
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 4, APRIL 2003 325

Efficiently Synthesizing Virtual Video
Richard J. Radke, Member, IEEE, Peter J. Ramadge, Fellow, IEEE, Sanjeev R. Kulkarni, Senior Member, IEEE,

and Tomio Echigo

Abstract—Given a set of synchronized video sequences of a dy-
namic scene taken by different cameras, we address the problem of
creating a virtual video of the scene from a novel viewpoint. A key
aspect of our algorithm is a method for recursively propagating
dense and physically accurate correspondences between the two
video sources. By exploiting temporal continuity and suitably con-
straining the correspondences, we provide an efficient framework
for synthesizing realistic virtual video. The stability of the propaga-
tion algorithm is analyzed, and experimental results are presented.

Index Terms—Correspondence, image-based rendering, view
synthesis, virtual video, virtual views.

I. INTRODUCTION

G
IVEN a set of synchronized video sequences of a dy-

namic scene taken by different cameras, the virtual video

problem is to synthesize video of the scene from the viewpoint

of a camera not in the original set. Approaches to the problem

of synthesizing a virtual view from two still images have been

discussed for some time in the computer graphics community

[1]–[5]. Typically, these require an estimate of a dense set of cor-

responding points in each pair of real images in order to synthe-

size a virtual image. For some view synthesis methods, a certain

class of virtual images can be created from a correspondence es-

timate alone, without explicitly calibrated cameras. In order to

synthesize physically accurate virtual images, the estimated cor-

respondence must approximate physical reality. Hence, the fun-

damental problem that must be solved in order to create virtual

video is the estimation of the correspondence between image

planes induced by the camera and scene geometry at every point

in time.

In theory, the virtual video problem can be solved as an in-

dependent sequence of virtual view problems over the length of

the source videos. However, this approach is prohibitively time-

consuming, since estimating dense correspondence between an

image pair, especially when the underlying cameras are widely

spaced with respect to the scene, generally requires human in-

tervention. Treating each pair of frames independently does not
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exploit the temporal continuity of the input video. That is, as-

suming that the motion of the cameras and scene objects is

small, we expect that the correspondence required to synthesize

virtual images at adjacent frames is similar.

The main contribution of this paper is a framework for ef-

ficiently synthesizing virtual video using a recursive algorithm

to propagate estimates of dense correspondence between image

planes from one frame pair to the next. The resulting video

can be constructed to resemble special effects recently seen in

movies [6] or televised sporting events [7] in which a camera

navigates through a scene along a trajectory that seems im-

possible to obtain with conventional cameras. While such ef-

fects are created using a highly specialized camera rig with tens

or hundreds of cameras positioned along the desired camera

path, our research demonstrates that similar results can be ob-

tained using only a few real, uncalibrated video cameras and

processing on normal desktop PC’s. Aside from the aforemen-

tioned hardware solutions, the only other type of virtual video

we know of prior to this work was created by moving a virtual

camera through a static scene generated by a single pair of still

images, so that objects seem to be frozen in time. In contrast,

here we create true virtual video from a pair of source video se-

quences, in the sense that the virtual video evolves dynamically

along with the scene.

We begin in Section II by presenting our modeling assump-

tions and formally stating the virtual video problem. Section III

describes how a physically accurate correspondence estimate is

represented and discusses the estimation problem for the first

frame pair. In Section IV, we present the main contribution of

the paper, a framework for the recursive propagation of corre-

spondences between frames of two video sequences. The prop-

agation consists of a time-update step and a measurement-up-

date step. The time update depends only on estimating the dy-

namics of the source cameras, while the measurement update

uses local image detail to refine the correspondence. Using these

results, the correspondence estimate relating each frame pair

can be propagated and updated in a fraction of the time re-

quired to estimate correspondences anew at every frame. While

virtual video is our motivating application, the recursive corre-

spondence propagation framework applies to any two-camera

video application in which correspondence is difficult and pro-

hibitively time-consuming to estimate by processing frame pairs

independently. Section IV also includes a stability analysis of

the presented algorithm.

We review how the virtual images are actually synthesized

given a correspondence estimate in Section V, and demonstrate

our experimental results on real test video from a natural out-

door scene in Section VI. The scene is complex, with many

moving objects, yet the synthetic virtual video looks realistic

1051-8215/03$17.00 © 2003 IEEE
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and conveys a convincing 3-D effect. The user need only pro-

vide a small set of point matches in the first frame pair and an

algorithm to segment and track moving objects in the scene. A

shorter version of this work originally appeared in [8].

