
Efficiently Supporting Fault-Tolerance in FPGAs
John Lach

UCLA EE Department
56-125B Engineering IV
Los Angeles, CA 90095

(310) 794-1630

jlach@icsl.ucla.edu

William H. Mangione-Smith
UCLA EE Department

56-125B Engineering IV
Los Angeles, CA 90095

(310) 206-4195

billms@icsl.ucla.edu

Miodrag Potkonjak
UCLA CS Department

4532K Boelter Hall
Los Angeles, CA 90095

(310) 825-0790

miodrag@cs.ucla.edu

1. ABSTRACT
While system reliability is conventionally
achieved through component replication, we
have developed a fault-tolerance approach for
FPGA-based systems that comes at a reduced
cost in terms of design time, volume, and
weight. We partition the physical design into
a set of tiles. In response to a component
failure, we capitalize on the unique
reconfiguration capabilities of FPGAs and
replace the affected tile with a functionally
equivalent tile that does not rely on the faulty
component. Unlike fixed structure fault-
tolerance techniques for ASICs and
microprocessors, this approach allows a single
physical component to provide redundant
backup for several types of components.
Experimental results conducted on a subset of
the MCNC benchmarks demonstrate a high
level of reliability with low timing and
hardware overhead.
1.1 Keywords
FPGA, fault-tolerance

2. INTRODUCTION
2.1 Motivation
While once FPGAs were mostly applied to prototyping,
logic emulation systems and extremely low volume

applications, they now are used in a number of high volume
consumer devices. FPGAs are also now being used in more
exotic applications. For example, the Mars Pathfinder
mission launched in 1996 by NASA relies on Actel FPGAs
for some system services. Unlike early applications, these
high volume and mission critical systems tend to have
stringent reliability requirements [19]. Thus, there is a
drive from the user community to improve reliability
through some level of fault-tolerance.

Unfortunately, current technology trends tend to make
FPGAs less reliable. FPGA vendors have been moving
down the same path of smaller device size as the rest of the
semiconductor industry. Electronic current density in metal
traces will increase as device feature size shrinks from 0.5
um to 0.35 um and smaller, which results in a greater threat
of electromigration. As transistors shrink, the amount of
charge required to turn them on reduces, which also makes
the components more susceptible to gamma particle
radiation. At the same time, FPGA vendors are moving to
larger and larger dies in order to deliver more logic gates to
their customers. The larger dies introduce more
opportunities for failure and bigger targets for gamma
particles.

Engineers traditionally respond to these threats through
redundancy, such as replicating components (e.g.
microprocessors and ASICs) or replicating logic internal to
a component (e.g. Built-In Self-Repair (BISR)). However,
replication is a particularly unattractive approach for FPGA
systems given the common customer complaint that devices
cost too much and do not provide enough equivalent logic
gates. A better approach is to leverage the flexible nature
of FPGA devices to provide replication at a much finer
level. Conceptually, if a single logic block fails, it is often
possible to find an alternate circuit mapping that avoids the
fault. Most vendor place and route tools provide an option
for reserving resources, and in the face of a fault, the tool
could be invoked to search for a new placement which only
uses functional components. The resulting system could
provide reliability with very low overhead (i.e. by reserving
only a few percent of the resources as spares for fault
recovery). Unfortunately, this approach results in
significant system downtime. Thus, the technique will not
be sufficient for mission-critical applications with hard real-

Presented at FPGA’98

Monterey CA, February 22-24, 1998

time constraints. This approach also requires that the end
user have the vendor place and route tools, which is usually
not possible. It seems unlikely that the end consumer will
wish to even know about an embedded FPGA, let alone
worry about generating a new configuration for one.
Finally, because each fault is distinct, each component
would possibly require a unique circuit placement. These
three factors combine to make the approach impractical.

We instead propose a technique for increasing FPGA
system reliability with very low overhead. The target
architecture for demonstration is a Xilinx 4000EX part,
which is composed of an array of configurable logic blocks
(CLBs). Nonetheless, we believe that this technique is
applicable to a wide range of FPGA architectures. The
place-and-route CAD tool maps a circuit net-list onto the
array of CLBs and interconnect components. We propose
partitioning the physical design into a set of tiles. Each tile
is composed of a set of physical resources (i.e. CLBs and
interconnect), an interface specification which denotes the
connectivity to neighboring tiles, and a net-list. Reliability
is achieved by providing multiple configurations of each
tile. Furthermore, by using locked tile interfaces, the
effects of swapping a tile configuration do not propagate to
other tiles, thus reducing the storage overhead.

2.2 Motivational Example
Consider the Boolean function Y=(A∧ B)∧ (C∨ D), which
might be implemented in a tile containing four CLBs as
shown in Figure 1. This configuration contains one spare
CLB, which is available if a fault should be detected in one
of the occupied CLBs. Upon detecting such a fault, an
alternate configuration of the tile is activated which does
not rely on the faulty CLB. Each implementation is
interchangeable with the original, as the interface between
the tile and the surrounding areas of the design is fixed and
the tile’s function remains unchanged. The timing of the
circuit may vary, however, due to the changes in routing.

