To make alf results comparable, we present

storage space required not in absolute terms, but rather as
a percentage (s%) of the storage required uncompressed.

Figure 6 plots the reconstruction error (RMSPE) that

the competing methods require, as a function of the ra-
tio of disk space to store the compressed format compared

to storing the entire matrix. The left graph is for the
‘phone2000’ dataset, while the right one for the ‘stocks’

dataset. The labels “svd”, “delta”, “dct” and “he” corre-
spond to the plain SVD, the SVD with deltas, DCT, and

the hierarchical clustering method as described earlier in
subsection 2.2. The observations are as follows:

●

●

●

●

The proposed SVDD algorithm did best on both datasets.

For very small storage sizes (under s = 2% for ‘phone2000’
and under s = 6~o for ‘stocks’), the optimum value

of kOP~was km.=: that is, it turned out best to devote

all the available storage to keeping as many principal

components as possible and no outliers.

DCT did not do well. In the ‘phone20f)f)’ case,
it consistently had the highest reconstruction error.

For stocks prices, which are modeled well as random
walks [21], it is believed to be the best among the

spectral methods, exactly because successive stock

prices are highly correlated. This explains why DCT

performs better for the ‘stocks’ dataset as opposed

to the ‘phone2000’ dataset.

Plain SVD and clustering were close to each other, al-

ternating in the second and tbird place. Specifically,

SVD was better for the ‘stocks’ dataset. It should be
noted that the clustering method we used was a high-

qua.lity quadratic method. Even so, the plain SVD

outperformed it or had a comparable reconstruction

error. It is questionable how much more reconstruc-

tion error a scafable, linear clustering method will

lead to, if it can work for &f x 100 at all.

For 10% space requirement ( i.e., a 10:1 compression

ratio), the-error w-as less than 270 for SVDD ‘on both

datasets. Even a 50:1 compression ratio (s = 2%)

resulted in an error of under 10~0. As a point of ref-
erence, the Lempel-Ziv (gzip) algorithm had a space

requirement of s s Z570 for both datasets.

Thus far, we have used the mean error, RMSPE, as

our error metric. However, it is often useful to bound the

error on any individual point. We ran some additional ex-

periments on the ‘phone2000’ dataset to determine the
worst-case error for any one mat rix cell. Table 3 shows

the results of these experiments for the SVD and SVDD
techniques. We plot the maximum error, for a single data

point in a time series, as a function of storage space for the

‘phone2000’ dataset. Figure 7 presents the same infor-

mation in a graph. As in the case of RMSPE the error has
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Figure 6: Reconstruction error (RMSPE) vs. disk storage space (s%) for clustering (“+”), DCT (” x” ), SVD (“O”), and
SVDD (“O”). The SVD and SVDD curves overlap for low vahes ofs (= the percent space consumed).

storage spsce I SVD (abs error) SVDD (abs error) SVD (normalized) SVDD (normalized)

5% 1794.917 53.745 465.4% 13.93!70

10% 1268.717 26.464 328.9% 6.8670

15% 635.456 16.8 164.7% 4.35%

20% 472.784 11.82 122.6% 3.06’70
25% 404.824 10.546 104.9% 2.73%

Table 3: Worst-case error es a function of storage space for ‘phone2000’ in absolute and normalized ( ~) terms.

kunwhdWOIU.CUOE.w vs.slw.w sw
500

Wmxn.Ym.zvD—

450
WnUm-mm.svoLY —-

Figure 7: Worst-case error as a function of storage space

for the ‘phone2000’ dateset.

been normalized with respect to the standard deviation of
the dataaet.

The results are astounding. Even where the RMSPE is

quite reasonable for the plain SVD technique, we find that
the worst caae error for a single data value can still be very

large, potentially causing estimates for selected individual

points to be way off. (This is true for the clustering and

DCT techniques as well). On the other hand, the SVDD
technique bounds the worst error pretty well, so that one

can have confidence that the reconstructed value of every
single point is within a few percent of the correct value,

even with a significant compression ratio.