II. PROBLEM FORMULATION AND APPROACH

Our goal is to synthesize physically correct virtual images

created with well-founded geometric principles—the same

images that would have been seen had an actual camera been

present in the original environment. Furthermore, we will

synthesize virtual images in situations where strong calibration

(knowledge of 3-D location and orientation) of the source

cameras is unavailable. In this paper, we will confine our

attention to the case when images from exactly two source

cameras are available.

We consider a pair of rotating cameras, and , taking im-

ages of a dynamic scene. The image taken by at time for

is denoted by , which lies on a coordina-

tized image plane . We assume idealized pinhole cameras

that produce images by perspective projection. Our goal is to

synthesize the virtual image sequence

of the scene from the perspective of a moving virtual camera

. We discuss how is described with respect to the source

cameras ( , ) in Section V.

We assume the cameras’ centers of projection are not

coincident, so that every pair of image planes and

is related by a fundamental matrix . That is,

there exists a matrix of rank two such that for all

correspondences ,

. For more information on

fundamental matrices, see [9].

We also assume each camera’s center of projection to be con-

stant, which is reasonable in many applications where multiple

cameras mounted on tripods simultaneously view a scene, e.g.,

sports video. Hence, the plane coordinates of and

are related by a projective transformation [9], denoted by

and for ,1 respectively. The various relation-

ships between image planes are illustrated in Fig. 1.

The problem of synthesizing a virtual image at time is

largely dependent on estimating a dense, physically accurate

correspondence between and . That is, for any

point , we wish to estimate the projection of the

corresponding underlying scene point in , and decide

whether or not the scene point is visible (i.e., unoccluded). The

same applies to any point . This is like stereo, but

differs in that, in our setting, the cameras are widely separated

compared with the typical stereo setup. This also differs from

the problems of motion compensation in video, in which

points are typically matched using photometric, not geometric,

criteria, and tracking in computer vision, in which only a finite

set of specific points is identified in every frame of a video

sequence.

To simplify the notation, we will define as the true (i.e.,

induced by physical reality) correspondence between the image

plane pair and . Our goal is to efficiently obtain an

estimate of at every time step. Let be an estimate

Fig. 1. Relationships between image planes.

of obtained by the application of a correspondence algo-

rithm . We assume that the application of the operator is

a time-consuming task, either because a lengthy search process

or human intervention is required.

We wish to more efficiently estimate at each time. We

do so by exploiting the temporal continuity of the video, esti-

mating the effect of camera motion, and using a computationally

simpler approximation of . Namely, let be an approx-

imation of based on information from time , obtained by

Here, is a time-update operator that propagates the corre-

spondence estimate from time to , and is a measure-

ment-update operator that refines the estimate using new infor-

mation that has become available at time . The time-depen-

dence of the update operators arises from their dependence on

the images and .

To make this algorithm more concrete, we discuss the steps

in more detail in the next three sections. Section III specifies

how a correspondence estimate is represented and discusses the

initial step of estimating . Section IV explains in detail

the time and measurement updates and analyzes the stability of

the recursive algorithm. Section V reviews how a virtual image

is synthesized after the correspondence estimate has been ob-

tained.

III. INITIALIZATION

Obtaining the initial correspondence estimate from

images taken by two uncalibrated cameras is a fundamental and

difficult problem in computer vision. Many correspondence

techniques are based on optical flow [10] or layered motion

[11]. These techniques have the shortcoming that the estimates

are typically obtained with photometric criteria that match

points based entirely on the local variation of intensity between

images. For the virtual view problem, as for stereo or structure

from motion applications, we require a technique that attempts

to find correspondence consistent with the underlying physical

scene.
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Fig. 2. Matching graph for conjugate epipolar lines.

For an arbitrary image pair of the same scene, the only a

priori constraint on the true correspondence is the well-known

epipolar constraint. The epipolar geometry can be estimated

from a small number of point correspondences [12]. In theory,

knowledge of the epipolar geometry reduces the correspondence

problem to a series of one-dimensional (1-D) matching prob-

lems. We mention several approaches to solving the correspon-

dence problem in the context of conjugate epipolar lines in Ap-

pendix I. While these techniques are unstable in the small-base-

line case, the virtual view problems we consider are in the wide-

baseline setting, in which the cameras are widely spaced with

respect to the scene.

Most epipolar-line-based correspondence algorithms make

the assumption that scene points are projected onto conjugate

epipolar lines in the same order. This is called the monotonicity

assumption, and it is typically made so that polynomial-time al-

gorithms can be used to efficiently obtain solutions. The result

of the estimation for an epipolar line pair ( , ) can then be

expressed as a monotonic path through , as illustrated in

Fig. 2. Occlusions are typically modeled as horizontal or ver-

tical lines in the monotonic path, which is reasonable in the

small-baseline case.