Figure 1: Motivational Example

This approach has three main benefits compared to
redundancy-based fault-tolerance: very low overhead, the
option for runtime management, and complete flexibility.
The overhead required to implement this fine-grained
approach, which can be measured in both physical
resources on the FPGA (CLBs, I/O blocks, and routing)
and timing, is extremely low compared to redundancy.
Runtime management can be a very valuable feature of a
system, particularly for mission-critical applications. This
fault-tolerance approach handles runtime problems on-line,
minimizing the amount of system downtime and eliminating
the need for outside intervention. The flexibility that this
approach provides allows for application specific solutions.
The degree of fault-tolerance can be changed based on
timing constraints, resource limitations, or presumed CLB
reliability.

2.3 Paper Organization
The following two sections discuss background
information, approach restrictions, and work related to
fault-tolerance and FPGAs. Section 5 describes the details
of the approach and implementation, and Section 6
introduces the formulas used to calculate the data for the
experimental results in Section 7. Section 8 discusses
future work on this topic, and the paper closes with some
remarks summarizing the benefits of this fault-tolerance
approach.

3. Preliminaries
In this section, we survey the relevant background material
for the proposed approach. We present the targeted FPGA
architecture, the fault model assumed, and techniques
envisioned for supporting the testing and fault diagnosis
steps of the approach.

3.1 FPGA Architecture Model
The new fault-tolerance approach is demonstrated using the
Xilinx XC4000EX family as the target architecture,
specifically the XC4028EXBG352 [24]. However, neither
the general concept nor the optimization algorithms are
specific to the 4000EX family, or even Xilinx architectures.
Any FPGA architecture supporting the ability to
reconfigure a large number of times could be used, such as
the Altera 10k and the GateField flash memory devices.
The approach is not applicable to anti-fuse systems, such as
the Actel architecture, as they can not be reprogrammed.

3.2 Fault Model, Testing and Diagnosis
The proposed approach requires fault detection and a
diagnosis method as a preprocessing step. We assume a
widely used single stuck at, open, or short fault model [1].
It is interesting to note that our strategy actually covers
many simultaneous faults as long as each tile (see Sections
5 and 6) has at most one faulty CLB. In its current form,
our approach does not address interconnect faults. Note that

for local interconnects, interconnect faults will be expressed
as a fault of the CLB to which it connects.

A number of schemes have been developed for detecting
faults in FPGAs through exhaustive testing of the device
architecture. Most of these approaches can be classified as
off-line. For example, with Built-In Self-Test (BIST) [13,
21, 8, 3], the FPGA is loaded with a small testing circuit
that is restricted to a specific physical region of the device,
which is then used to test another portion of the device.
The test circuit is moved across the device in a systematic
manner until the entire device is thoroughly tested. The
downside of these approaches is that they require the device
to be taken off-line, which may not be practical in highly
fault-sensitive, mission-critical applications. Fault-
detection latency also increases as a result of an off-line
approach. Recently, an on-line testing scheme has been
developed for bus-based FPGAs that avoids these problems
and may be well suited for fault-detection within this fault-
tolerance approach [18].

4. Related Work
Related work can be traced along the following three lines
of research: FPGA synthesis, fault-tolerant design, and
FPGA yield enhancement.

A number of different FPGA architectures and synthesis
techniques have been proposed and demonstrated [16, 2].
Conceptually, our fault-tolerance approach is closest to
BISR techniques. The main targets for BISR are systems
that are bit-, byte-, or digit- sliced. These types of systems
include SRAM and DRAM memories [14], as well as
systems designed using a set of bit planes and arithmetic-
logic units (ALUs), assembled from ALU byte slices [19].
By far the most important use of bit-sliced BISR is in
SRAM and DRAM circuits [17, 9, 22]. The bit-sliced BISR
in memories significantly increases memory production
profitability and is regularly used in essentially all modern
DRAM designs. Among other BISR bit-sliced devices, the
most popular and well addressed, from both a theoretical
and practical point of view, are programmable logic arrays
PLAs [4, 10, 23, 6]. A simple, yet powerful methodology
for the implementation of ALU byte slices was proposed by
Levitt et. al. [11].

Howard et. al. [7] and Dutt et. al. [5] have proposed using
similar regularly structured BISR techniques for improving
FPGA yield. Spare resources are allocated, and a
manufacturing step is used to swap spare CLBs for faulty
components. Altera uses this approach, along with on-chip
fuses, to increase production yield on the 10K parts.
Mathur and Liu have proposed using modified place-and-
route tools to reroute part of the net-list in the vicinity of a
faulty CLB [12].

Our approach is completely transparent to the existing CAD
tool chain and exists as an intermediate step that is used in
conjunction with existing synthesis and place-and-route

tools. Unlike the BISR techniques used in manufacturing,
we are able to dynamically tolerate faults in the field.
Finally, unlike Mathur and Liu, we are able to make timing
guarantees (which is critical for real-time systems), require
less system downtime, and do not require the end user to
have access to FPGA CAD tools.

5. Approach
The key element of our approach to fault-tolerance

is partially reconfiguring the FPGA to an alternate
configuration in response to a fault. If the new
configuration implements the same function as the original,
while avoiding the faulty hardware block, the system can be
restarted. The challenging step is to identify an alternate
configuration efficiently. In this section, we elaborate on
the key elements of our approach.

