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Abstract

Understanding the scene in which an autonomous robot operates is critical for its competent functioning. Such scene compre-

hension necessitates recognizing instances of traffic participants along with general scene semantics which can be effectively

addressed by the panoptic segmentation task. In this paper, we introduce the Efficient Panoptic Segmentation (EfficientPS)

architecture that consists of a shared backbone which efficiently encodes and fuses semantically rich multi-scale features. We

incorporate a new semantic head that aggregates fine and contextual features coherently and a new variant of Mask R-CNN

as the instance head. We also propose a novel panoptic fusion module that congruously integrates the output logits from

both the heads of our EfficientPS architecture to yield the final panoptic segmentation output. Additionally, we introduce the

KITTI panoptic segmentation dataset that contains panoptic annotations for the popularly challenging KITTI benchmark.

Extensive evaluations on Cityscapes, KITTI, Mapillary Vistas and Indian Driving Dataset demonstrate that our proposed

architecture consistently sets the new state-of-the-art on all these four benchmarks while being the most efficient and fast

panoptic segmentation architecture to date.

Keywords Panoptic segmentation · Semantic segmentation · Instance segmentation · Scene understanding

1 Introduction

Holistic scene understanding plays a pivotal role in enabling

intelligent behavior. Humans from an early age are able to

effortlessly comprehend complex visual scenes which forms

the bases for learning more advanced capabilities (Bremner

and Slater 2008). Similarly, intelligent systems such as robots

should have the ability to coherently understand visual scenes

at both the fundamental pixel-level as well as at the dis-

tinctive object instance level. This enables them to perceive

and reason about the environment holistically which facili-

tates interaction. Such modeling ability is a crucial enabler

that can revolutionize several diverse applications including

autonomous driving, surveillance, and augmented reality.

The components of a scene can generally be categorized

into ‘stuff’and ‘thing’ objects. ‘Stuff’ can be defined as

uncountable and amorphous regions such as sky, road and

Communicated by Andreas Geiger.

B Abhinav Valada

valada@cs.uni-freiburg.de

Rohit Mohan

mohan@cs.uni-freiburg.de

1 University of Freiburg, Freiburg, Germany

sidewalk, while ‘thing’ are countable objects for example

pedestrians, cars and riders. Segmentation of ‘stuff’ classes

is primarily addressed using the semantic segmentation task,

whereas segmentation of ‘thing’ classes is addressed by the

instance segmentation task. Both tasks have garnered a sub-

stantial amount of attention in recent recent years (Shotton

et al 2008; Krähenbühl and Koltun 2011; Silberman et al

2014; He and Gould 2014a). Moreover, advances in deep

learning (Chen et al 2018b; Zhao et al 2017; Valada et al

2016a; He et al 2017; Liu et al 2018; Zürn et al 2019)

have further boosted the performance of these tasks to new

heights. However, state-of-the-art deep learning methods still

predominantly address theses tasks independently although

their objective of understanding the scene at the pixel level

establishes an inherent connection between them. More sur-

prisingly, they have also fundamentally branched out into

different directions of proposal based methods (He et al

2017) for instance segmentation and fully convolutional net-

works (Long et al 2015) for semantic segmentation, even

though some earlier approaches (Tighe et al 2014; Tu et al

2005; Yao et al 2012) have demonstrated the potential bene-

fits in combining them.

Recently, Kirillov et al (2019b) revived the need to tackle

these tasks jointly by coining the term panoptic segmenta-
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Fig. 1 Overview of our proposed EfficientPS architecture for panoptic

segmentation. Our model predicts four outputs: semantics prediction

from the semantic head, and class, bounding box and mask prediction

from the instance head. All the aforementioned predictions are then

fused in the panoptic fusion module to yield the final panoptic segmen-

tation output

tion and introducing the panoptic quality metric for combined

evaluation. The goal of this task is to jointly predict ‘stuff’

and ‘thing’ classes, essentially unifying the separate tasks

of semantic and instance segmentation. More specifically, if

a pixel belongs to the ‘stuff’ class, the panoptic segmenta-

tion network assigns a class label from the ‘stuff’ classes,

whereas if the pixel belongs to the ‘thing’ class, the net-

work predicts both which ‘thing’ class it corresponds to as

well as the instance of the object class. Kirillov et al (2019b)

also present a baseline approach for panoptic segmentation

that heuristically combines predictions from individual state-

of-the-art instance and semantic segmentation networks in

a post-processing step. However, this disjoint approach has

several drawbacks including large computational overhead,

redundancy in learning and discrepancy between the predic-

tions of each network. Although recent methods have made

significant strides to address this task in top-down manner

with shared components or in a bottom-up manner sequen-

tially, these approaches still face several challenges in terms

of computational efficiency, slow runtimes and subpar results

compared to task-specific individual networks.

In this paper, we propose the novel EfficientPS architec-

ture that provides effective solutions to the aforementioned

problems for urban road scene understanding. The archi-

tecture consists of our new shared backbone with mobile

inverted bottleneck units and our proposed 2-way Feature

Pyramid Network (FPN), followed by task-specific instance

and semantic segmentation heads with seperable convolu-

tions, whose outputs are combined in our parameter-free

panoptic fusion module. The entire network is jointly opti-

mized in an end-to-end manner to yield the final panoptic

segmentation output. Figure 1 shows an overview of the

information flow in our network along with the intermediate

predictions and the final output. The design of our proposed

EfficientPS is influenced by the goal of achieving superior

performance compared to existing methods while simultane-

ously being fast and computationally more efficient.

Currently, the best performing top-down panoptic seg-

mentation models (Porzi et al 2019; Xiong et al 2019; Li

et al 2018a) primarily employ the ResNet-101 (He et al

2016) or ResNeXt-101 (Xie et al 2017) architecture with

Feature Pyramid Networks (Lin et al 2017) as the back-

bone. Although these backbones have a high representational

capacity, they consume a significant amount of parameters.

In order to achieve a better trade-off, we propose a new back-

bone network consisting of a modified EfficientNet (Tan

and Le 2019) architecture that employs compound scaling

to uniformly scale all the dimensions of the network, cou-

pled with our novel 2-way FPN. Our proposed backbone is

substantially more efficient as well as effective than its pop-

ular counterparts (He et al 2016; Kaiser et al 2017; Xie et al

2017). Moreover, we identify that the standard FPN architec-

ture has its limitations to aggregate multi-scale features due

to the unidirectional flow of information. While there are

other extensions that aim to mitigate this problem by adding

bottom-up path augmentation (Liu et al 2018) to the outputs

of the FPN. We propose our novel 2-way FPN as an alter-

nate that facilities bidirectional flow of information which

substantially improves the panoptic quality of ‘thing’ classes

while remaining comparable in runtime.