Unfortunately, the order of corresponding points along con-

jugate epipolar lines may not be invariant from image to image,

so the monotonicity assumption is not generally valid. Fig. 3

shows regions of two real images of the same scene in which the

epipolar lines are horizontal and aligned. The numbered objects

appear in different orders along conjugate epipolar lines due to

the large perspective difference between the images. Each in-

consistency in ordering generates a local violation of the mono-

tonicity assumption in the affected conjugate epipolar lines. A

monotonic path through a matching graph such as the one il-

lustrated in Fig. 2 cannot represent the correct matching. This

phenomenon is sometimes called “the double nail illusion” in

stereo.

Relaxing the monotonicity assumption to allow arbitrary

matching of points between conjugate epipolar lines results in

a problem of high combinatorial complexity. However, the set

of correspondences that are physically realizable has a specific

Fig. 3. Violations of monotonicity.

Fig. 4. (a) and (b) Image pair, with overlaid segmentation and a pair of
conjugate epipolar lines. (c) The estimated correspondence graph associated
with the epipolar line pair is indicated by the dark line segments.

structure discussed in Appendix II and [13], [14]. We define

the correspondence graph to be the set of all points that are

visible in two conjugate epipolar lines. Using the formalism

of correspondence graphs, we can ensure that any estimated

correspondence is consistent with a physical imaging system,

which is especially important for geometric applications. The

correspondence graph is generally a set of monotonic segments

in and correctly takes the effects of occlusions into

account, e.g., regions occluded in one epipolar line are not

matched to intervals of zero length in the other.

To illustrate the result of estimating the correspondence graph

for a real image pair, consider the example illustrated in Fig.

4(a) and (b). These natural outdoor images of a soccer game

were captured with high-quality digital video cameras. Objects

that violate the monotonicity assumption were identified, seg-

mented, and matched by hand (the segmentation is overlaid in

a lighter color). We have segmented and matched three soccer

players, the soccer ball, and the uprights of the soccer goal. A

typical pair of conjugate epipolar lines is displayed in white.

Fig. 4(c) shows the correspondence graph result for this line
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pair, comprised by the solid line segments that are unshadowed.

The graph is created using a morphological operation illustrated

by the “shadows” in the figure from: 1) a model of the back-

ground correspondence (in this case, a projective transforma-

tion induced by the planar soccer field) and 2) the segmented

objects. The dashed lines indicate regions visible in but not

in because they are occluded or lie outside the field of view.

The dotted lines indicate similar regions visible in but not in

. We can see that correspondence along this epipolar line pair

is definitely not monotonic.

In summary, the initial correspondence estimate is con-

strained by: 1) the estimated epipolar geometry, represented

by the partitioning of the image planes into pairs of conjugate

epipolar lines and 2) occlusions, represented by a correspon-

dence graph for each conjugate epipolar line pair. In the

following, when we use the symbol to represent an estimate

of correspondence, we assume that is a set of correspondence

graphs, one for each pair of estimated conjugate epipolar lines.

IV. RECURSIVE PROPAGATION OF CORRESPONDENCES

A. Time Update

Given a static scene and complete knowledge of the camera

motion of Fig. 1, the new positions at time of a pair of

corresponding points is simply

.

That is, if the only difference between the frames at times and

is due to motion of the cameras, the coordinates of

and , ,1, are globally related by a projective

transformation.

Since we describe correspondence along conjugate epipolar

lines, it is often desirable to work with rectified image planes

( , ) in which conjugate epipolar lines are hori-

zontal and aligned. Rectified image planes are produced by a

(nonunique) pair of projective transformations ( , )

representing underlying rotations of the cameras and

to new cameras and , such that the new cam-

eras have the same optical centers as the old ones, but whose

image planes and lie on a plane in parallel to the

baseline. Any pair of projective transformations ( , )

with this property is said to be rectifying. It can be shown (see

[5]) that a necessary and sufficient condition for ( , )

to be a rectifying pair is that , with

The time update for rectified image planes can be expressed in

a particularly simple form. Suppose ( , ) rectify ( ,

), so that . We would like to

choose a pair of projective transformations ( , )

that rectify ( , ). It is easily shown that one

such pair is given by

(1)

(2)

Using this special rectifying pair, a point match ( ,

) from the rectified images is propagated

to the rectified images by

That is, the propagating transformation is simply the iden-

tity. Given that we use the rectifying pair in (1)–(2), this leads

us to define the time-update operator that operates on a

correspondence estimate to simply be . This

is well-defined since the coordinates of , and

, agree by construction of the rectifying projective

transformations.

