
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Lab Papers (GRASP) General Robotics, Automation, Sensing and 
Perception Laboratory 

5-19-2008 

Efficiently Using Cost Maps For Planning Complex Maneuvers Efficiently Using Cost Maps For Planning Complex Maneuvers 

Dave Ferguson 
Intel Research 

Maxim Likhachev 
University of Pennsylvania, maximl@seas.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/grasp_papers 

Recommended Citation Recommended Citation 

Dave Ferguson and Maxim Likhachev, "Efficiently Using Cost Maps For Planning Complex Maneuvers", . 

May 2008. 

Dave Ferguson and Maxim Likhachev, " Efficiently Using Cost Maps For Planning Complex Maneuvers, " 
Proceedings of International Conference on Robotics and Automation Workshop on Planning with Cost Maps, 
2008. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/grasp_papers/20 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/grasp_papers
https://repository.upenn.edu/grasp
https://repository.upenn.edu/grasp
https://repository.upenn.edu/grasp_papers?utm_source=repository.upenn.edu%2Fgrasp_papers%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/grasp_papers/20
mailto:repository@pobox.upenn.edu


Efficiently Using Cost Maps For Planning Complex Maneuvers Efficiently Using Cost Maps For Planning Complex Maneuvers 

Abstract Abstract 
We have recently developed an algorithm for generating complex dynamically-feasible maneuvers for 
autonomous vehicles traveling at high speeds over large distances. Our approach is based on performing 
anytime incremental search on a multi-resolution, dynamically-feasible lattice state space. It has been 
implemented on an autonomous passenger vehicle that competed in, and won, the Urban Challenge. 
Much of the speed and robustness of our approach owes to the clever design and use of grid-based cost 
maps that were used throughout the planning process. In this paper, we explain the design and use of 
these various grid-based cost maps. 

Comments Comments 
Dave Ferguson and Maxim Likhachev, " Efficiently Using Cost Maps For Planning Complex Maneuvers, " 
Proceedings of International Conference on Robotics and Automation Workshop on Planning with Cost 
Maps, 2008. 

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/grasp_papers/20 

https://repository.upenn.edu/grasp_papers/20


Efficiently Using Cost Maps For Planning Complex

Maneuvers

Dave Ferguson

Intel Research Pittsburgh

4720 Forbes Ave

Pittsburgh, PA

dave.ferguson@intel.com

Maxim Likhachev

Computer and Information Science

University of Pennsylvania

Philadelphia, PA

maximl@seas.upenn.edu

Abstract— We have recently developed an algorithm for gen-
erating complex dynamically-feasible maneuvers for autonomous
vehicles traveling at high speeds over large distances. Our
approach is based on performing anytime incremental search
on a multi-resolution, dynamically-feasible lattice state space. It
has been implemented on an autonomous passenger vehicle that
competed in, and won, the Urban Challenge. Much of the speed
and robustness of our approach owes to the clever design and use
of grid-based cost maps that were used throughout the planning
process. In this paper, we explain the design and use of these
various grid-based cost maps.

I. INTRODUCTION

The focus of this work is planning for autonomous vehicles

operating in complex urban environments. Example scenarios

include navigating through congested roads and intersections

and navigating and parking in large unstructured parking

lots (on the order of 200 × 200 meters). Maneuvering at

human driving speeds (∽ 15 mph) through such areas requires

very efficient planning, especially if they contain previously

unknown static obstacles or other moving vehicles.

Roboticists have concentrated on the problem of mobile

robot navigation for several decades, providing a large body

of related research. Early approaches concentrated on local

planning, where very short term reasoning is performed to

generate the next dynamically-feasible action for the vehicle[1,

2, 3]. The major limitation of these approaches is their capacity

to get the vehicle stuck in local minima en route to the goal (for

instance, cul-de-sacs). Further, these approaches are unable to

perform complex multi-stage maneuvers, such as three-point

turns, as these maneuvers are not within the set of local actions

considered by the planner. More recent algorithms are based

on incorporating global as well as local information [4, 5, 6, 7,

8, 9, 10, 11, 12]. Typically, these approaches generate a set of

candidate local actions and evaluate each based on both their

local traversability cost and the desirability of their endpoints

based on a global value function (e.g. the expected distance

to the goal based on known obstacle information). Although

these approaches perform better with respect to local minima,

the mismatch between approximate global planning and more

precise local planning, can still cause the vehicle to get stuck

or take highly suboptimal paths.