Now the outputs of our 2-way FPN are of multiple scales

which we refer to as large-scale features when they have a

downsampling factor of ×4 or ×8 with respect to the input

image, and small-scale features when they have a down-

sampling factor of ×16 or ×32. The large-scale outputs

comprise of fine or characteristic features, whereas the small-

scale outputs contain features rich in semantic information.

The presence of these distinct characteristics necessitates

processing features at each scale uniquely. Therefore, we

propose a new semantic head with depthwise separable

convolutions, which aggregates small-scale and large-scale

features independently before correlating and fusing con-

textual features with fine features. We demonstrate that this

semantically reinforces fine features resulting in better object

boundary refinement. For our instance head, we build upon

Mask-R-CNN and augment it with depthwise separable con-

volutions and iABN sync (Rota Bulò et al 2018) layers.

One of the critical challenges in panoptic segmentation

deals with resolving the conflict of overlapping predic-

tions from the semantic and instance heads. Most architec-

tures (Kirillov et al 2019a; Porzi et al 2019; Li et al 2019b;

de Geus et al 2018) employ a standard post-processing

step (Kirillov et al 2019b) that adopts instance-specific

‘thing’ segmentation from the instance head and ‘stuff’ seg-

mentation from the semantic head. This fusion technique

completely ignores the logits of the semantic head while seg-

menting ‘thing’ regions in the panoptic segmentation output

which is sub-optimal as the ‘thing’ logits of the semantic
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head can aid in resolving the conflict more effectively. In

order to thoroughly exploit the logits from both heads, we

propose a parameter-free panoptic fusion module that adap-

tively fuses logits by selectively attenuating or amplifying

fused logit scores based on how agreeable or disagreeable the

predictions of individual heads are for each pixel in a given

instance. We demonstrate that our panoptic fusion mecha-

nism is more effective and efficient than other widely used

methods in existing architectures.

Furthermore, we also introduce the KITTI panoptic seg-

mentation dataset that contains panoptic annotations for

images in the challenging KITTI benchmark (Geiger et al

2013). As KITTI provides groundtruth for a whole suite of

perception and localization tasks, these new panoptic anno-

tations further complement the widely popularly benchmark.

We hope that these panoptic annotations that we make pub-

licly available encourages future research in multi-task learn-

ing for holistic scene understanding. Furthermore, in order to

facilitate comparison, we benchmark previous state-of-the-

art models on our newly introduced KITTI panoptic segmen-

tation dataset and the IDD dataset. We perform exhaustive

experimental evaluations and benchmarking of our proposed

EfficientPS architecture on four standard urban scene under-

standing datasets including Cityscapes (Cordts et al 2016),

Mapillary Vistas (Neuhold et al 2017), KITTI (Geiger et al

2013) and Indian Driving Dataset (IDD) (Varma et al 2019).

Our proposed EfficientPS with a PQ score of 66.4% is

ranked first for panoptic segmentation on the Cityscapes

benchmark leaderboard without training on coarse annota-

tions or using model ensembles. Additionally, EfficientPS

is also ranked second for the semantic segmentation task

as well as the instance segmentation task on the Cityscapes

benchmark with a mIoU score of 84.2% and an AP of 39.1%

respectively. On the Mapillary Vistas dataset, our single Effi-

cientPS model achieves a PQ score of 40.5% on the validation

set, thereby outperforming all the existing methods. Simi-

larly, EfficientPS consistently outperforms existing panoptic

segmentation models on both the KITTI and IDD datasets

by a large margin. More importantly, our EfficientPS archi-

tecture not only sets the new state-of-the-art on all the four

panoptic segmentation benchmarks, but it is also the most

computationally efficient by consuming the least amount of

parameters and having the fastest inference time compared

to previous state-of-the-art methods. Finally, we present

detailed ablation studies that demonstrate the improvement

in performance due to each of the architectural contributions

that we make in this work. Moreover, we also make imple-

mentations of our proposed EfficientPS architecture, training

code and pre-trained models publicly available.

In summary, the following are the main contributions of

this work:

1. The novel EfficientPS architecture for panoptic segmen-

tation that incorporates our proposed efficient shared

backbone with our new feature aligning semantic head,

a new variant of Mask R-CNN as the instance head, and

our novel adaptive panoptic fusion module.

2. A new panoptic backbone consisting of an augmented

EfficientNet architecture, and our proposed 2-way FPN

that both encodes and aggregates semantically rich multi-

scale features in a bidirectional manner.

3. A novel semantic head that captures fine features and

long-range context efficiently as well as correlates them

before fusion for better object boundary refinement.

4. A new panoptic fusion module that dynamically adapts

the fusion of logits from the semantic and instance heads

based on their mask confidences and congruously inte-

grates instance-specific ‘thing’ classes with ‘stuff’ classes

to compute the panoptic prediction.

5. The KITTI panoptic segmentation dataset that provides

panoptic groundtruth annotations for images from the

challenging KITTI benchmark dataset.

6. Benchmarking of existing state-of-the-art panoptic seg-

mentation architectures on the newly introduced KITTI

panoptic segmentation dataset and IDD dataset.

7. Comprehensive benchmarking of our proposed Effi-

cientPS architecture on Cityscapes, Mapilliary Vistas,

KITTI and IDD datasets.

8. Extensive ablation studies that compare the performance

of various architectural components that we propose in

this work with their counterparts from state-of-the-art

architectures.

9. Implementation of our proposed architecture and a live

demo on all the four datasets is publicly available at http://

rl.uni-freiburg.de/research/panoptic.

2 RelatedWorks

Panoptic segmentation is a recently introduced scene under-

standing problem (Kirillov et al 2019b) that unifies the tasks

of semantic segmentation and instance segmentation. There

are numerous methods that have been proposed for each of

these sub-tasks, however only a handful of approaches have

been introduced to tackle this coherent scene understand-

ing problem of panoptic segmentation. Most works in this

domain are largely built upon advances made in semantic

segmentation and instance segmentation, therefore we first

review recent methods that have been proposed for these

closely related tasks, followed by state-of-the-art approaches

that have been introduced for panoptic segmentation.

Semantic Segmentation: There has been significant advanc-

es in semantic segmentation approaches in recent years.

In this section, we briefly review methods that use a sin-

gle monocular image to tackle this task. Approaches from
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the past decade, typically employ random decision forests

to address this task. Shotton et al (2008) use randomized

decision forests on local patches for classification, whereas

Plath et al (2009) fuse local and global features along with

Conditional Random Fields(CRFs) for segmentation. As

opposed to leveraging appearance-based features, Brostow

et al (2008) use cues from motion with random forests.

Sturgess et al (2009) further combine appearance-based

features with structure-from-motion features in addition to

CRFs to improve the performance. However, 3D features

extracted from dense depth maps (Zhang et al 2010) have

been demonstrated to be more effective than the combined

features. Kontschieder et al (2011) exploit the inherent

topological distribution of object classes to improve the per-

formance, whereas Krähenbühl and Koltun (2011) improve

segmentation by pairing CRFs with Gaussian edge potentials.