Of course, the various projective transformations are generally

estimated using a regression algorithm, so that the estimated rec-

tifying projective transformations ( , ) are com-

positions of other estimates given by

. Since there is error in these

estimates, the true time update is a perturbation from the identity.

In practice, we neglect this perturbation and approximate

by the identity; that is, we use . In Section IV-C we

will analyze the implications of this approximation.

An initial rectifying pair ( , ) can be obtained using

one of several known methods (see, e.g., [5], [15], [16]) and

a small number of point correspondences between and

.

B. Measurement Update

Let be the operator that takes as input an image pair ( ,

) and produces an estimate of the set of correspon-

dence graphs for each pair of conjugate epipolar lines. Without

any a priori knowledge besides the boundaries of segmented

and matched occluding regions,1 a correspondence algorithm

would need to solve a set of monotonic matching problems over

a series of rectangular domains (see Fig. 5).

However, at times , we possess the set of time-updated

correspondence graphs from time , which we assume to

be a good estimate of the set of correspondence graphs at time

. Hence, given an estimate of correspondence , we

define the measurement-update operator

to be restricted to an -ball around . This is

illustrated in Fig. 6 for one epipolar line pair.

To be more concrete, consider the correspondence graph

that is one element of for a given conjugate epipolar

line pair. The endpoints of delimit a set of rectangular

domains that constitute the search neighborhood for the corre-

spondence algorithm . The measurement-update operator

searches the subset of given by

(3)

Here, is the -ball around defined by a metric on

and the dilation operator

1Obtaining these boundaries is a well studied and difficult computer vision
problem that needs to be solved separately, and is not the focus of our paper. In
future work, we would like to incorporate automated methods for the segmen-
tation problem in-line with our virtual video algorithm.
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Fig. 5. Set of rectangular domains searched by the correspondence operator
C given basic correspondence graph topology for one epipolar line pair.

Fig. 6. Measurement update by searching a local neighborhood around
the time-updated estimate. The dotted line indicates the time-updated
correspondence graph �̂(i + 1 j i). The lightly shaded area indicates D, the
search neighborhood for C . The darker-shaded area indicates B, the search
neighborhood for M . The solid line indicates the measurement-update
correspondence graph �̂(i + 1 j i + 1).

. We intersect the -ball with so that the output of the mea-

surement-update operator is still a set of

monotonic line segments with the same endpoints as .

By construction, , and if is small the area of can be

substantially smaller than the area of . Specifically, if is the

union of rectangles with dimensions , ,

then the ratio of the area of to the area of is approximately

if the -ball is based on the norm, and

if the -ball is based on the norm. In either case, if ,

, becomes quite small. The measurement update can

be computed more efficiently than the full correspondence op-

erator , since the computation required to solve the corre-

spondence estimation problem over a domain is proportional to

the area of that domain. In our experiments we used the Ohta

and Kanade algorithm (see Appendix I and [17]) as our oper-

ator .

C. Error Analysis

We use the recurrence ,

where is an estimate of the true induced by camera

dynamics. We are interested in bounding the difference between

the output of the ( , ) algorithm and the true correspondence

. To this end, we consider the estimation error

at each time , defined in the following way.

For a given point , let be the true cor-

respondence in , if it exists (i.e., is unoccluded), and let

be the estimate of given by the ( , ) algo-

rithm at time , if it exists (i.e., is unoccluded). Then let

be the set of all for which both and

are defined. Similarly, we define the quantities

and associated with a point and the related

subset . Then we define the estimation error

as

(4)

is simply the maximal difference (for visible points

where an estimate exists) between where a correspondence truly

is at time and where it was estimated to be. In the following, we

fix an arbitrary scene point , and let be the projection

of onto . We let be the estimate of given

by the ( , ) algorithm. We can describe the accumulation of

error between time and time in terms of several factors.

1) Errors in the epipolar geometry estimate due to errors in

the projective transformation estimates. As mentioned in

Section IV-A, in practice we approximate the projective

transformations ( , ) that relate temporally adja-

cent frames by estimates ( , ). We assume that

the accuracy of each projective transformation estimate

is bounded in the sense that

A finite exists because of the finite extent of the image

planes. is also a function of the underlying rotation and

zoom of the cameras and the estimation algorithm that is

used. For an accurate algorithm, we expect to be less

than a few pixel widths.