Discouraged by this mismatch, a third class of planners were

developed that concentrate on improving the quality of global

Fig. 1. “Boss”: Tartan Racing’s autonomous vehicle entry into the Urban
Challenge.

planning to the point where a global path can be easily tracked

by the vehicle [13, 14, 15, 16, 17]. However, the computa-

tional expense of generating complex global plans over large

distances is challenging, and typically these approaches are

restricted to either small distances, fairly simple environments,

or highly suboptimal solutions.

Our approach falls into this last category of high-fidelity

global planners but attempts to overcome the challenges faced

by these planners. In brief, there are two main ideas behind of

our planner. First, we employ a multi-resolution lattice search

space to reduce the complexity of the global search while still

providing extremely high-quality solutions. Second, we use

an efficient anytime, incremental search to quickly generate

bounded suboptimal solutions, then improve these solutions

while deliberation time allows and repair them when new

information is received. The resulting approach is able to plan

complex, dynamically-feasible maneuvers over hundreds of

meters and improve and repair them in real-time for vehicles

traveling at high (∽ 15 mph) speeds.

Much of the robustness and efficiency of our approach owes

to its abundant use of well-designed 2D grid-based cost maps.

If properly designed, 2D cost maps can be computed efficiently

and used to speedup a planner dramatically by avoiding



(a) initial planning (b) replanning (c) initial planning (d) replanning

Fig. 2. (a,b) show planning and replanning in a large 200m by 200 parking lot with a large number of initially unknown obstacles (shown as white dots).
(c,d) show planning and replanning in a highly-constrained (very narrow) environment with initially unknown obstacles (shown in red). This environment
requires trajectories that require very complex maneuevers including numerous backup maneuvers. All planning and replanning was done in real-time.

unnecessary computations. In our approach, such cost maps

were used in a number of ways including: the biasing of global

and local plans away from static and dynamic obstacles, the

efficient generation of an informative heuristic function that

guided the anytime incremental search, the reduced processing

of convolutions, and the focussing of the replanning efforts of

the search. All of these individual uses are orthogonal to each

other and may be incorporated separately in the optimization

of other planners. This paper describes each of these uses and

how they were combined in our system.

II. OVERALL APPROACH

To efficiently plan a smooth path to a distant goal pose,

we use a lattice planner that searches over vehicle position

(x, y), orientation (θ), and velocity (v) to generate a sequence

of feasible actions (each action being up to ∽ 5 meters long)

that are collision-free with respect to the static and dynamic

obstacles observed in the environment.

For each (θ, v), we pre-compute offline the set of possible

actions (x = 0, y = 0, θ, v) using a trajectory generation

algorithm originally developed by Howard and Kelly [9]. This

algorithm employs an accurate vehicle model to produce feasi-

ble, directly-executable actions and an optimization technique

to minimize the endpoint error of these actions with respect

to a desired endpoint state. We use this approach to ‘snap’ the

actions to the lattice so that the endpoint of each action lands

on a lattice state. During planning, for any state (x, y, θ, v),

the planner computes the set of possible actions by looking

up the set of precomputed actions for (x = 0, y = 0, θ, v) and

translating it by (x, y).

The cost of each action is proportional to the time it takes

to execute it. In addition, the cost is increased if the action

happens in the vicinity of an obstacle. This way, paths that

minimize costs are biased away from undesirable areas within

the environment such as curbs.

To efficiently generate complex trajectories over large,

obstacle-laden environments, the planner relies on an anytime,

replanning search algorithm known as Anytime D*, developed

by Likhachev et al. [16]. Anytime D* quickly generates an

initial, suboptimal plan for the vehicle and then improves

the quality of this solution until deliberation time expires.

When new information concerning the environment is received

(for instance, a new static or dynamic obstacle is observed),

Anytime D* is able to efficiently repair its existing solution

to account for the new information. This repair process is

expedited by performing the search in a backwards direction,

as in such a scenario updated information in the vicinity of

the vehicle affects a smaller portion of the search space and

so less repair is required.