Nevertheless, all these methods employ handcrafted features

that do not encapsulate all the high-level and low-level rela-

tions thereby limiting their representational ability.

The significant improvement in performance of classifica-

tion tasks brought about by Convolutional Neural Network

(CNN) based approaches motivated researchers to explore

such methods for semantic segmentation. Initially, these

approaches relied on patch-wise training that severely lim-

ited their ability to accurately segment object boundaries.

However, they still perform substantially better than previ-

ous handcrafted methods. The advent of end-to-end learning

approaches for semantic segmentation lead by the intro-

duction of Fully Convolutional Networks (FCNs) (Long

et al 2015) revolutionized this field and FCNs still form

the base upon which state-of-the-art architecture are built

upon today. FCN is an encoded-decoder architecture where

the encoder is based on the VGG-16 (Simonyan and Zisser-

man 2014) architecture with inner-product layers replaced

with convolutions, and the decoder consists of convolu-

tion and transposed convolution layers. The subsequently

proposed SegNet (Badrinarayanan et al 2017) architecture

introduced unpooling layers for upsampling as a replace-

ment for transposed convolutions, whereas ParseNet (Liu

et al 2015) models global context directly as opposed to only

relying on the largest receptive field of the network.

The PSPNet (Zhao et al 2017) architecture emphasizes on

the importance of multi-scale features and propose pyramid

pooling to learn feature representations at different scales. Yu

and Koltun (2015) introduce atrous convolutions to further

exploit multi-scale features in semantic segmentation net-

works. Subsequently, Valada et al (2017) propose multi-scale

residual units with parallel atrous convolutions with different

dilation rates to efficiently learn multiscale features through-

out the network without increasing the number of parameters.

Chen et al (2017b) propose the Atrous Spatial Pyramid Pool-

ing (ASPP) module that concatenates feature maps from

multiple parallel atrous convolutions with different dila-

tion rates and a global pooling layer. ASPP substantially

improves the performance of semantic segmentation net-

works by aggregating multi-scale features and capturing

long-range context, however it significantly increases the

computational complexity. Therefore, Chen et al (2018a) pro-

pose Dense Prediction Cells (DPC) and Valada et al (2019)

propose Efficient Atrous Spatial Pyramid Pooling (eASPP)

that yield better semantic segmentation performance than

ASPP while being 10-times more efficient. Li et al (2019a)

suggest that global feature aggregation often leads to large

pattern features and also over-smooth regions of small pat-

terns which results in sub-optimal performance. In order to

alleviate this problem, the authors propose the use of a global

aggregation module coupled with a local distribution mod-

ule which results in features that are balanced in small and

large pattern regions. There are also several works that have

been proposed to improve the upsampling in decoders of

encoder-decoder architectures. In (Chen et al 2018b), the

authors introduce a novel decoder module for object bound-

ary refinement. Tian et al (2019) propose data-dependent

upsampling which accounts for the redundancy in the label

space as opposed to simple bilinear upsampling.

Instance Segmentation: Some of the initial approaches

employ CRFs (He and Gould 2014b) and minimize integer

quadratic relations (Tighe et al 2014). Methods that exploit

CNNs with Markov random fields (Zhang et al 2016) and

recurrent neural networks (Romera-Paredes and Torr 2016;

Ren and Zemel 2017) have also been explored. In this section,

we primarily discuss CNN-based approaches for instance

segmentation. These methods can be categorized into pro-

posal free and proposal based methods.

Methods in the proposal free category often obtain

instance masks from a resulting transformation. Bai and Urta-

sun (2017) uses CNNs to produce an energy map of the

image and then perform a cut at a single energy level to

obtain the corresponding object instances. Liu et al (2017)

employ a sequence of CNNs to solve sub-grouping prob-

lems in order to compose object instances. Some approaches

exploit FCNs which either use local coherence for estimat-

ing instances (Dai et al 2016) or encode the direction of each

pixel to its corresponding instance centre (Uhrig et al 2016).

The recent approach, SSAP (Gao et al 2019) uses pixel-pair

affinity pyramids for computing the probability that two pix-

els hierarchically belong to the same instance. However, they

achieve a lower than proposal based methods which has led

to a decline in their popularity.

In proposal based methods, Hariharan et al (2014) pro-

pose a method that uses Multiscale Combinatorial Group-

ing (Arbeláez et al 2014) proposals as input to CNNs for fea-

ture extraction and then employ an SVM classifier for region

classification. Subsequently, Hariharan et al (2015) propose

hypercolumn pixel descriptors for simultaneous detection

and segmentation. In recent works, DeepMask (Pinheiro et al
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2015) uses a patch of an image as input to a CNN which yields

a class-agnostic segmentation mask and the likelihood of the

patch containing an object. FCIS (Li et al 2017) employs

position-sensitive score maps obtained from classification

of pixels based on their relative positions to perform seg-

mentation and detection jointly. Dai et al (2016) propose an

approach for instance segmentation that uses three networks

for distinguishing instances, estimating masks and categoriz-

ing objects. Mask R-CNN (He et al 2017) is one of the most

popular and widely used approaches in the present time. It

extends Faster R-CNN for instance segmentation by adding

an object segmentation branch parallel to an branch that

performs bounding box regression and classification. More

recently, Liu et al (2018) propose an approach to improve

Mask R-CNN by adding bottom-up path augmentation that

enhances object localization ability in earlier layers of the

network. Subsequently, BshapeNet (Kang and Kim 2018)

extends Faster R-CNN by adding a bounding box mask

branch that provides additional information of object posi-

tions and coordinates to improve the performance of object

detection and instance segmentation.

Panoptic Segmentation: In an earlier attempt of unifying

semantic and instance segmentation task, (Tu et al 2005)

uses a Bayesian framework to output scene representation

as a parsing graph. Further, some approaches employ aux-

iliary variables to reason at the segment level (Yao et al

2012) and combination of region-level features with per-

exemplar sliding window detectors (Tighe and Lazebnik

2013) to address the task. Methods such as minimization

of an integer quadratic program (Tighe et al 2014) and max-

imization of a posteriori inference (Sun et al 2013) have also

been explored. Nevertheless, the aforementioned methods

due to their complexity and sub-par performance couldn’t

garner much attention to the task. But later Kirillov et al

(2019b) revived the unification of semantic segmentation

and instance segmentation tasks by introducing panoptic seg-

mentation. They propose a baseline model that combines the

output of PSPNet (Zhao et al 2017) and Mask R-CNN (He

et al 2017) with a simple post-processing step in which

each model processes the inputs independently. The meth-

ods that address this task of panoptic segmentation can be

broadly classified into two categories: top-down or proposal

based methods and bottom-up or proposal free methods.