Delta Dropoff
1000

“deite.drop.SVV —

100

10

1

.
0 loOwo 2omoo 300000 400000 5iAo

nthdelta

Figure 8: Absolute error vs. deltas ordered by recon-
struction error for plain SVD applied to the ‘phone2000~
dataset at 10% storage (k = 31 principal components),

To understand this phenomenon further, we plotted the

distribution of errors for the individual cells. Figure 8
shows the results for the ‘phone2000’ dataset, using the

SVD technique. The X-axis has the cells rank ordered by
the error in their reconstruction, for the first 50,000 cells,
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and the Y-axis has the absolute error. Observe the steep

initial drop in error (the Y-axis is on a logarithmic scale),

indicating that only a few points suffer an error anywhere
close to the worst-cese bound. This is the reason for the

good performance of SVDD. By explicitly recording these
few very bad cases, it is able to bound the worst cese error

to under 10~0 without consuming large amounts of storage.
What this means is that, with SVDD, not only do we get

good compression with remarkably low average error, but
we also know that the worst case cell error is also a close

approximation.

Another observation from Figure 8 is that most matrix

cells are reconstructed after compression with an error sub-
stantialiy less than the mean error RMSP E. In applications
where a few erroneous data points are tolerable, one may

actually care more about the median rather than the mean

error, and this median error is one or two orders of mag-

nitude less than the mean error, so all of our techniques
actually do much better than one would imagine based on

the results for mean error presented above.

For the rest of this work we mainly focus on SVDD,

since it performed significantly better than the other tech-

niques.

5.2 Reconstruction Error for Aggregate Queries

The results of the previous experiment are very encourag-

ing: less than 270 error with a 10~o space requirement for
the SVDD. In fact, the results are even better for aggre-

gate queries because errors tend to cancel out when cell
values are aggregated.

In general, an aggregate query specifies some rows and
columns of the data matrix and asks for an aggregate func-

tion j( ) of the specified cells (e.g., ‘find the sum of sales

among our NJ customers, for the Ist of every month in

1995’). The function ~() could be, e.g., surno, avgo, etc.

For a given aggregate query, we define the normalized

guery error Q,., as the relative error between the correct

response and our approximate response:

Qerr = If(x) - f(@l/lf(Wl (14)

where ~( ) is the aggregate function, over a set of cells that

the query specified.

We posed so aggregate queries to determine the aver-
age of a randomly selected set of rows and columns in the

‘phone2000’ dataset. The number of rows and columns
selected was tuned so that approximately 10% of the data

cells would be included in the selection. Figure 9 presents
the results averaged over the 50 queries, showing how error

varies as a function of the storage space used. The results

are shown for the SVDD method only, since the rest of
the methods showed similar behavior. The error was well
under 0.5% even with the storage space set to only WO of

the original. In other words, a 50:1 compression ratio can
be obtained comfortably. Figure 9 also shows the error for

queries on individual cells, that is, the RMSPE that we

showed previously.

Estimates of answers to aggregate queries can be ob-

tained through sampling. (Note that sampling is not likely

to be able to provide estimates of individual ceU values,

and is therefore not comparable to the work in the bulk of

this paper). In initial experiments we ran, simple uniform

sampling performed poorly compared wit h SV DD for ag-

gregate queries. We did not implement more sophisticated

sampling techniques, and an open question is how our tech-
niques compare with sophisticated adaptive sampling for

aggregate queries.

5.3 Scale-up

Here we show the reconstruction error for the proposed

SVDD method. The current version of the clustering method
could not scale up beyond N = 3000. We tried using a

small sample to do the clustering and then assigning the re-

maining records to the existing clusters, but this gave very

poor results. As mentioned, clustering for large dataaets

is the topic of recent research (BIRCH [28], CLARANS

[14], etc.); however, none of these algorithms scales up for

high-dimensional points. Thus, we focus our attention on

SVDD for the rest of the experiments.