5.1 Tiles and Atomic Fault-Tolerant Blocks
We reduce the amount of configuration memory required
by reducing the size of the component that is reconfigured.
This is enabled by logically partitioning a design in a way
that components can be independently reconfigured without
impacting the rest of the design. In comparison with other
alternatives, this approach also reduces the down time for
devices that support partial reconfiguration and, more
importantly, significantly increases the level of fault-
tolerance with only nominal hardware and timing overhead.
The key concepts for implementing the new approach are
tiles and atomic fault-tolerant blocks (AFTBs).

Definition 1: A tile is composed of three elements: a set of
CLBs and interconnect resources, a net-list which must be
placed on those CLBs and routed across the interconnect,
and a specification of how to interface the tile to adjacent
tiles.

Definition 2: An atomic fault-tolerant block is one
instance of a tile and has at least one spare CLB that serves
to “cover” the faulty CLB(s).

Because each tile is associated with both physical resources
and portions of the complete net-list, the design can only be
partitioned into tiles after the complete net-list has gone
through place-and-route once. By fixing the interfaces
between the tiles (a constraint imposed on the place-and-
route software), we create the opportunity to produce
multiple partial configurations that satisfy the functional
specification for a given tile, independently from the
remainder of the design. Fault-tolerance is achieved by
introducing spare resources into each AFTB so that, once a
fault in a particular CLB is detected, a configuration of the
tile’s functionality (i.e. an AFTB) that does not utilize the
faulty CLB can be activated.

Each tile has a set of AFTBs. An AFTB is independent
from all AFTBs associated with other tiles by virtue of the
fixed tile interface. Thus, selecting one AFTB for each tile

can assemble a complete configuration, under the condition
that none of the AFTBs rely on a faulty component.

Tiling provides many advantages in the implementation of
fault-tolerant FPGA systems. First, the amount of memory
needed to store the set of AFTBs is smaller than the amount
required to store a set of complete configurations. For
example, consider a design that must be able to tolerate any
single CLB fault and which maps into a 6x6 CLB array. It
may be possible to divide the design into four 3x3 tiles
(Figure 2). Assuming that one configuration of the
complete 6x6 design requires X bytes of memory, the non-
tiled approach would require 36*X of memory for fault-
tolerance: one configuration for each CLB that is at risk.
With our method, each tile would require 9 AFTBs.
However, since each tile (X/4 storage bytes) is independent,
the entire storage is only 9*X, a 75% reduction from the
non-tiled approach.

Figure 2: A 6x6 CLB design partitioned into 4 3x3 tiles
Tiling also increases reliability. For this example, the non-
tiled approach could tolerate only one faulty CLB in the
entire device. The tiled approach, however, is capable of
tolerating any single fault in a tile but up to 4 faulty CLBs
in the entire device.

The cost of increased fault-tolerance and reduced
configuration memory is the possible introduction of more
spare resources. For this example, the non-tiled approach
reserves 2.7% of the CLBs to protect against a single fault,
while the tiled approach reserves 11%. However, tiling
opens up the opportunity to explore a rich design space. By
choosing the tile size and amount of spare resources that are
appropriate for system requirements, tiling provides a
powerful tool to the designer.

One remaining issue involves circuit timing. While timing
analysis tools are not completely reliable for FPGA devices,
the Xilinx XACT Step software has proven to be
reasonably accurate. We use this tool to determine the
timing estimate of the initial configuration before tiling.
Furthermore, because each individual AFTB is generated as
a modification to the original configuration we have good
timing estimates for any single failure. However, it is
difficult to know what the circuit timing will be once
multiple AFTBs have been activated in response to failures
in more than one tile. In particular, the critical path for the

entire FPGA could pass through several AFTBs without
falling on the longest path within any of them.

5.2 Synthesis Methods
The synthesis approach is organized in an iterative top-
down manner. We start with a non-fault-tolerant base
design and recursively partition it into tiles and AFTBs.
We next check the feasibility of all fault scenarios in
decreasing estimated level of difficulty. The idea is to
terminate as early as possible those base designs that will
not result in a feasible solution. We also calculate early the
final reliability figures, so that the designer has an option of
terminating the current search and starting one that has a
higher reliability potential.

The synthesis is summarized in the following pseudo-code:

1. while (!(complete || design possibilities exhausted)) {

2. create initial non_ft_design;

3. extract timing and area information;

4. calculate design reliability;

5. while (!(complete || tiling possibilities exhausted)) {

6. partition design into tiles;

7. if (!meet area criteria) break;

8. while (!(complete || AFTB possibilities exhausted)) {
9. partition tiles into AFTBs;

10. calculate AFTB reliability;

11. if (!meet reliability criteria) break;

12. order tiles by ft realization difficulty;

13. order AFTBs by ft realization difficulty;

14. for (j=1; j<=# of tiles; decreasing difficulty) {

15. for (i=1; i<=# of AFTBs; decreasing difficulty) {

16. create ft_design(i,j);

17. if (!(success && meet timing criteria)) break;

18. } } } } }

Lines 2-4 initialize the synthesis process for one instance of
the base design. The place and route tool creates the base
non-fault-tolerant design, and the relevant design
characteristics are recorded. The procedure for the
calculation of reliability is explained in Section 6.

Line 5 starts the synthesis algorithm and dictates that the
loop will terminate upon the creation of a fault-tolerant
design that meets all of the user specifications, including
overhead (area and timing), level of fault-tolerance, and
available memory. The loop will also terminate if the
algorithm reaches the end of its exhaustive tile partitioning
search, thus revealing that the specifications cannot be met
for the given FPGA architecture and design generated in

line 2. In this case, the complete algorithm will be repeated
using a different base design with increased spare resources
throughout the FPGA.