Most of the current state-of-the-art methods adopt the top-

down approach. de Geus et al (2018) propose joint training

with a shared backbone that branches into Mask R-CNN for

instance segmentation and augmented Pyramid Pooling mod-

ule for semantic segmentation. Subsequently, Li et al (2019b)

introduce Attention-guided Unified Network that uses pro-

posal attention module and mask attention module for better

segmentation of ‘stuff’ classes. All the aforementioned meth-

ods use a similar fusion technique to Kirillov et al (2019b)

for the fusion of ‘stuff’ and ‘thing’ predictions.

In top-down panoptic segmentation architectures, pre-

dictions of both heads have an inherent overlap between

them resulting in the mask overlapping problem. In order

to mitigate this problem, Li et al (2018b) propose a weakly

supervised model where ‘thing’ classes are weakly super-

vised by bounding boxes and ‘stuff’ classes are supervised

with image-level tags. Whereas, Liu et al (2019) address the

problem by introducing the spatial ranking module and Li

et al (2018a) propose a method that learns a binary mask to

constrain output distributions of ‘stuff’ and ‘thing’ explic-

itly. Subsequently, UPSNet (Xiong et al 2019) introduces

a parameter-free panoptic head to address the problem of

overlapping of instances and also predicts an extra unknown

class. More recently, AdaptIS (Sofiiuk et al 2019) uses point

proposals to produce instance masks and jointly trains with a

standard semantic segmentation pipeline to perform panoptic

segmentation. In contrast, Porzi et al (2019) propose an archi-

tecture for panoptic segmentation that effectively integrates

contextual information from a lightweight DeepLab-inspired

module with multi-scale features from a FPN.

Compared to the popular proposal based methods, there

are only a handful of proposal free methods that have been

proposed. Deeper-Lab (Yang et al 2019) was the first bottom-

up approach that was introduced and it employs an encoder-

decoder topology to pair object centres for class-agnostic

instance segmentation with DeepLab semantic segmentation.

Cheng et al (2020) further builds on Deeper-Lab by introduc-

ing a dual-ASPP and dual-decoder structure for each sub-task

branch. SSAP (Gao et al 2019) proposes to group pixels based

on a pixel-pair affinity pyramid and incorporate an efficient

graph method to generate instances while jointly learning

semantic labeling.

In this work, we adopt a top-down approach due to its

exceptional ability to handle large scale variation of instances

which is a critical requirement for segmenting ‘thing’ classes.

We present the novel EfficientPS architecture that incorpo-

rates our proposed efficient backbone with our 2-way FPN for

learning rich multi-scale features in a bidirectional manner,

coupled with a new semantic head that captures fine-features

and long-range context effectively, and a variant of Mask

R-CNN augmented with depthwise separable convolutions

as the instance head. We propose a novel panoptic fusion

module to dynamically adapt the fusion of logits from the

semantic and instance heads to yield the panoptic segmenta-

tion output. Our architecture achieves state-of-the-art results

on benchmark datasets while being the most efficient and fast

panoptic segmentation architecture.

3 EfficientPS Architecture

In this section, we first give a brief overview of our pro-

posed EfficientPS architecture and then detail each of its
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Fig. 2 Illustration of our proposed EfficientPS architecture consist-

ing of a shared backbone with our 2-way FPN and parallel semantic

and instance segmentation heads followed by our panoptic fusion mod-

ule. The shared backbone is built upon on the EfficientNet architecture

and our new 2-way FPN that enables bidirectional flow of information.

The instance segmentation head is based on a modified Mask R-CNN

topology and we incorporate our proposed semantic segmentation head.

Finally, the outputs of both heads are fused in our panoptic fusion mod-

ule to yield the panoptic segmentation output

constituting components. Our network follows the top-down

layout as shown in Fig. 2. It consists of a shared backbone

with a 2-way Feature Pyramid Network (FPN), followed by

task-specific semantic segmentation and instance segmenta-

tion heads. We build upon the EfficientNet (Tan and Le 2019)

architecture for the encoder of our shared backbone (depicted

in red). It consists of mobile inverted bottleneck (Xie et al

2017) units and employs compound scaling to uniformly

scale all the dimensions of the encoder network. This enables

our encoder to have a rich representational capacity with

fewer parameters in comparison to other encoders or back-

bones of similar discriminative capability.

As opposed to employing the conventional FPN (Lin et al

2017) that is commonly used in other panoptic segmenta-

tion architectures (Kirillov et al 2019a; Li et al 2018a; Porzi

et al 2019), we incorporate our proposed 2-way FPN that

fuses multi-scale features more effectively than its counter-

parts. This can be attributed to the fact that the information

flow in our 2-way FPN is not bounded to only one direction as

depicted by the purple, blue and green blocks in Fig. 2. Subse-

quently after the 2-way FPN, we employ two heads in parallel

which are semantic segmentation (depicted in yellow) and

instance segmentation (depicted in gray and orange) respec-

tively. We use a variant of the Mask R-CNN (He et al 2017)

architecture as the instance head and we incorporate our novel

semantic segmentation head consisting of dense prediction

cells (Chen et al 2018a) and residual pyramids. The seman-

tic head consists of three different modules for capturing fine

features, long-range contextual features and correlating the

distinctly captured features for improving object boundary

refinement. Finally, we employ our proposed panoptic fusion

module to fuse the outputs of the semantic and instance heads

to yield the panoptic segmentation output.

3.1 Network Backbone

The backbone of our network consists of an encoder with our

proposed 2-way FPN. The encoder is the basic building block

of any segmentation network and a strong encoder is essen-

tial to have high representational capacity. In this work, we

seek to find a good trade-off between the number of param-

eters and computational complexity to the representational

capacity of the network. EfficientNets (Tan and Le 2019)

which are a recent family of architectures have been shown
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to significantly outperform other networks in classification

tasks while having fewer parameters and FLOPs. It employs

compound scaling to uniformly scale the width, depth and

resolution of the network efficiently. Therefore, we choose

to build upon this scaled architecture with 1.6, 2.2 and 456

coefficients, commonly known as the EfficientNet-B5 model.

This can be easily replaced with any of the EfficientNet mod-

els based on the capacity of the resources that are available

and the computational budget.

In order to adapt EfficientNet to our task, we first remove

the classification head as well as the Squeeze-and-Excitation

(SE) (Hu et al 2018) connections in the network. We find that

the explicit modelling of interdependencies between chan-

nels of the convolutional feature maps that are enabled by

the SE connections tend to suppress localization of features

in favour of contextual elements. This property is a desired

in classification networks, however both are equally impor-

tant for segmentation tasks, therefore we do not add any

SE connections in our backbone. Second, we replace all the

batch normalization (Ioffe and Szegedy 2015) layers with

synchronized Inplace Activated Batch Normalization (iABN

sync) (Rota Bulò et al 2018). This enables synchronization

across different GPUs, which in turn yields a better esti-

mate of gradients while performing multi-GPU training and

the in-place operations frees up additional GPU memory. We

analyze the performance of our modified EfficientNet in com-

parison to other encoders commonly used in state-of-the-art

architectures in the ablation study presented in Sect. 4.4.2.