To further improve efficiency, the planner uses a multi-

resolution search and action space. In the vicinity of the goal

and vehicle, where very complex maneuvering may be re-

quired, a dense set of actions and a fine-grained discretization

of orientation are used during the search. In other areas, a

coarser set of actions and discretization of orientation are

employed. However, these coarse and dense resolution variants

both share the same dimensionality and seamlessly interface

with each other, so that resulting solution paths overlapping

both coarse and dense areas of the space are smooth and

feasible. For more details on this lattice planner and its multi-

resolution state and action space, see [18].

III. USING GRID-BASED COST MAPS

2D grid-based cost maps were employed in a number

of places throughout the planning process. In the following

sections we explain how they were used in each of these cases.

A. Perception Cost Maps

The most common use of grid-based cost maps in robotics

is for storing the information about obstacles in the environ-

ment. In our approach, we also maintain a 2D static obstacle

cost map derived from the perceptual information about the

environment. We will refer to this map as a perception map.

Geometric information from various laser range finders is

processed to generate a grid map with 0.25m resolution,

in which every grid cell contains some cost ranging from

FREE to LETHAL. LETHAL costs correspond to impass-

able areas. By using a range of costs rather than a binary

(FREE/LETHAL) map, we are able to plan paths that take into

account the relative difficulty of traveling over traversable but

undesirable areas, such as curbs. Detected LETHAL obstacles

in the perception map are also slightly expanded by the planner



Fig. 3. Perception static obstacle map.

(by 0.5 meters, or 2 cells) to provide a conservative obstacle

approximation and allow for small perceptual and execution

errors. We will refer to this map as an expanded perception

map.

Figure 3 provides an example of a perception cost map

generated during the Urban Challenge. LETHAL cells are

shown in white, with FREE cells in black.

B. Constrained Cost Maps

In addition to the perceptual information provided in the per-

ception cost map, we incorporate context-specific constraints

on the movement of the vehicle by creating an additional

cost map, a constrained map. This 2D grid-based cost map

encodes the relative desirability of different areas of the

environment based on the road structure in the vicinity and,

if available, prior terrain information. This constrained cost

map is then combined with the expanded perception cost map

to create the final combined map to be used by the planner.

Specifically, for each cell (i, j) in the combined cost map C,

the value of C(i, j) is computed as the maximum of EPC(i, j)
and CO(i, j), where EPC(i, j) is the expanded perception cost

map value at (i, j) and CO(i, j) is the constrained cost map

value at (i, j).

For instance, when invoking the complex planner to plan

a maneuver around a parked car or jammed intersection, the

constrained cost map is used to specify that staying within the

desired road lane is preferable to traveling in an oncoming

lane, and similarly that driving off-road to navigate through

a cluttered intersection is dangerous. To do this, undesirable

areas of the environment based on the road structure are

assigned high costs in the constrained cost map. These can be

both soft constraints (undesirable but allowed areas), which

correspond to high costs, and hard constraints (forbidden

areas), which correspond to LETHAL costs. Figure 4 shows

the constrained cost map generated for an on-road maneuver,

Fig. 6. Biasing the cost map for the lattice planner so that the vehicle keeps
away from dynamic obstacles. Notice that the high-cost region around the
dynamic obstacle is offset to the left so that Boss will prefer moving to the
right of the vehicle.

along with the expanded perception cost map and the resulting

combined cost map used by the planner.

For navigating in parking lots, we use the a priori specified

extents of the parking lot to set all cells outside the lot in

the constrained cost map to be LETHAL. This constrains the

vehicle to operate only inside the lot. We also include a high,

non-lethal cost buffer around the perimeter of the parking lot

to bias the vehicle away from the boundaries of the lot.