Line 6 partitions the design into tiles, as described in
Section 5.1. The placement and shape of the tiles are
determined by the following three key factors listed in
decreasing order of importance: amount of interconnect
across the tile interface, tile logic density, and tile size. Our
reliability calculation (see Section 6) indicates that large
tiles result in higher reliability. If the tiling attempt does
not meet the user area specifications, the algorithm returns
to the beginning of the tile partitioning loop for another
tiling attempt. Hard macros (and fast carry chains) also
affect the placement and shape of tiles, as efforts are made
to keep macros intact.

Line 8 begins the AFTB partitioning algorithm, which
terminates upon the successful creation of a fault-tolerant
design meeting all user specifications or upon the
exhaustion of all AFTB partitioning possibilities. If the
latter occurs, the algorithm returns to line 5 for re-tiling.

Line 9 lays out the various AFTBs within a tile. The
number of AFTBs for a given tile depends on the desired
level of fault-tolerance, the number of free CLBs in the tile,
and the malleability and density of the logic. The criteria
used for partitioning the design into tiles are also used for
this AFTB partitioning.

Line 10 insures that the tile and AFTB partitions meet the
user reliability specifications, and line 11 returns the
algorithm to the beginning of the AFTB partitioning loop if
they are not met. If upon such a return the AFTB
partitioning possibilities have been exhausted, the design
must be re-tiled, returning the algorithm to line 5.

Lines 12 and 13 facilitate early synthesis process failure
detection. Tiles and AFTBs that are less likely to
successfully place and route should be attempted first, thus
efficiently returning the algorithm to the beginning of the
loop if a fault-tolerant design meeting user specifications is
not possible with the current tile and/or AFTB partitioning.
The tile and AFTB characteristics causing them to be more
difficult to realize include the criteria used in tile and AFTB
partitioning. The presence of macros, and therefore
reduced logic malleability, may also impact the assigned
order of realization difficulty.

Lines 14 and 15 enforce the order defined by the two
previous steps, as line 16 attempts to configure the various
tiles and AFTBs. If the design can not be configured or if
the configuration doesn’t meet user timing specifications,
the algorithm returns to the beginning of the AFTB
partitioning loop (line 8) or, if AFTB partitioning is
exhausted, to the beginning of the entire synthesis algorithm
for re-tiling (line 5). The next iteration of line 6 partitions
the design giving more slack (i.e. free CLBs) to the area of
the previous iteration’s failing tile. If no other tiling

possibilities exist, the algorithm returns to line 1 to generate
a new base design. If no base design possibilities remain,
the algorithm terminates as unsuccessful.

The synthesis approach is illustrated using the PREP 5
benchmark shown in Figures 3-5. Figure 3 shows an
implementation of the PREP 5 benchmark on the Xilinx
4000 architecture, a configuration that occupies rows 18-24
and columns 1-4. Only the CLBs in the defined area are
used in the tiled design; the remaining CLBs are prohibited
from use in any of the AFTBs.

Figure 3: Initial floorplan for PREP 5 benchmark
Tile A covers rows 18-24 and columns 1-2, and tile B
covers rows 18-24 and columns 3-4. Tiling was restricted
by the occurrence of hard macros in each tile.

After partitioning the design into a set of tiles, the tiles are
ordered by their implementation difficulty. In Figure 3, the
tiles are ordered A first and B second, primarily because the
logic in tile A is denser.

Next we create a set of AFTBs for each tile, which are
sorted in decreasing order of implementation difficulty.
The tiles in Figure 3 are assigned AFTBs that each possess
two adjacent free CLBs. Each CLB is covered only once,
making the total number of AFTBs per tile seven. For each
AFTB, a complete configuration (i.e. one AFTB for each
tile) is passed through the place and route tool. Although
the placement and routing of the logic in the tile can be
quite different for each AFTB, variations within a tile do
not propagate to other tiles (other than timing). This is
possible because, for each fault detected, only the tile in
question is changed. All other tiles remain the same as in
the original configuration.

Figure 4 shows the AFTB that was attempted first for the
design in Figure 3.

5.3 Enforcing Fault-Tolerance at Run-time
After all of the AFTBs are stored in memory and the circuit
begins operation, the system runs normally with the original
configuration until a fault is detected. Upon detection, the
circuit ceases functional mode until the proper
reconfiguration can be made. As already mentioned, we
assume that the fault detection system is able to identify the
faulty resource in an architecture map. This information
allows the system to retrieve the appropriate AFTBs from
the configuration memory. The time needed for this
memory access depends on normal access factors: access
size, memory bus width, memory size, etc.

Figure 4: PREP benchmark 5 after tiling with one AFTB
The last step involves the actual reconfiguration of the
FPGA device. Once the AFTB is retrieved from memory,
two options are possible depending on the capabilities of
the FPGA architecture. If the device supports partial
reconfiguration, the AFTBs of the affected tiles can be used
in isolation to directly update the configuration. Otherwise,
the AFTBs must be merged with the active and functioning
AFTBs, thus providing the necessary data for a total chip
reconfiguration. For example, if the CLB at row 20,
column 3 failed in the design of Figure 3, the proper
configuration for tile B would be fetched from memory and
configured onto the FPGA. The result is shown in Figure 5.
Note that the interface between tiles A and B is unchanged.