Our EfficientNet encoder comprises of nine blocks as

shown in Fig. 2 (in red). We refer to each block in the figure

as block 1 to block 9 in the left to right manner. The output

of block 2, 3, 5, and 9 corresponds to downsampling factors

×4,×8,×16 and ×32 respectively. The outputs from these

blocks with downsampling are also inputs to our 2-way FPN.

The conventional FPN used in other panoptic segmentation

networks aims to address the problem of multi-scale feature

fusion by aggregating features of different resolutions in a

top-down manner. This is performed by first employing a

1 × 1 convolution to reduce or increase the number of chan-

nels of different encoder output resolutions to a predefined

number, typically 256. Then, the lower resolution features

are upsampled to a higher resolution and are subsequently

added together. For example, ×32 resolution encoder output

features will be resized to the ×16 resolution and added to the

×16 resolution encoder output features. Finally, a 3×3 con-

volution is used at each scale to further learn fused features

which yields the P4, P8, P16 and P32 outputs. This FPN topol-

ogy has a limited unidirectional flow of information resulting

in an ineffective fusion of multi-scale features. Therefore, we

propose to mitigate this problem by adding a second branch

that aggregates multi-scale features in a bottom-up manner

to enable bidirectional flow of information.

Our proposed 2-way FPN shown in Fig. 2 consists of two

parallel branches. Each branch consists of a 1×1 convolution

with 256 output filters at each scale for channel reduction.

The top-down branch shown in blue follows the aggregation

scheme of a conventional FPN from right to left. Whereas, the

bottom-up branch shown in purple, downsamples the higher

resolution features to the next lower resolution from left to

right and subsequently adds them with the next lower reso-

lution encoder output features. For example, ×4 resolution

features will be resized to the ×8 resolution and added to

the ×8 resolution encoder output features. Then in the next

stage, the outputs from the bottom-up and top-down branches

at each resolution are correspondingly summed together and

passed through a 3×3 depthwise separable convolution with

256 output channels to obtain the P4, P8, P16, and P32 outputs

respectively. We employ depthwise separable convolutions

as opposed to standard convolutions in an effort to keep the

parameter consumption low. We evaluate the performance of

our proposed 2-way FPN in comparison to the conventional

FPN in the ablation study presented in Sect. 4.4.3.

3.2 Semantic Segmentation Head

Our proposed semantic segmentation head consists of three

components, each aimed at targeting one of the critical

requirements. First, at large-scale, the network should have

the ability to capture fine features efficiently. In order to

enable this, we employ our Large Scale Feature Extractor

(LSFE) module that has two 3 × 3 depthwise separable

convolutions with 128 output filters, each followed by an

iABN sync and a Leaky ReLU activation function. The first

3 × 3 depthwise separable convolution reduces the number

of filters to 128 and the second 3 × 3 depthwise separable

convolution further learns deeper features.

The second requirement is that at small-scale, the net-

work should be able to capture long-range context. Mod-

ules inspired by Atrous Spatial Pyramid Pooling (ASPP)

Chen et al (2017a) that are widely used in state-of-the-art

semantic segmentation architectures have been demonstrated

to be effective for this purpose. Dense Prediction Cells

(DPC) (Chen et al 2018a) and Efficient Atrous Spatial Pyra-

mid Pooling (eASPP) (Valada et al 2019) are two variants of

ASPP that are significantly more efficient and also yield a

better performance. We find that DPC demonstrates a better

performance with a minor increase in the number of param-

eters compared to eASPP. Therefore, we employ a modified

DPC module in our semantic head as shown in Fig. 2. We

augment the original DPC topology by replacing batch nor-

malization layers with iABN sync, and ReLUs with Leaky

ReLUs. The DPC module consists of a 3×3 depthwise sepa-

rable convolution with 256 output channels having a dilation

rate of (1,6) and extends out to five parallel branches. Three

of the branches, each consist of a 3×3 dilated depthwise sep-
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Fig. 3 Topologies of various architectural components in our proposed

semantic head and instance head of our EfficientPS architecture

arable convolution with 256 outputs, where the dilation rates

are (1,1), (6,21), and (18,15) respectively. The fourth branch

takes the output of the dilated depthwise separable convo-

lution with a dilation rate of (18,15), as input and passes it

through another 3 × 3 dilated depthwise separable convolu-

tion with 256 output channels and a dilation rate of (6,3).

The outputs from all these parallel branches are then con-

catenated to yield a tensor with 1280 channels. This tensor is

then finally passed through a 1×1 convolution with 256 out-

put channels and forms the output of the DPC module. Note

that each of the convolutions in the DPC module is followed

by a iABN sync and a Leaky ReLU activation function.

The third and final requirement for the semantic head

is that it should be able to mitigate the mismatch between

large-scale and small-scale features while performing feature

aggregation. To this end, we employ our Mismatch Correc-

tion Module (MC) that correlates the small-scale features

with respect to large-scale features. It consists of cascaded

3×3 depthwise separable convolutions with 128 output chan-

nels, followed by iABN sync with Leaky ReLU and a bilinear

upsampling layer that upsamples the feature maps by a factor

of 2. Figure 3a, c, d illustrate the topologies of these main

components of our semantic head.

The four different scaled outputs of our 2-way FPN,

namely P4, P8, P16 and P32 are the inputs to our semantic

head. The small-scale inputs, P32 and P16 with downsampling

factors of ×32 and ×16 are each fed into two parallel DPC

modules. While the large-scale inputs, P8 and P4 with down-

sampling factors of ×8 and ×4 are each passed through two

parallel LSFE modules. Subsequently, the outputs from each

of these parallel DPC and LSFE modules are augmented with

feature alignment connections and each of them is upsam-

pled to x4 scale. These upsampled feature maps are then

concatenated to yield a tensor with 512 channels which is

then input to a 1 × 1 convolution with N‘stu f f ′+‘thing′ output

filters. This tensor is then finally upsampled by a factor of

4 and passed through a softmax layer to yield the semantic

logits having the same resolution as the input image. Now,

the feature alignment connections from the DPC and LSFE

modules interconnect each of these outputs by element-wise

summation as shown in Fig. 2. We add our MC modules

in the interconnections between the second DPC and LSFE

as well as between both the LSFE connections. These cor-

relation connections aggregate contextual information from

small-scale features and characteristic large-scale features

for better object boundary refinement. We use the weighted

per-pixel log-loss (Bulo et al 2017) for training which is given

by

Lpp(Θ) = −
∑

i j

wi j (p∗
i j ) log pi j , (1)

p∗
i, j is the groundtruth for a given image, pi, j is the predicted

probability for the pixel (i, j) being assigned class c ∈ p,

wi j = 4
W H

if pixel (i, j) belongs to 25% of the worst pre-

diction, and wi j = 0 otherwise. W and H are the width and

height of the given input image. The overall semantic head

loss is given by

Lsemantic(Θ) =
1

n

∑
L pp, (2)

where n is the batch size. We present in-depth analysis of

our semantic head in comparison other semantic heads com-

monly used in state-of-the-art architectures in Sect. 4.4.4.