When prior information exists such as overhead imagery,

this information can be incorporated into the constrained cost

map to help provide global guidance for the vehicle. For

instance, this information can be used to detect features such

as curbs or trees in parking lots that should be avoided, so

that these features can be used by the planner before they are

detected by onboard perception. Figure 5(a,b) shows overhead

imagery of a parking lot area used to encode curb islands into a

constrained cost map for the parking lot, and Figure 5(c) shows

the corresponding constrained cost map. This constrained cost

map is then stored offline and loaded by the planner online

when it begins planning paths through the parking lot. By

storing the constrained cost maps for parking lots offline

we significantly reduce online processing as generating the

constrained cost maps for large, complex parking lots can take

up to a couple seconds.

C. Incorporating Dynamic Obstacles into the Cost Map

The combined cost map of the planner is also used to

represent dynamic obstacles in the environment so that these

can be avoided by the planner. In our perception architecture,

we represent static and dynamic obstacles independently,

which allows the planner to treat each type of obstacle

differently. Our planner adapts the dynamic obstacle avoidance

behavior of the vehicle based on its current proximity to

each dynamic obstacle. If the vehicle is close to a particular

dynamic obstacle, that obstacle and a short-term prediction

of its future trajectory is encoded into the combined cost

map as a LETHAL obstacle so that it is strictly avoided.

For every dynamic obstacle, both near and far, the planner

encodes a varying high-cost region around the obstacle to

provide a safe clearance. Although these high-cost regions are



(a) (b) (c)

Fig. 4. Combining constrained cost map with expanded perception cost map - (a) show onboard image from gauntlet in course B of NQE and (b) show
constrained map of road boundary and (c) show combined cost map.

(a) (b) (c)
Fig. 5. Generatingn constrained cost maps offline. (a) Overhead imagery showing testing area with RNDF overlaid. (b) Parking lot area (boundary in blue)
in RNDF with overhead imagery showing curb islands. (c) Resulting constrained cost map incorporating boundaries, entry and exit lanes, and curb islands.

not hard constraints, they result in the vehicle avoiding the

vicinity of the dynamic obstacles if at all possible. Further,

the generality of this approach allows us to influence the

behavior of our vehicle based on the specific behavior of the

dynamic obstacles. For instance, we offset the high-cost region

based on the relative position of the dynamic obstacle and our

vehicle so that we will favor moving to the right, resulting in

yielding behavior in unstructured environments quite similar

to how humans react in these scenarios. Figure 6 provides an

example scenario involving a dynamic obstacle along with the

corresponding cost map generated.

D. Convolution with the Cost Map

The combined cost map is used by our planner to compute

the feasibility and cost of each action. Typically, one of the

most computationally expensive parts of planning for vehicles

is computing these action costs, as this involves convolving

the geometric footprint of the vehicle for a given action with a

cost map. As mentioned, our cost map has a 0.25m resolution

and the (x, y) dimensions of our vehicle were 5.5m× 2.25m.

Thus, even a short 1m action requires collision checking over

230 cells. Further, the coordinates of each of the cells need to

be calculated based on the action and the initial pose of the

vehicle.

To reduce the processing required for this convolution,

we perform two optimization steps. First, for every possible

action a, we pre-compute the cells covered by the vehicle

when executing this action. During online planning, these

cells are quickly extracted and translated to the appropriate

position when needed. No rotation is necessary since every

pre-computed action a is already computed for a specific

orientation θ of the vehicle.

Second, we generate two configuration space maps to be

used by the planner to avoid performing convolutions. The first

of these maps, called an optimistic map, expands all LETHAL

cells in the combined map by the inner radius (Figure 8(a)) of

the robot; this map corresponds to an optimistic approximation

of the actual configuration space. Given a specific action

a and assuming a point robot, if any of the cells through

which a passes are obstacles in this optimistic map, then

action a is also guaranteed to collide with an obstacle in the

combined cost map. The second map, called a pessimistic

map, expands all non-FREE cells in the combined cost map by

the outer radius (Figure 8(a)) of the robot and considers those

cells as obstacles. It therefore corresponds to a pessimistic

approximation of the configuration space. Assuming a point

robot again, if all of the cells through which an action a passes

in this map are obstacle-free, then a is also guaranteed to be



collision-free in the combined cost map. Only those actions

that do not produce a conclusive result from these simple tests

need to be convolved with the combined cost map. Typically,

this is a severely reduced percentage, thus saving considerable

computation. To create these auxiliary maps efficiently, we

perform a single distance transform on the combined cost map

and then threshold the distances using the corresponding radii

of the robot for each map. Figure 7 provides an example of

the optimistic and pessimistic c-space maps generated for a

particular combined cost map.