2) The magnitude of the scene dynamics between adjacent

frames. We assume that is the maximum distance that
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the projections of scene points can move after compen-

sating for camera motion. That is, we assume

(5)

(6)

3) Errors in the correspondence along estimated conjugate

epipolar lines in the measurement update. Even when the

epipolar geometry estimate is very accurate, changes in

illumination, occlusions, and deviations from modeling

assumptions can prevent the measurement update oper-

ator from accurately estimating the correspondence along

a conjugate epipolar line pair. In the case of inaccurate

epipolar geometry, the lines along which the measure-

ment-update associates points do not match in physical

reality, and the estimated correspondence will be notice-

ably incorrect in nonsmooth areas of the images.

Inaccuracies in matching along an estimated pair of

conjugate epipolar lines are bounded by the radius of the

measurement-update operator, discussed in Section IV-B.

That is

In practice, we should choose .

4) Relative contraction or expansion induced by the projec-

tive transformations. At each iteration , we assume that

The constant is a function of the underlying camera ro-

tation and zoom represented by the transformations

and . For closely spaced images, .

Fig. 7 illustrates the error at time 1 in frame , which can

be seen to satisfy . Inductively, we can show

Hence, we can guarantee the error remains bounded by a

given number of pixel widths when the time index satisfies

After this point, to keep the error within pixel widths, a

reinitialization of the epipolar geometry would be required to

re-establish the accuracy of the correspondence estimates. We

briefly address the problem of periodically re-estimating the

epipolar geometry in Section VII.

V. VIRTUAL VIEW SYNTHESIS GIVEN CORRESPONDENCE

To illustrate how a certain class of virtual images can be syn-

thesized from a dense correspondence estimate, we briefly re-

Fig. 7. Sources of error at time 1.

view the view morphing algorithm [5] for a pair of still images.

There are many other approaches to image-based view syn-

thesis in the computer graphics literature, including plenoptic

modeling [2], the lumigraph [3], and the light field [4]. Other

researchers (e.g., Laveau and Faugeras [18] and Avidan and

Shashua [19]) have discussed using images from more than two

cameras to create virtual still images. Ma et al. [20] characterize

the set of physically correct virtual images that can be obtained

from a finite number of real images.

Consider the camera configuration of Fig. 8(a), in which the

two image planes and are parallel to each other and to

the baseline (i.e., they are rectified). Let and be the focal

lengths of and , respectively. Without loss of generality, we

can fix the origins of the cameras to be and

. Fix a third camera with origin

, focal length , and image

plane parallel to and . If we fix a scene point and

consider its projections , , and onto , , and

respectively, then Chen and Williams [1] noted that

(7)

That is, interpolating the image coordinates of the projec-

tions of gives the same result as projecting onto the image

plane of the “interpolated” camera . Hence, a new projec-

tion of the scene onto can be obtained without knowledge

of the three-dimensional locations of cameras or scene points.

Provided that given any point , its correspondence

can be estimated, the correspondence can

be computed through (7). Chen and Williams called this result

“view interpolation”.

In the more general camera configuration of Fig. 8(b), the

orientations of the image planes and focal lengths of the cam-

eras are unconstrained. However, the image planes can be rec-

tified by an appropriate pair of projective transformations ( ,

). Since and are in the configuration necessary for view

interpolation, a new projection can be synthesized from the per-

spective of a camera whose origin lies at ( , 0, 0) and

whose image plane is coplanar with and . The image

plane of an arbitrary camera with origin can be ob-

tained from by application of an appropriate projective trans-

formation that effectively rotates the image plane from to
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Fig. 8. (a) View interpolation. (b) View morphing.

. If we fix a scene point and consider its projections ,

, and onto , , and respectively, we have the cen-

tral equation

(8)

This result was first obtained by Seitz and Dyer [5], who called

the process “view morphing”. Observe that the camera is

described relative to and , not in reference to absolute

three-dimensional (3-D) coordinates.

The view morphing equation (8) is a statement only about the

positions of corresponding points in the image planes, not about

their colors. Here, we proceed from the Lambertian assumption

that scene points have the same color regardless of the viewing

angle, and that the color of an image point is the same as the

color of a single corresponding scene point. To compensate for

deviations from these assumptions in real images, we will color

points in the virtual images by a weighted average

(9)

We illustrate an example of view morphing using the two im-

ages in Fig. 9(a) and (b). These natural outdoor images come

from widely separated cameras viewing a soccer game. A dense

correspondence of all points that appear in both images was es-

timated using the correspondence graph formalism described

above, and the view morphing equations (8) and (9) were used

to create the virtual image in Fig. 9(c) using . We used

the algorithm suggested in [5] to obtain rectifying transforma-

tions ( , ) and let in (8). While the rendered pixels

appear realistic, the eye is drawn to the limited extent of the vir-

tual image compared to the originals, and the black regions in

the virtual image plane that correspond to pixels visible in only

one of the images ( , ).