3.3 Instance Segmentation Head

The instance segmentation head of our EfficientPS network

shown in Fig. 2 has a topology similar to Mask R-CNN (He

et al 2017) with certain modifications. More specifically, we

replace all the standard convolutions, batch normalization

layers, and ReLU activations with depthwise separable con-

volution, iABN sync, and Leaky ReLU respectively. Similar

to the rest of our architecture, we use depthwise separa-

ble convolutions instead of standard convolutions to reduce

the number of parameters consumed by the network. This

enables us to conserve 2.09 M parameters in comparison to

the conventional Mask R-CNN.

Mask R-CNN consists of two stages. In the first stage,

the Region Proposal Network (RPN) module shown in Fig.
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3b employs a fully convolutional network to output a set of

rectangular object proposals and an objectness score for the

given input FPN level. Subsequently, ROI align (He et al

2017) uses object proposals to extract features from FPN

encodings by directly pooling features from the nth channel

with a 14 × 14 spatial resolution bounded within a bounding

box proposal. The features that are extracted then serve as

input to the bounding box regression, object classification

and mask segmentation networks. The logits output from the

mask segmentation networks for each candidate bounding

box proposal is then fused with the semantic logits in our

proposed panoptic fusion module described in Sect. 3.4.

In order to train the instance segmentation head, we adopt

the loss functions proposed in Mask R-CNN, i.e. two loss

functions for the first stage: objectness score loss and object

proposal loss, and three loss functions for the second stage:

classification loss, bounding box loss and mask segmentation

loss. We take a set of randomly sampled positive matches and

negative matches such that |Ns | ≤ 256. The objectness score

loss Los defined as log loss for a given Ns is given by

Los(Θ) = −
1

|Ns |

∑

(p∗
os ,pos )∈Ns

p∗
os · log pos

+ (1 − p∗
os) · log(1 − pos), (3)

where pos is the output of the objectness score branch of RPN

and p∗
os is the groundtruth label which is 1 if the anchor is pos-

itive, and 0 if the anchor is negative. We use the same strategy

as Mask R-CNN for defining positive and negative matches.

For a given anchor a, if the groundtruth box b∗ has the largest

Intersection over Union (IoU) or IoU(b∗, a) > TH , then the

corresponding prediction b is a positive match and b is a neg-

ative match when IoU(b∗, a) < TL . The thresholds TH and

TL are pre-defined where TH > TL .

The object proposal loss Lop is a regression loss that is

defined only on positive matches and is given by

Lop(Θ) =
1

|Ns |

∑

(t∗,t)∈Np

∑

(i∗,i)∈(t∗,t)

L1(i∗, i), (4)

where L1 is the smooth L1 Norm, Np is the subset of Ns

positive matches, t∗ = (t∗x , t∗y , t∗w, t∗h ) and t = (tx , ty, tw, th)

are the parameterizations of b∗ and b respectively, b∗ =

(x∗, y∗, w∗, h∗) is the groundtruth box, b∗ = (x, y, w, h)

is the predicted bounding box, x, y, w and h are the cen-

ter coordinates, width and height of the predicted bounding

box. Similarly, x∗, y∗, w∗ and h∗ denote the center coordi-

nates, width and height of the groundtruth bounding box. The

parameterizations (Girshick 2015) are given by

tx =
(x − xa)

wa

, ty =
(y − ya)

ha

,

tw = log
w

wa

,

th = log
h

ha

, (5)

t∗x =
(x∗ − xa)

wa

, t∗y =
(y∗ − ya)

ha

,

t∗w = log
w∗

wa

,

t∗h = log
h∗

ha

, (6)

where xa, ya, wa and ha denote the center coordinates, width

and height of the anchor a.
Similar to the objectness score loss Los , the classification

loss Lcls is defined for a set of Ks randomly sampled positive
and negative matches such that |Ks | ≤ 512. The classifica-
tion loss Lcls is given by

Lcls(Θ) = −
1

|Ks |

N‘thing′+1∑

c=1

Y ∗
o,c · log Yo,c, for(Y ∗, Y ) ∈ Ks , (7)

where Y is the output of the classification branch, Y ∗ is the

one hot encoded groundtruth label, o is the observed class,

and c is the correct classification for object o. For a given

image, it is a positive match if IoU(b∗, b) > Tn and otherwise

a negative match, where b∗ is the groundtruth box, and b is

the object proposal from the first stage.

The bounding box loss Lbbx is a regression loss that is

defined only on positive matches and is expressed as

Lbbx (Θ) =
1

|Ks |

∑

(T ∗,T )∈K p

∑

(i∗,i)∈(T ∗,T )

L1(i∗, i), (8)

where L1 is the smooth L1 Norm (Girshick 2015), K p is the

subset of Ks positive matches, T ∗ and T are the parameter-

izations of B∗ and B respectively, similar to Equation (3)

and (4) where B∗ is the groundtruth box, and B is the corre-

sponding predicted bounding box.

Finally, the mask segmentation loss is also defined only

for positive samples and is given by

Lmask(Θ) = −
1

|Ks |

∑

(P∗,P)∈Ks

L p(P∗, P), (9)

where L p(P∗, P) is given as

L p(P∗, P) = −
1

|Tp|

∑

(i, j)∈Tp

P∗
i, j · log Pi, j

+ (1 − P∗
i, j ) · log(1 − Pi, j ), (10)

where P is the predicted 28×28 binary mask for a class with

Pi, j denoting the probability of the mask pixel (i, j), P∗ is
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Fig. 4 Illustration of our proposed Panoptic Fusion Module. Here, MLA

and MLB mask logits are fused as (σ (M L A) + σ(M L B)) ⊙ (M L A +

M L B)), where MLB is output of the function f ∗, σ(·) is the sigmoid

function and ⊙ is the Hadamard product. Here, the f ∗ function for given

class prediction c (cyclist in this example), zeroes out the score of the c

channel of the semantic logits outside the corresponding bounding box.

Please note that 16 initial mask logits and 4 instances are just arbitrary

number taken for the sake of ease of explanation. The real values can

and are much higher than these numbers

the 28 × 28 groundtruth binary mask for the class, and Tp is

the set of non-void pixels in P∗.

All the five losses are weighed equally and the total

instance segmentation head loss is given by

Linstance = Los + Lop + Lcls + Lbbx + Lmask . (11)

Similar to Mask R-CNN, the gradient that is computed w.r.t

to the losses Lcls , Lbbx and Lmask flow only through the net-

work backbone and not through the region proposal network.