E. Generating Heuristics Using the Cost Maps

The effectiveness of the Anytime D* algorithm we used

for planning is highly dependent on its use of an informed

heuristic to focus its search. An accurate heuristic can reduce

the time and memory required to generate a solution by

orders of magnitude, while a poor heuristic can diminish the

benefits of the algorithm. It is thus important to devote careful

consideration to the heuristic used for a given search space.

Since in our setup Anytime D* searches backwards, the

heuristics are supposed to estimate the distance from the

robot pose to state in question. Anytime D* requires them

to be admissible (not to overestimate the actual distance) and

consistent [19]. For any state (x, y, θ, v), the heuristics we

use is the maximum of two values. The first value is the

cost of an optimal path from the robot pose to (x, y, θ, v)
through the search space assuming a completely empty en-

vironment. These values are precomputed offline and stored

in a heuristic lookup table [17]. This is a very well informed

heuristic function when operating in sparse environments and

is guaranteed to be an optimistic (or admissible) approximation

of the actual path cost. The second value is the cost of a

2D path from the robot xR, yR coordinates to (x, y) given

the actual environment. These values are computed online

by a 2D Dijkstra’s search. This heuristic function is very

useful when operating in obstacle-laden environments. By

taking the maximum of these two heuristic values we are

able to incorporate both the constraints of the vehicle and the

constraints imposed by the obstacles in the environment. The

result is a very well-informed heuristic function that can speed

up the search by an order of magnitude relative to either of

the component heuristics alone (see [18] for details).

We compute the second heuristic function by running a

single Dijkstra’s search on the 16-connected combined cost

map grid, starting at the cell that corresponds to the center of

the current vehicle position. This search is re-run every time

the vehicle pose is changed. The cost of each transition in this

search is computed by taking the maximum of the costs of

all the cells through which the transition passes. In addition,

if any of these cells are labeled as obstacles in the optimistic

map, then the cost of the transition is set to infinity. Under this

cost function, a single Dijkstra’s search computes the costs of

shortest paths from the vehicle coordinates to all other cells in

(a) (b)

Fig. 8. (a) Inner (r) and outer (R) radii of the robot. (b) Example where
the 2D heuristic function may overestimate the cost of a path derived purely
from convolution.

the environment1. Figure 9 provides the 2D cost-to-goal value

function generated for the perception cost map used in Figure

7. In this figure, the darker a cell the higher its path cost.

This 2D heuristic function may overestimate the cost of the

actual path. Imagine a path that involves the vehicle moving

through a narrow corridor with a high-cost strip going exactly

along the center of this corridor (Figure 8(b)). The cost of the

2D path from the initial (xR, yR) coordinates of the vehicle to

the goal (x, y) coordinates corresponds to the summation of the

costs of the transitions going along the high-cost strip. Cells on

either side of the strip are impassable since the optimistic map

will justifiably consider these cells as obstacles - the center

of the vehicle can not reside in any of them. The cost of

the actual path, on the other hand, is lower than the cost of

the path along the high-cost strip because the cost of each

actual action is computed as an average of the cells covered

by the vehicle. To remedy this, we have slightly modified the

cost of each action to be a maximum of two values. The first

value is the convolution cost, as before. The second value is

the maximum of the combined map costs of the cells that

correspond to the center of the vehicle when moving along

the action. This modification penalizes plans more if they

involve the center of the vehicle going through high-cost areas.

Most importantly, our heuristic function becomes provably

admissible and consistent with respect to this cost function.

F. Efficient Incremental Planning With Cost Map Updates

With incremental planning algorithms such as Anytime

D*, when changes are observed in the cost map, they must

be propagated through the relevant portions of the search

space. However, detecting which actions and states in the

search space are directly affected by these changes in the

cost map can be expensive. For example, if the status of

the cell (xc, yc) in the combined cost map changes from

free to LETHAL, then the costs of all actions that involve

the vehicle traveling over that cell may change. Typically,

there could be thousands of such actions. Anytime D* needs

1However, even though it is very fast, we still restrict this search to only
compute shortest paths to states that are no more than twice as far (in terms
of path cost) from the vehicle cell as the goal cell.