The time required to update a tile with a new AFTB
depends on the complete set of tiles, the device architecture
and the surrounding computer system. However, in all
cases, it is bounded and can be used to provide a measured
level of system availability. After updating the affected tile,
the device is reset and the system resumes operation as
before the fault. The only possible change could be in the
timing of the circuit, as the routing in the altered tiles has
likely changed. Timing numbers are generated with each
AFTB, and the system can operate under worst case

assumptions. Another, technically more demanding, option
is the use of a programmable clock. If new faults occur
later, the process repeats itself until more than one fault
occurs in a tile for which there is no available AFTB that
has all faulty CLBs as unused.

Figure 5: System at runtime after swapping the AFTB in tile B
due to fault at (20,3)

6. Reliability Calculation
The first step in calculating reliability is the selection of
fault models. There are two major sources of logic faults in
FPGA systems: cosmic radiation and manufacturing/
operating imperfections.

Since the size of radiation particles is usually small when
compared to the size of modern FPGA CLBs, we selected a
cosmic radiation fault model that follows uniform
distribution of independent (non-correlated) failures.
Extensive terrestrial efforts to accurately model the rate of
such soft faults indicate high variance (several orders of
magnitude) depending on factors such seasonal solar
activity, altitude, latitude, device technology, and device
materials. Even for the same chip from the same
manufacturer, variations by a factor higher than 200 are not
uncommon [25]. Experiments indicate that in FPGA-like
devices at an altitude of 20 km, error rates significantly
higher than once per 1000 hours are common [15]. Also, as
circuit devices become smaller, they become more sensitive
to soft faults [25]. If one considers the multiyear life of
computing devices and other sources of potential errors
(e.g. power surges), the need for fault tolerance in devices
which implement critical functions becomes apparent.

The second class of faults is related to manufacturing
imperfections. These defects are not large enough to
impact initial testing, but after a longer period of operation
they become exposed. Design errors can also cause a
device to stop functioning in response to rare sequences of
inputs (e.g. due to a power density surge in a small part of

the design). For this type of model, we follow the gamma-
distribution Stapper fault model [20]. The model is
applicable on any integrated circuit with regular repetitive
structure, including memories and FPGA devices.

In the remainder of the section, we elaborate on technical
details related to the two fault models’ reliability
calculations.

6.1 Independent Uniformly Distributed Faults
Suppose that a design is partitioned into t tiles.

Furthermore, assume that tile i has a total of ic AFTBs.

The total number of used CLBs in the initial design is nt .

For the sake of clarity and simplicity, we limit our
discussion to the case where each AFTB consists of three or
fewer CLBs. We denote by m1i, m2i, m3i the number of
AFTBs of size one, two, and three CLBs respectively in tile
i. We also denote their weighted sum

iiii mmmm 321 *3*2 ++= .

Finally, we assume that the probability of a CLB being
faulty is)1(P− (i.e. the probability that a CLB is fault

free is P). It is easy to see that the probability, initP , that

the original design is fault free is tn
init PP = .

It is also easy to verify that the probability that a tile i in the

optimized design is fault free, iPft , is given by the

following formula:

3)3(
3

2)2(

32
)1(

)1(*)1(*

*)*3()1(*

PPmPP

mmPPmPPft
ii

ii

m
i

m

ii
m

i
m

i

−+−

++−+=
−−

−

The first term corresponds to the scenario where all CLBs
are fault free. The last three terms correspond to the
scenarios where one, two, and three CLBs are faulty,
respectively. The probability (Pft) that the optimized

fault-tolerant design is functional is ∏
=

=
t

i
iPftPft

1

.

6.2 Stapper’s Fault Model
To calculate reliability for correlated faults, we started from
the following formula [20]:

() ()







++
−+−×





+
+







= ∏∏

−−

=

−−

=

1

0 11

11
1

1

0 1

1
1/

1
mn

j

mnm

i

m
mn

YjYm

YYj
Y

Yi

i
Y

m

n
Y

µ
µ

µ
µ

(Note that we have fixed a small typographical error in the
original published formula.)

The formula calculates the probability that exactly m out of
n identical modules operate correctly for a given value of
���� �����	�
���� ����
����� � ���� ����
�� ���� ��
��	�
���� �1.
���� ����
����� � ���������� ���� ����
��� ��� ����
�������
���	�	�
���� ��� �
�������� ���
���� � �
�

� ��
���� ��� � �
�
�

�����
���
�� ��� �
���������� ��� � ������ ������� ��������� ���
formula reduces to the case of independent uniformly
distributed faults.

Stapper’s formula is used to calculate the probability that at
least m out of n modules (in this case CLBs) operate
correctly by a direct summation of relevant terms. This
helps reveal how effective this fault-tolerance approach is
in the face of several clustered CLB faults.

7. Experimental Results
We conducted an evaluation of the proposed approach and
optimization algorithms in two phases. In the first, we
applied the approach to nine MCNC designs. In the second
phase we studied expected reliability improvement trends as
a function of the number of used CLBs in a design.