3.4 Panoptic FusionModule

In order to obtain the panoptic segmentation output, we need

to fuse the prediction of the semantic segmentation head and

the instance segmentation head. However, fusing both these

predictions is not a straightforward task due to the inherent

overlap between them. Therefore, we propose a novel panop-

tic fusion module to tackle the aforementioned problem in

an adaptive manner in order to thoroughly exploit the pre-

dictions from both the heads congruously. Figure 4 shows

the topology of our panoptic fusion module. We obtain a

set of object instances from the instance segmentation head

of our network where for each instance, we have its corre-

sponding class prediction, confidence score, bounding box

and mask logits. First, we reduce the number of predicted

object instances in two stages. We begin by discarding all

object instances that have a confidence score of less than a

certain confidence threshold. We then resize, zero pad and

scale the 28 × 28 mask logits of each object instance to the

same resolution as the input image. Subsequently, we sort

the class prediction, bounding box and mask logits accord-

ing to the respective confidence scores. In the second stage,

we check each sorted instance mask logit for overlap with

other object instances. To do so we compute the sigmoid

of the mask logits and threshold it at 0.5 to obtain the cor-

responding binary mask. Then if the overlap between the

binary masks is greater than a given overlap threshold, the

mask logits with the highest confidence are retained and the

other overlapping mask logits are discarded.

After filtering the object instances, we have the class pre-

diction, bounding box prediction and mask logit M L A of

each instance. We simultaneously obtain semantic logits with

N channels from the semantic head, where N is the sum of

N‘stu f f ′ and N‘thing′ . We then compute a second mask logit

M L B for each instance where we select the channel of the

semantic logits based on its class prediction. We only keep

the logit score of the selected channel for the area within

the instance bounding box, while we zero out the scores that

are outside this region. In the end, we have two mask logits

for each instance, one from instance segmentation head and

the other from the semantic segmentation head. We combine

these two logits adaptively by computing the Hadamard prod-

uct of the sum of sigmoid of M L A and sigmoid of M L B , and

the sum of M L A and M L B to obtain the fused mask logits

F L of instances expressed as

F L = (σ (M L A) + σ(M L B)) ⊙ (M L A + M L B), (12)

where σ(·) is the sigmoid function and ⊙ is the Hadamard

product. We then concatenate the fused mask logits of the

object instances with the ‘stuff’ logits along the channel
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dimension to generate intermediate panoptic logits. Subse-

quently, we apply the argmax operation along the channel

dimension to obtain the intermediate panoptic prediction. In

the final step, we take a zero-filled canvas and first copy

the instance-specific ‘thing’ prediction from the intermedi-

ate panoptic prediction. We then fill the empty parts of the

canvas with ‘stuff’ class predictions by copying them from

the predictions of the semantic head while ignoring classes

that have an area smaller than a predefined threshold called

minimum stuff area. This gives us the final panoptic segmen-

tation output.

We fuse M L A and M L B instance logits in the aforemen-

tioned manner due to the fact that if both logits for a given

pixel conform with each other, the final instance score will

increase proportionately to their agreement or vice-versa. In

case of agreement, the corresponding object instance will

dominate or be superseded by other instances as well as the

‘stuff’ classes score. Similarly, in case of disagreement, the

score of the given object instance will reflect the extent of

their difference. Simply put, the fused logit score is either

adaptively attenuated or amplified according to the consen-

sus. We evaluate the performance of our proposed panoptic

fusion module in comparison to other existing methods in

the ablation study presented in Sect. 4.4.5.

4 Experimental Results

In this section, we first describe the standard evaluation met-

rics that we adopt for empirical evaluations, followed by

brief descriptions of the datasets that we benchmark on in

Sect. 4.1. We then present extensive quantitative compar-

isons and benchmarking results in Sect. 4.3, and detailed

ablation studies on the various proposed architectural compo-

nents in Sect. 4.4. Finally, we present qualitative comparisons

and visualizations of panoptic segmentation on each of the

datasets that we evaluate on in Sects.4.5 and 4.6 respectively.

We use PyTorch (Paszke et al 2019) for implementing

all our architectures and we trained our models on a sys-

tem with an Intel Xenon@2.20GHz processor and NVIDIA

TITAN X GPUs. We use the standard Panoptic Quality (PQ)

metric (Kirillov et al 2019b) for quantifying the performance

of our models. The PQ metric is computed as

P Q =

∑
(p,g)∈T P I oU (p, g)

|T P| + 1
2
|F P| + 1

2
|F N |

, (13)

where T P, F P, F N and I oU are true positives, false pos-

itives, false negatives and the intersection-over-union. The

I oU is computed as I oU = T P/(T P + F P + F N ). We

also report the Segmentation Quality (SQ) and Recognition

Quality (RQ) metrics computed as

SQ =

∑
(p,g)∈T P I oU (p, g)

|T P|
, (14)

RQ =
|T P|

|T P| + 1
2
|F P| + 1

2
|F N |

. (15)

Following the standard benchmarking criteria for pantop-

tic segmentation, we report PQ, SQ and RQ over all the

classes in the dataset, and we also report them for the ‘stuff’

classes (PQSt, SQSt, RQSt) and the ‘thing’ classes (PQTh,

SQTh, RQTh). Additionally, for the sake of completeness,

we report the Average Precision (AP), mean Intersection-

over-Union (mIoU) for both ‘stuff’ and ‘thing’ classes, as

well as the inference time and FLOPs for comparisons. The

implementation of our proposed EfficientPS model and a live

demo on various datasets is publicly available at https://rl.

uni-freiburg.de/research/panoptic.

4.1 Datasets

We benchmark our proposed EfficientPS for panoptic seg-

mentation on four challenging urban scene understanding

datasets, namely, Cityscapes (Cordts et al 2016), KITTI (Geiger

et al 2013), Mapillary Vistas (Neuhold et al 2017), and Indian

Driving Dataset (Varma et al 2019). The KITTI benchmark

does not provide panoptic annotations, therefore to facilitate

this work, we publicly release manually annotated panop-

tic groundtruth segmentation labels for the popular KITTI

benchmark. These four diverse datasets contain images that

range from congested city driving scenarios to rural scenes

and highways. They also contain scenes in challenging per-

ceptual conditions including snow, motion blur and other

seasonal visual changes. We briefly describe the characteris-

tics of these datasets in this section.

Cityscapes: The Cityscapes dataset (Cordts et al 2016)

consists of urban street scenes and focuses on semantic

understanding of common driving scenarios. It is one of the

most challenging datasets for panoptic segmentation due to

its sheer diversity as it covers scenes from over 50 European

cities recorded over several seasons such as spring, sum-

mer and fall. The presence of a large number of dynamic

objects further add to its complexity. Figure 5a shows an

example image and the corresponding panoptic groundtruth

annotation from the Cityscapes dataset. As we see from

this example, the scenes are extremely clutterd with many

dynamic objects such as pedestrians and cyclists that are

often grouped near one and another or partially occluded.