(a) (b) (c)

Fig. 7. (a) A combined cost map (same as from earlier figures). (b) The corresponding optimistic c-space map. (c) The corresponding pessimistic c-space
map.

Fig. 9. 2D heuristic cost-to-robot map from the example in previous figures.

to iterate and update the values of all the states ((x, y, θ, v)
poses) from which these actions can be executed. Given the

large number of affected actions, this iteration can be very

expensive. However, Anytime D* really only needs to update

the values of those states that have actually been computed

in the previous planning iterations. We exploit this property

to decrease the computational effort involved in iterating over

the states that may possibly be affected by changes in the cost

map, as follows.

First, we pre-compute offline all the states that have actions

whose costs depend on the cost of the cell (0, 0). These states

are grouped into mutually disjoint sets, where each ith set

ℜxi...xi+d,yi...yi+d contains all those states (x, y, θ, v), whose

xi ≤ x < xi + d and yi ≤ y < yi + d, where d is a (small)

positive integer. We used d = 5. In other words, all the states

whose values need to be updated by Anytime D* whenever

the cost of the cell (0, 0) is modified are pre-computed and

stored in a low-resolution grid map. Let us denote this map by

ℜ. Each cell in this low-resolution grid map is d times wider

and d times longer than a cell in the combined cost map.

Second, during online operations, we maintain another low-

resolution replanning map of the same discretization as ℜ.

The value of each cell in this replanning map is true whenever

at least one state whose (x, y) coordinates fall into this cell

has been generated (computed) by Anytime D*. Thus, while

planning, whenever Anytime D* generates (computes a value

of) a state (x, y, θ, v), then it also sets the corresponding cell

in the replanning map to be true.

Finally, whenever the cost of a cell (xc, yc) in the

combined cost map is modified, for each non-empty cell

ℜxi...xi+d,yi...yi+d in ℜ we look up if any one of the following

four cells in the replanning map are set to true:

(((xi + xc) mod d), ((yi + yc) mod d))
(((xi + xc) mod d) + 1, ((yi + yc) mod d))
(((xi + xc) mod d), ((yi + yc) mod d) + 1)
(((xi + xc) mod d) + 1, ((yi + yc) mod d) + 1)

If so, then we update the value of every state stored in

ℜxi...xi+d,yi...yi+d translated by (xc, yc). No other states need

to be updated since it is guaranteed that they have not been

previously computed by Anytime D*. This optimization can

save a tremendous amount of replanning computation.

G. Trajectory Evaluation Using Cost Maps

The path returned by our multi-resolution lattice planner is

tracked using a local planner that employs the same trajectory

generation algorithm used to provide the action space for the

lattice. Although a simple, single-trajectory tracker would suf-

fice given the feasibility of the lattice plan, multiple candidate

trajectories are produced to account for dynamic obstacles and

sudden new observations that could require immediate reaction

(the local planner runs at 10 Hz). From this set of candidate

trajectories, a single trajectory is selected for execution by the

vehicle. Each of the trajectories terminates on the lattice path2.

By having all trajectories return to the path we significantly

reduce the risk of having the vehicle move itself into a state

from which it is difficult to leave.

The trajectory selected for execution is typically the one that

deviates least from the lattice path while also being collision-

free with respect to the static and dynamic obstacles in the

environment. To determine whether a trajectory is collision-

free, a convolution is performed with the perception cost map.

2Each trajectory is in fact a concatenation of two short trajectories, with
the first of the two short trajectories ending at an offset position from the path
and the second ending back on the path.



(a) (b) (c)

Fig. 10. Complex planning final solution. (a) The set of goals being planned to, along with the resulting path in red. (b) The trajectories generated by the
local planner to track this path. (c) The convolution of one of these trajectories (in blue) with the static obstacle map from perception.