Tables 1 and 2 show timing and cost (area) metrics
respectively of the designs before and after the application
of the new approach for reliability enhancement. The first
column in both tables indicates the name of a design. The
next four columns in Table 1 show the initial delay, and the
best, worst, and median delay of the optimized designs. The
rightmost column indicates the timing overhead as a result
of enhanced reliability. For all nine designs, the largest
timing overhead was in the range of 14% to 45%.

A number of factors complicate the task of calculating the
physical resource overhead. The place-and-route tools
indicate the number of CLBs that are used for a particular
placement. However, these utilized CLBs rarely are packed
into a minimal area. Unused CLBs introduce flexibility
into the place-and-route step that may be essential for
completion or good performance. For example, the initial
c880 design has a concave region that contains 42 utilized
CLBs but also 10 unutilized CLBs (19%). Therefore, we
will report overhead in terms of the area used by the fault-
tolerant design minus the total area of the original design,
including unused CLBs such as the 19% measure above.
The area overhead is presented in Table 2, using the same
format as Table 1. The average, median and worst-case
area overheads were 5.4%, 5.3%, and 9.8% respectively.

Table 3 shows reliability improvements for the MCNC
benchmarks under the uniform random fault model. The
first column indicates the assumed probability (p) that a
CLB is fault free. The next two columns show the
probability that the original and fault-tolerant design of a
particular benchmark is functioning properly. For example,
for 9sym, with p = 0.995, the probability of the initial
design and tiled design being functional is 81.0% and
98.4% respectively.

Table 4 shows the reliability figures for the same set of
designs (original and tiled) with four different variability
��������� ������
�����������	�	�
���������������������
������
is 90% and 99%. Table 5 is, in a sense, the strongest
indication of the effectiveness of the proposed approach for

Design Initial (ns) Fastest (ns) Slowest (ns) Median (ns) Slowest – Fastest

Fastest

9sym 71.6 71.6 82.0 76.8 0.15

c499 104.9 104.9 130.0 113.6 0.24

c880 110.8 110.8 126.4 117.3 0.14

duke2 87.9 87.9 118.8 96.4 0.35

rd84 50.2 50.2 72.8 58.6 0.45

planet1 145.0 145.0 194.9 166.1 0.34

styr 150.6 150.6 189.8 167.2 0.26

s9234 135.0 135.0 183.6 153.2 0.36

sand 97.6 97.6 117.7 103.8 0.21

Table 1: Timing bounds due to routing variation among AFTBs for each tile

Design Original # of
CLBs

Final # of
CLBs

Final - Original

Original

9sym 46 49 .065

c499 94 96 .021

c880 110 115 .045

duke2 93 100 .075

rd84 27 28 .037

planet1 95 100 .053

styr 78 81 .038

s9234 195 206 .056

sand 82 90 .098

Table 2: Variation of resources used among AFTBs for each tile

CLB P .900 .950 .990 .995 .998 .999 .9999

Design Orig. Tiled Orig. Tiled Orig. Tiled Orig. Tiled Orig. Tiled Orig. Tiled Orig. Tiled

9sym 1.2 16.9 11.6 56.2 65.6 95.7 81.0 98.4 91.9 99.5 95.9 100 99.2 100

c499 0.01 1.63 3.2 37.5 43.0 89.0 65.6 95.6 84.5 98.6 91.0 99.3 99.2 100

c880 0.0 0.6 1.8 31.7 37.3 91.2 61.2 97.6 82.2 99.6 90.7 99.9 99.0 100

duke2 0.01 0.7 2.8 31.9 41.3 90.8 64.3 97.5 83.8 99.6 91.6 99.9 99.1 100

rd84 7.2 38.6 27.7 74.7 77.8 98.5 88.2 99.6 95.1 99.9 97.5 100 99.8 100

planet1 0.02 5.4 11.5 32.6 41.7 94.1 64.7 98.4 84.0 99.7 91.7 99.9 99.1 100

styr 0.01 2.9 2.5 31.4 48.5 93.8 69.7 98.3 86.6 99.7 93.0 99.9 99.2 100

s9234 0.0 0.003 0.01 3.17 16.1 82.0 40.2 94.8 69.5 99.1 83.3 99.8 98.2 100

sand 0.03 1.53 1.83 2.50 45.7 92.4 67.6 97.9 85.5 99.7 92.5 99.9 99.2 100

Table 3: Reliability of the original vs. tiled designs against CLB reliability

1 2 5 20

Orig. Tiled Orig. Tiled Orig. Tiled Orig. Tiled

9sym 62.6/95.8 72.0/97.2 48.5/93.5 62.8/96.4 28.5/89.0 40.1/94.9 8.77/79.6 29.7/94.1

c499 57.9/95.1 68.2/96.5 41.6/92.2 54.8/95.5 19.9/86.1 36.2/94.1 2.76/71.6 14.5/88.7

c880 55.9/94.9 65.7/96.3 40.2/91.9 53.2/95.2 18.3/85.4 33.8/93.3 2.08/69.8 11.2/87.2

duke2 57.6/95.0 67.9/96.3 41.1/92.1 54.2/95.4 19.4/85.9 25.9/93.9 2.54/71.0 14.3/88.4

rd84 66.4/96.3 76.7/97.7 54.3/94.5 70.1/96.3 36.9/91.1 56.4/95.6 18.0/85.1 52.8/95.1

planet1 57.7/95.0 67.9/96.3 41.3/92.2 54.2/95.4 19.5/86.0 25.9/93.9 2.59/71.2 14.3/88.4

styr 58.9/95.2 68.1/96.9 43.0/92.5 56.2/95.8 21.6/86.8 39.6/94.4 3.63/73.4 15.4/89.8

s9234 53.1/94,3 64.4/95.6 35.1/90.9 58.9/93.5 13.1/82.9 28.4/89.6 0.63/62.5 5.32/83.6

sand 58.4/95.1 68.0/96.6 42.3/92.3 55.3/95.6 20.7/86.4 32.1/94.2 3.15/72.3 14.8/89.2