Figure 10 shows the curves for subsets of size N =

1,000, 2,000, 5,000, 10,000, 20,000, 50,000 and the full set

of IV=1OO,OOO customers from the ‘phoneIOOK’ datrr.set,

for the SVDD method.

SCZIS-UP(SVD-dalta)
10, e

8 -

6 -

4

2 k
‘phanelooo.datte.d’

~* “phcme204)0.delta.wr

~:
!+

JhOlleh~J:

.Phonwoooo.ddta.our.!
+ yhnesoooo.datra.wr
4
4

“photrelooooo.dstra.wr

.. ...
.,.
.—
....
.*. .
......

024681012 14 16 16 20
percent apaw

SVDD.

Figure 10: Reconstruction error (RMSPE) vs. storage
space (s%) for SVDD, on the ‘phoneIOOK’ dataset

Notice that

● the error is around 270 at the 10~o space consump-

tion, for all of the sample sizes;
● the graphs are fairly homogeneous, for a wide span

of database sizes (1,000 ~ N ~ 100,000).

As was previously mentioned, the errors for aggregate

queries will be even less.

In Table 4 we show how the maximum error changes
with the dataset size. We find that for plain SVD the max-

imum error incresses with dataset size. Intuitively, this is
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Figure 9: Query error vs. space overhead for aggregate (avg) queries (“+”): (a) linear and (b) logarithmic scales. The

RMSPE (of single-cell queries) ia also shown (“O”) for comparison.

I C1.tanetI SV~ (normalized) I SVDD (norm:
L --. —.. ..-. ...-. ._. — ,.. - . . ..alized)

}
‘phone 1000’ I 227.1% I 10.6%
%hone2000~ 328.99% 6.8%

D!z@!E
~_—__———.

r ‘nhOne10000

~—-—------ .–_-.5% 1 7.4%

‘ph0ne50000’ t M49.0% 9.4%

%Amne100K* 5335.6% I 7.4’%

Table 4: Comparison between SVD and SVDD of worst-

case normalized errors at 10VO storage, for increasing

dataset sizes.

because, as the dataset becomes larger, there is a greater

likelihood of one bad outlier point that gets reconstructed

poorly. However, with the SVDD technique, the maximum
error remains approximately constant with dataset size.

6 Conclusions

We have examined the problem of providing fast “random

access” capabdit y on a huge collection of time sequences.

Our contributions are:

The formulation of the problem as a Iossy compres-

sion problem, and the proposal of several tools to

solve it, from diverse areas, like signal processing

(DFT, etc.), pattern recognition and information re-
trieval (clustering), and matrix algebra (SVD).
The description of SVI.), which is a powerful tool in
matrix algebra. We hope that the intuition we tried

to provide and the pointers to citations and source
code, will make SV D accessible to a wider database

audience.
The enhancement of SVD and the detailed design of

SVDD, which has several desirable properties:
- It achieves excellent compression, with the abil-

ity to accurately reconstruct the original data

—

—

—

—

matrix (5$’70error for a 40:1 compression ratio of

the largest dataset).
It bounds the worst-case error of any individ-

ual data value pretty well. Our experiments

showed that the reconstructed value of every

single cell is within 10~0 of the correct value at

10% etorage, for datasets of increasing size (un-

like plain SVD, whose worst-case error increases

with dataset size).
Its computation requires only three passes over
the dat aset, which is very desirable for huge

dataaets.
Like SVD, it naturally leads to dimensionality

reduction of the given dataset while still pre-

serving distances well, thus allowing visualiza-
tion and providing a method of detecting out-

liers for data analysis.
It can handle any arbitrary vectors in addition
to time sequences without any additional effort.

We presented experiments on real datasets (stocks, caU-
ing patterns of AT&T customers), which highlighted the

above claims.

Directions for future research include (a) the design and

implementation of robust, scalable clustering algorithms
and their comparison againat SVDD; (b) the study of the

so-celled “robust” SVD algorithms (which try to minimize
the effect of outliers); and (c) the use of 3-mode and N-

mode PCA for DataCube problems.
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