In this example, we can alleviate both of the above problems

by supposing that the scene points visible in only one of the im-

ages lie on a planar surface. Consider a scene point that is

visible in at but is not visible in . We compute an es-

timate that is the image of under the projective transfor-

mation induced by the planar surface [21]. Then ( , ) can

be treated as a correspondence, and the projection of in

can be estimated as . How-

ever, in this case we should only use the color of the point in the

image where it is visible-that is, . We take a

similar tactic for points that are visible in but not in . Of

course, there may be regions that are visible in neither image

due to occlusions by multiple objects. A correspondence esti-

mate ( , ) can be obtained for such a point from the planar

assumption, but there is no color information for this point. In

this case, we can interpolate the colors from either side of the

missing piece, or use a default color.

The result of filling in occluded regions by the planar assump-

tion is illustrated in Fig. 9(d). Since the planar assumption is valid

over many occluded pixels, the virtual image is much more real-

istic. Distortion is visible in several regions where the planar as-

sumption is invalid, such as the stands in the upper left corner,

and the soccer players at the upper right. However, the virtual

image is a convincing rendition of the scene from a viewpoint that

is halfway between the unknown optical centers of the original

cameras. Interpolated views with and are il-

lustrated in Fig. 9(e) and (f), respectively. Note that we can see

arrangements of objects in the virtual images [e.g., the position

of the goalie with respect to the goalposts in Fig. 9(d)] that never

occurred in the original frames. In the case of more than two cam-

eras, virtual views can be constructed whose camera centers lie

in the convex hull of the centers of the original cameras.

VI. EXPERIMENTAL RESULTS

Here, we demonstrate the results of the recursive propagation

framework in the context of creating virtual video. Our test se-

quence is 43 frames long and constitutes a single event from a

soccer game (a player attempts to kick the ball and is tripped).

The 24-bit color frames are 340 240 pixels, and come from a

high-quality digital video camera.

Our current implementation produces virtual video at about

20 frames per minute. User intervention is required to provide

a sparse set of point correspondences in the initial frame pair

(used to estimate the epipolar geometry and the projective trans-
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Fig. 9. Original images, corresponding to (a) s = 0 and (b) s = 1. Synthesized virtual image I at s = 0:5, (c) without and (d) with filling of occluded regions.
Interpolated virtual images I at (e) s = 0:25 and (f) s = 0:75.

formation relating the planar surface in the image pair), and seg-

mentation and tracking information for moving objects in each

frame (used to construct correct correspondence graphs). In this

example, this information was obtained by hand. Again, in fu-

ture work we hope to incorporate a segmentation and tracking

algorithm in-line with the video synthesis algorithm, but this is

not our focus here. A fully automatic system could use active

contours [22], [23] or conditional density estimation [24] for

tracking.

The projective transformations and were estimated

using the efficient algorithm described in [25], using point

matches extracted by the automatic feature selection algorithm

described in [26]. The measurement update used an 8-pixel

search neighborhood about the time-updated estimate and the

Ohta–Kanade cost function.

Fig. 10 illustrates the results of the algorithm on conjugate

epipolar line 105 for the first and second frames of video (la-

beled Frame 0 and Frame 1). Fig. 10(a) is the basic correspon-

dence graph for Frame 0 induced by the planar assumption and

object segmentation. Fig. 10(b) is the refined correspondence

graph for Frame 0 obtained by applying the measurement-up-

date operator to the basic correspondence graph. Fig. 10(c) is
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Fig. 10. Correspondence graphs, line 105, frames 0 and 1. (a) Frame 0 initialization. (b) Frame 0 measurement update. (c) Frame 1 time update. (d) Frame 1
measurement update.

the correspondence graph for Frame 1 obtained by the time up-

date, and Fig. 10(d) is the correspondence graph for Frame 1

obtained by the measurement update.

The correspondence graphs all seem rather similar (which is

the point of the algorithm). However, it can be seen clearly from

Fig. 10(b) and (c) that the background correspondence from

Frame 0 is time-updated to the same location in Frame 1 (note

the “elbow” at the lower left end of the long piece). This corre-

spondence is refined by the measurement update [and the elbow

disappears in Fig. 10(d)].