Table 4: Reliability of original and tiled designs using Stapper’s correlated failure model with CLB reliability of 90%/99%

CLB Overhead
for Tiling

Random Fault
Model

Stapper’s Fault
Model

Orig. Tiled Orig. Tiled

9sym 6.5% 2.4 16.9 16.8 29.7

c499 2.1% 0.02 1.6 5.4 14.5

c880 4.5% 0.00 0.6 4.1 11.2

duke2 7.5% 0.02 0.7 5.0 14.3

rd84 3.7% 13.9 38.6 32.8 52.8

planet1 5.3% 0.04 5.4 5.1 14.3

styr 3.8% 0.02 2.9 7.1 15.4

s9234 5.6% 0.00 0.003 1.3 5.32

sand 9.8% 0.06 1.5 6.2 14.8

Table 5: Comparison of reliability and overhead for original design with complete redundancy (i.e. 100% overhead) vs. tiled design
����������	
��
	

������������� �����

CLB 100 CLB design 1000 CLB design 5000 CLB design

Reliability Orig. Tiled Orig. Tiled Orig. Tiled

.9500 0.005921 0.444669 0.000000 0.000302 0.000000 0.000000

.9750 0.079551 0.800119 0.000000 0.107534 0.000000 0.000014

.9800 0.132687 0.864375 0.000000 0.232820 0.000000 0.000684

.9850 0.220739 0.919633 0.000000 0.432660 0.000000 0.015161

.9900 0.366277 0.962643 0.000043 0.683364 0.000000 0.149026

.9950 0.606224 0.990317 0.006704 0.907280 0.000000 0.614762

.9980 0.819220 0.998429 0.136145 0.984404 0.000047 0.924414

.9990 0.905528 0.999608 0.370696 0.996091 0.007000 0.980610

.9995 0.951999 0.999903 0.611453 0.999028 0.085470 0.995153

.9999 0.990868 0.999995 0.912346 0.999952 0.632119 0.999762

Table 6: Reliability of traditional design methods vs. tiled approach against CLB reliability for large FPGAs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

0.999

CLB Reliability

S
ys

te
m

 R
el

ia
b

ili
ty

Orig. Design

Tiled Design

Figure 6: Reliability of traditional methods vs. tiled methods for a hypothetical 5000 CLB FPGA
reliability improvement. The second column of this table
indicates the area overhead of tiled designs. The next four
columns provide reliability data under two selected fault
models for the duplication-enhanced fault-tolerant original
and for the tiled designs. For both models, the tiled designs
have significantly lower area overhead and always higher
reliability than the conventional fault-tolerant designs.

Finally, Table 6 calculates reliability improvement trends as
the size of designs increase. It is assumed that all designs
are partitioned into tiles of 5 AFTBs each consisting of two
CLBs and requires an average hardware overhead (i.e.
~5.4%). Table 6 indicates the potential of the proposed
approach for reliability enhancement. For example, in the
case of a 5000 CLB design, with p = 0.999, the probability
of the initial design being functional is less than 1%, while
the probability of the tiled design being functional is 98%.
Figure 6 graphs the reliability results for the 5000 CLB
design.

8. Future work
Many of the highest volume FPGA devices tend to be
dominated by interconnect resources, e.g. the Xilinx 4000
and the Altera 10K families. On the Xilinx 4000EX series,
the majority of configuration bits are used to program the
state of the interconnect rather than the CLBs, and it is
likely that these interconnect resources are more susceptible
to faults. The fault-tolerance methodology presented above
addresses faults in interconnect resources directly dedicated
to specific CLBs because they appear as CLB faults.
Unfortunately, the vast majority of interconnect resources
pass through higher-level hierarchical switch structures that
are not covered by unique CLB faults. Some of these
routing resources will remain unused in each AFTB, thus
providing some additional fault-tolerance. However, since
this benefit comes as a byproduct of the approach rather
than as a primary goal, we currently cannot make any
specific claims on interconnect fault tolerance.

9. Conclusions
Fault-tolerant techniques have recently emerged as an
important design consideration for FPGA-based systems
due to the rapid progress in FPGA integration and the
growing market for these devices. In order to address this
problem, we have developed the first fault-tolerance
approach to work at the level of physical design. Our
hierarchical fault-tolerance technique partitions designs into
tiles and atomic fault-tolerant blocks. The approach scales
systematically through an exploration of the design solution
space at the physical level. The approach is constructed of
four phases: design partitioning, tile partitioning and
ordering, AFTB partitioning and ordering, and reliability
calculation.

Experimental results conducted on a subset of the MCNC
benchmarks for large CLB FPGAs indicate that the
technique is effective with low hardware overhead.