A second convolution is also performed with an extended

vehicle shape to determine whether any obstacles are within a

small distance of the vehicle’s intended trajectory. The results

of these convolutions (and other factors, such as the deviation

from the path) are incorporated into the overall cost of the

candidate trajectory, with the least costly trajectory chosen for

execution. Figure 10(c) shows the convolution of a candidate

trajectory with the perception cost map.

IV. CONCLUSIONS

In this paper, we have described how our planner uses grid-

based cost maps to construct an effective cost function, to

compute efficient heuristics to guide its planning efforts, to

avoid unnecessary convolution and replanning calculations,

and finally to evaluate various short-range trajectories gener-

ated by a local planner. The effectiveness of these techniques

was demonstrated by the robustness and the speed of the

planner as used in the Urban Challenge.

All of the described cost map techniques are orthogonal to

each other and therefore can be used as standalone compo-

nents. They are also applicable to other, non-lattice planners

(e.g. grid-based planners). Given that grid-based cost maps are

simple to implement and cheap and easy to maintain, we hope

that the techniques presented in this paper will be helpful in

the development of planners by other researchers and robotic

software developers.

REFERENCES

[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, no. 1, pp.
90–98, 1986.

[2] R. Simmons, “The curvature velocity method for local obstacle avoid-
ance,” in Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), 1996.
[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach

to collision avoidance.” IEEE Robotics and Automation, vol. 4, no. 1,
1997.

[4] S. Thrun et al., “Map learning and high-speed navigation in RHINO,”
in AI-based Mobile Robots: Case Studies of Successful Robot Systems,
D. Kortenkamp, R. Bonasso, and R. Murphy, Eds. MIT Press, 1998.

[5] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 1999.

[6] A. Kelly, “An intelligent predictive control approach to the high speed
cross country autonomous navigation problem,” Ph.D. dissertation,
Carnegie Mellon University, 1995.

[7] R. Philippsen and R. Siegwart, “Smooth and efficient obstacle avoidance
for a tour guide robot,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2003.
[8] S. Thrun et al., “Stanley: The robot that won the DARPA Grand

Challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661–692,
August 2006.

[9] T. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,” International Journal of Robotics Research,
vol. 26, no. 2, pp. 141–166, 2007.

[10] C. Stachniss and W. Burgard, “An integrated approach to goal-directed
obstacle avoidance under dynamic constraints for dynamic environ-
ments,” in Proceedings of the IEEE International Conference on In-

telligent Robots and Systems (IROS), 2002.
[11] C. Urmson et al., “A robust approach to high-speed navigation for

unrehearsed desert terrain,” Journal of Field Robotics, vol. 23, no. 8,
pp. 467–508, August 2006.

[12] D. Braid, A. Broggi, and G. Schmiedel, “The TerraMax autonomous
vehicle,” Journal of Field Robotics, vol. 23, no. 9, pp. 693–708, August
2006.

[13] S. LaValle and J. Kuffner, “Rapidly-exploring Random Trees: Progress
and prospects,” Algorithmic and Computational Robotics: New Direc-

tions, pp. 293–308, 2001.
[14] G. Song and N. Amato, “Randomized motion planning for car-like

robots with C-PRM,” in Proceedings of the IEEE International Con-

ference on Intelligent Robots and Systems (IROS), 2001.
[15] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with

provable bounds on sub-optimality,” in Advances in Neural Information

Processing Systems. MIT Press, 2003.
[16] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Any-

time Dynamic A*: An Anytime, Replanning Algorithm,” in Proceedings

of the International Conference on Automated Planning and Scheduling

(ICAPS), 2005.
[17] R. Knepper and A. Kelly, “High performance state lattice planning

using heuristic look-up tables,” in Proceedings of the IEEE International

Conference on Intelligent Robots and Systems (IROS), 2006.
[18] M. Likhachev and D. Ferguson, “Planning Dynamically Feasible Long

Range Maneuvers for Autonomous Vehicles,” 2008, submitted to
Robotics: Science and Systems (RSS).

[19] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley, 1984.


	Efficiently Using Cost Maps For Planning Complex Maneuvers
	Recommended Citation

	Efficiently Using Cost Maps For Planning Complex Maneuvers
	Abstract
	Comments

	tmp.1254409436.pdf.ryHCP