More compelling are the virtual video frames rendered using

this correspondence. Six such frames are illustrated in the

middle column of Fig. 11. The left and right columns are real

images seen at various times , corresponding to

locations along the baseline of and . The middle

column is a rendition from a moving virtual camera whose

optical center moves at constant speed from to .

Over the course of the video shot, camera undergoes a slow

pan to the right, while camera slowly zooms in. The virtual

camera has dynamics observed in neither of the source video

clips, and moves very quickly and smoothly, at approximately

15 m/s. This is an example of a virtual camera being used in

a situation where physical limitations preclude the use of a

conventional physical camera. Unfortunately, it is difficult to

convey the three-dimensional feeling of the rendered video

from these still images.2

In later frames of the video, the error growth of the algorithm

results in minor but visible artifacts. Notably, some of the soccer

players seem to “lose their heads”—the head of the player ap-

pears several pixels away from the correct location on top of

the body. This is especially visible at Frame 34. This is largely

due to the accumulation of errors in the estimation of the pro-

jective transformations and , which in turn affect the

accuracy of the estimated epipolar geometry. At this point, cor-

respondence is not being estimated along true epipolar lines.

Though our projective transformation estimation algorithm is

generally quite accurate, after iterations, the projective trans-

formations and applied to and are com-

positions of estimated transformations. In this video sequence,

when is more than about 25, ( , ) are no longer close

to a rectifying pair. This problem should be alleviated by a peri-

odic re-estimation of the epipolar geometry, as discussed below.

2We refer the reader to http://www.ecse.rpi.edu/home-
pages/rjradke/pages/vvid/vvid.html for several virtual video examples using
the images in this paper.
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Fig. 11. Virtual images, frames 0, 8, 17, 25, 34, 42. Left column: original C frame, s = 0. Right column: original C frame, s = 0. Middle column: virtual C
frame, s = 0,0.2,0.4,0.6,0.8,1.0.
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Fig. 12. Example correspondence graph. (a) Scene S in (x, y)-space. (b) Transformed scene S in (i, j)-space. (c) Southeasting the transformed scene. (d)
Correspondence graph.

VII. CONCLUSIONS

Eachofthevirtualimagesinourexperimentisaconvincingren-
dition of the dynamic scene from an intermediate viewpoint. We
emphasize that the effects exhibited here are similar to those pro-
duced by specialized multicamera hardware. However, here we
onlyrequiretwouncalibratedcamerasandno3-Dscenemodeling.
These results show that understanding the relationship between
image correspondence and camera motion canbe a powerful tool.

There are many directions for future work in the area of vir-
tual video, both in improving the stability of the estimation al-
gorithm and in rendering the synthetic images. As addressed in
the text, the propagation process eventually destabilizes, due to
accumulation of errors in the estimation of the projective trans-
formations. A reinitialization of the epipolar geometry is re-
quired. However, since this estimation requires the selection and
matching of feature points between images with a substantial
perspective difference, user intervention is generally required to
obtain reliable results. Since some matching points are selected
by the user for the first frame pair, one approach is to track these
points through each image sequence, using a measure of feature
similarity that is invariant to perspective distortion, e.g., based
on corners. Periodically, the algorithm could be restarted with a

new estimate of the fundamental matrix and rectifying projec-
tive transformations obtained from these tracked points. Auto-
matically detecting that restarting is necessary and maintaining
continuity of the rectifying transformations and virtual images
across the restarted frame would be problems to overcome. Al-
ternately, we are exploring a recursive algorithm for quickly, in-
crementally improving the epipolar geometry estimate at each
frame using a small amount of new information.

As noted, while not the central point of this paper, segmen-
tation and tracking of objects in the video sequences is an im-
portant and difficult issue that we hope to address in the future.
Integrating robust, automated methods for these tasks and as-
sessing their performance is an interesting direction to pursue
for further work, and would be crucial in order to put a practical
virtual video system in place.