10. Acknowledgments
The authors would like to thank Prof. Jason Cong, John
Peck, Hea Joung Kim, and Jason Leonard for their
assistance. This work was supported by the Defense
Advanced Research Projects Agency of the United States of
America, under contract DAB763-95-C-0102 and
subcontract QS5200 from Sanders, a Lockheed Martin
company.

11. References
[1] Abramovici, M., et. al. Digital Systems Testing and

Testable Designs, New York, Computer Science Press,
1990.

[2] Carter, W. S., et. al. “A User Programmable
Reconfigurable Logic Array”, Proceedings of the
Custom Integrated Circuits Conference, pp. 233-235,
1986.

[3] Chen, X. T., et. al. “A Row-Based FPGA for Single

and Multiple Stuck-At Fault Detection,” IEEE
International Workshop on Defect and Fault Tolerance
in VLSI Systems, 1995.

[4] Greene, J. W. and A. E. Gamal, “Configuration of
VLSI Arrays in the Presence of Defects”, Journal of
the ACM, vol. 31, no. 4, pp. 694-717, 1984.

[5] Hanchek, F. and S. Dutt, “Node-Covering Based
Defect and Fault-Tolerance methods for Increased
Yield in FPGAs”, Proceedings of the Ninth
International Conference on VLSI Design, pp. 225-
229, 1995.

[6] Hassan, N. and C. L. Liu, “Fault Covers in
Reconfigurable PLA's”, Proceedings of the
International Conference on Fault-Tolerant
Computing, pp. 166-173, 1990.

[7] Howard, N. J., et. al. “The Yield Enhancement of
Field-Programmable Gate Arrays”, IEEE Transactions
on VLSI Systems, vol. 2, pp. 115-123, 1994.

[8] Huang, W. K. and F. Lombardi, “An Approach for
Testing Programmable/Configurable Field
Programmable Gate Arrays,” IEEE VLSI Test
Symposium, 1996.

[9] Kikuda, S., “Optimized Redundancy Selection Based
on Failure-Related Yield Model for 64-Mb DRAM and
Beyond”, IEEE Journal of Solid State Circuits, vol. 26,
no 11, pp. 1550-1555, 1991.

[10]Koren, I. and D. K. Pradhan, “Introducing Redundancy
into VLSI Designs for Yield and Performance
Enhancement”, International Conference on Fault-
Tolerant Computing, pp. 330-335, 1985.

[11]Levitt, K. N., et. al. “A Study of the Data
Communication Problems in Self-Repairable
Multiprocessors”, Conference Proceedings of AFIPS,
Washington, D. C., Thompson Book, pp. 515-527,
1968.

[12]Mathur, A. and C. L. Liu, “Timing Driven Placement
Reconfiguration for Fault-Tolerance and Yield
Enhancement in FPGAs”, Proceedings of the ED&TC
96, pp. 165-169, 1996.

[13]Michinishi, H., et. al. “A Test Methodology for
Configurable Logic Blocks of a Look-up Table Based
FPGA,” Transactions of the Institute of Electronics,

Information and Communication Engineers, vol.
J79D-I, pp. 1141-1150, 1996.

[14]Moore, W. R., “A Review of Fault-Tolerant
Techniques for the Enhancement of Integrated Circuit
Yield”, I, pp. 684-698, 1986.

[15]O’Gorman, T. J., et. al. “Field Testing for Cosmic Soft-
Error Rate”, IBM Journal of Research and
Development, vol. 40, no. 1, pp. 51-72, 1996.

[16]Rose, J., et. al. “Architecture of Field-Programmable
Gate Arrays: The Effect of Logic Block Functionality
on Area Efficiency”, IEEE Journal of Solid State
Circuits, vol. 25, pp. 1217-1225, 1990.

[17]Sarrazin, D. B. and M. Malek, “Fault-Tolerant
Semiconductor Memories”, IEEE Computer, vol. 17,
no. 8, pp. 49-56, 1984.

[18]Shnidman, N., W. H. Mangione-Smith, and M.
Potkonjak, “Fault Scanner for Reconfigurable Logic,”
Advanced Research in VLSI, Ann Arbor, MI, 1997.

[19]Siewiorek, D. P. and R. S. Swartz, Reliable Computer
Systems: Design and Evaluation, Burlington, MA,
Digital Press, 1992.

[20]Stapper, C. H., “A New Statistical Approach For Fault-
Tolerant VLSI Systems”, The Twenty-Second
International Symposium on Fault-Tolerant
Computing, pp. 356-365, 1992.

[21]Stroud, C., et. al. “Built-In Self-Test of Logic Blocks in
FPGAs (Finally, a Free Lunch: BIST Without
Overhead!),” IEEE VLSI Test Symposium, 1996.

[22]Tanabe, A., et. al. “A 30-ns 64-Mb DRAM with Built-
in-Self-Test and Self-Repair Functions”, IEEE Journal
of Solid State Circuits, vol. 27, no. 11, pp. 1525-1533,
1992.

[23]Wey, C. L., et. al. “On the Design of a Redundant
Programmable Logic Array (RPLA)”, IEEE Journal of
Solid-State Circuits, vol. 22, no. 1, pp. 114-117, 1987.

[24]Xilinx, The Programmable Logic Data Book, San Jose,
CA: 1996.

[25]Ziegler, J. F., et. al. “IBM Experiments in Soft Fails in
Computer Electronics (1978-1994)”, IBM Journal of
Research and Development, vol. 40, no.1, pp. 3-18,
1996.