In terms of rendering quality, the virtual images are slightly
blurry compared to the original video frames. This is caused
by several steps of image resampling in our current implemen-
tation and could be alleviated by removing the dependence of
our rendering algorithm on explicitly rectified images. Addi-
tionally, post-processing techniques (e.g., unsharp masking, tex-
ture-mapping of surfaces) could be used to improve the percep-
tual quality of the virtual video.
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APPENDIX I

MONOTONIC CORRESPONDENCE ALGORITHMS

A simple dynamic programming approach to estimating
monotonic correspondence along conjugate epipolar lines
was described by Ohta and Kanade [17]. The nodes of the
program correspond to edges detected in each epipolar line.
Intervals of nearly constant-intensity pixels are matched
between conjugate epipolar lines, and points in a pair of
matched intervals are put into correspondence by linearly
interpolating between the endpoints. The function used to
measure the cost of matching an interval with pixel
intensities to the interval with pixel
intensities is based on the variance of the intensi-
ties in the two intervals from a sample mean , calculated as

. The variance was com-

puted as .
The cost of matching the two intervals was then defined as

. A slightly different cost was defined for
intervals of pixels in one line that are occluded in the other line.
Dynamic programming was used to find the lowest cost path
through each epipolar line matching graph. The authors also
described a higher-dimensional matching problem over the
entire image pair in which the nodes in the dynamic program
are edges that cross many epipolar lines. This formulation
explicitly enforces consistency between nearby epipolar lines.

Other, more sophisticated approaches to the epipolar-line-
based correspondence problem exist, based on maximum a pos-

teriori estimates [27], maximum likelihood estimates [28], and
maximum-flow problems [29]. Each of these approaches also
invokes the monotonicity assumption.

APPENDIX II

THE CORRESPONDENCE GRAPH

Fix a pair of cameras ( , ) whose centers of projection
are and , respectively. These cameras have associated
image planes and that lie between the cameras’ respec-
tive centers of projection and the scene , a collection of points
in . Select a plane containing the baseline, and view the
intersection of with the camera centers, the image planes,
and the scene points as an imaging system with a 2-D scene

and 1-D image planes (the pair of conjugate epipolar
lines ( , )). We fix a coordinate system ( , ) on by letting

and . Scene points are assumed to
have positive coordinates. The epipolar lines and inherit
natural one-dimensional coordinate systems (denoted and
respectively), oriented so that increasing and correspond to
increasing . In this setting, a correspondence is the realization
of a point ( , ) in the scene as a pair . We will
denote as the representation of the scene in ( , )-space.

Definition: The correspondence graph of a
scene with respect to the camera pair ( , ) is the set of
all points in that are visible (i.e., unoccluded) in both and

, transformed into ( , )-space.
The correspondence graph . Generally , since

the correspondence graph takes occlusions into account and the
transformed scene does not. However, the correspondence
graph can be easily obtained from the set . The construction
is related to a certain morphological operation on points in ( ,
)-space, described below.

Definition: A set of points in ( , )-space is a Southeast
set if the subsets and
have at most one element for all , .

Definition: The Southeasting operation produces a
Southeast set from a set as follows:

and

are empty

Proposition 1: The correspondence graph for a scene
with respect to ( , ) can be generated by Southeasting the
transformed scene .

Proof: Weknowthatthecorrespondencegraph isasubset
of the transformed scene . It remains to determine which points
in actually appear in both images. Fix and consider the set
of points . These points lie on the
same ray from in ( , )-space. The point with the smallest

coordinate is closest to and is hence the only point along the
ray that is imaged by . Therefore, the points in with larger
coordinates than are not retained in the correspondence graph.
Similarly, for fixed , consider the set .
These points lie on the same ray from in ( , )-space, and the
onlypoint that is retainedinthecorrespondencegraphis thatpoint

with the largest coordinate.
The operation described above is simply the Southeasting of

the set . By construction, the remaining elements in the South-
east set are precisely those points that appear in both cameras,
and hence this Southeast set is by definition the correspondence
graph of .

Additionally, a partial converse to the above proposition is
also true. That is, any Southeast set of points in ( , )-space is
the correspondence graph of some physical scene, provided that
the graph lies within certain boundaries. Space precludes the
inclusion of the converse here; see [14] for more details.

A scene with a simple obstruction relative to two cameras is
illustrated in Fig. 12(a). Fig. 12(b) shows the scene transformed
into ( , )-space. The Southeasting process is applied inFig. 12(c)
to obtain the correspondence graph in Fig. 12(d). The labeled line
segments are projected to image plane in the order 1-2-3-6-5,
and to the imageplane in theorder1-6-3-4-5.Segments3and6
appearindifferentorders intheprojections; thisreversalproduces
the phenomenon seen in the correspondence graph.

Belheumer [27] mentioned a “morphologically filtered ver-
sion” of the disparity function between an epipolar line pair that
is related to the correspondence graph. The filtering operation
creates a continuous, monotonic path through the epipolar
matching graph that includes regions that are “half-occluded,”
i.e., visible in one image only. However, this formalism only
captures simple scenes that are constrained by monotonicity.
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