These factors make panoptic segmentation, especially seg-

menting the ‘thing’ class exceedingly challenging.

The widely used Cityscapes dataset recently introduced

a benchmark for the task of panoptic segmentation. The

dataset contains pixel-level annotations for 19 object classes

of which 11 are ‘stuff’ classes and 8 are instance-specific
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Fig. 5 Example images from the challenging urban scene under-

standing datasets that we benchmark on, namely, Cityscapes, KITTI,

Mapillary Vistas, and Indian Driving Dataset (IDD). The images show

cluttered urban scenes with many dynamic objects, occluded objects,

perpetual snowy conditions and unstructured environments

‘thing’ classes. It consists of 5000 finely annotated images

and 20000 coarsely annotated images that were captured at a

resolution of 2048 × 1024 pixels using an automotive-grade

22 cm baseline stereo camera. The finely annotated images

are divided into 2975 for training, 500 for validation and 1525

for testing. The annotations for the test set are not publicly

released, they are rather only available to the online eval-

uation server that automatically computes the metrics and

publishes the results. We report the performance of our pro-

posed EfficientPS on both the validation set as well as the

test set. We also use the Cityscapes dataset for evaluating

the improvement due to the various architectural contribu-

tions that we make in the ablation study. We report results

on the validation set for our model trained only on the fine

annotations and we report the results on the test set from the

benchmarking server for our model trained on both the fine

and coarse annotations.

KITTI: The KITTI vision benchmark suite (Geiger et al

2013) is one of the most comprehensive datasets that provides

groundtruth for a variety of tasks such as semantic segmen-

tation, scene flow estimation, optical flow estimation, depth

prediction, odometry estimation, tracking and road lane

detection. However, it still has not expanded its annotations to

support the recently introduced panoptic segmentation task.

The challenging nature of the KITTI scenes and its poten-

tial for benchmarking multi-task learning problems, makes

extending this dataset to include panoptic annotations of

great interest to the community. Therefore, in this work, we

introduce the KITTI panoptic segmentation dataset for urban

scene understanding that provides panoptic annotations for a

subset of images from the KITTI vision benchmark suite. The

annotations for the images that we provide do not intersect

with the official KITTI semantic/instance segmentation test

set, therefore in addition to panoptic segmentation, they can

also be used as supplementary training data for benchmark-

ing semantic or instance segmentation tasks individually.

Our dataset consists of a total of 1055 images, out of which

855 are used for the training set and 200 are used for the

validation set. We provide annotations for 11 ‘stuff’ classes

and 8 ‘thing’ classes adhering to the Cityscapes ‘stuff’ and

‘thing’ class distribution. In order to create panoptic anno-

tations, we gathered semantic annotations from community

driven extensions of KITTI (Xu et al 2016; Ros et al 2015) and

combined them with the 200 training images from the KITTI

semantic training set. We then manually annotated all the

images with instance masks. We do so by manually drawing

boundaries around the objects. We use an overlay of RGB and

semantic segmentation image to guide the boundary draw-

ing process. The pixels within the drawn boundaries in the

semantic segmentation image are then labelled with a unique

id to generate the corresponding instance segmentation mask.

We create our simple annotation toolbox for labelling. We try

to delineate objects as much as humanly possible otherwise

treat the object as background or crowd in our annotations

scheme. The instance masks are then merged with the seman-

tic annotations to generate the panoptic segmentation ground

truth labels. The images in our KITTI panoptic segmentation

dataset are a resolution of 1280 × 384 pixels and contain

scenes from both residential and inner city scenarios. Fig-

ure 5b shows an example image from the KITTI panoptic

segmentation dataset and its corresponding panoptic segmen-

tation labels. We observe that the car denoted in teal color

pixels and the van are both partially occluded by other ‘stuff’

classes such that they cause an object instance to be disjoint

into two components. We find that scenarios such as these are

extremely challenging for the task of panoptic segmentation

as the disjoint object mask has to be assigned to the same

instance ID. We hope that this dataset encourages innovative

solutions to such real-world problems that are uncommon

in other datasets and also accelerates research in multi-task

learning for urban scene understanding.

Mapillary Vistas: Mapillary Vistas (Neuhold et al 2017)

is one of the largest publicly available street-level imagery

datasets that contains pixel-accurate and instance-specific

semantic annotations. The novel aspects of this dataset

include diverse scenes from over six continents and in a

variety of weather conditions, season, time of day, cameras,

and viewpoints. It consists of 18,000 images for training,

2,000 images for validation, and 5,000 images for testing.
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The dataset provides panoptic annotations for 37 ‘thing’

classes and 28 ‘stuff’ classes. The images in this dataset are

of different resolutions, ranging from 1024 × 768 pixels to

4000 × 6000 pixels. Figure 5c shows an example image and

the corresponding panoptic segmentation groundtruth from

the Mapillary Vistas dataset. We can see that due to the snowy

condition, recognizing distant objects such as the car in this

example becomes extremely difficult. Such drastic seasonal

changes make this dataset one of the most challenging for

panoptic segmentation.

Indian Driving Dataset: The Indian Driving Dataset (IDD)

(Varma et al 2019) was recently introduced for scene under-

standing of unstructured environments. Unlike other urban

scene understanding datasets, IDD consists of scenes that

do not have well-delineated infrastructures such as lanes

and sidewalks. It has a significantly more number of ‘thing’

instances in each scene compared to other datasets and it

only has a small number of well-defined categories for traf-

fic participants. The images in this dataset were captured

with a front-facing camera mounted on a car and the data

was gathered in two Indian cities as well as in their outskirts.

IDD consists of a total of 10,003 images, where 6993 are

used for training, 981 for validation and 2029 for testing.

The images are a resolution of either 1920 × 1080 pixels

or 720 × 1280 pixels. We train and evaluate all our mod-

els on 720p resolution on this dataset. The annotations are

provided in four levels of hierarchy. Existing approaches pri-

marily report their results for level 3, therefore we report the

results of our model on the same to facilitate comparison.

This level comprises of a total of 26 classes out of which 17

are ‘stuff’ classes and 9 are instance-specific ‘thing’ classes.

An example image and the corresponding panoptic segmen-

tation groundtruth from the IDD dataset is shown in Fig. 5d.

We observe that the transition between the road and the side-

walk class is structurally not well defined which often leads

to misclassifications. Factors such as this, make evaluating

on this dataset uniquely challenging.

4.2 Training Protocol

We train our network on crops of different resolutions of the

input image, namely, 1024×2048, 1024×1024, 384×1280,

and 720×1280 pixels. We take crops from the full resolution

of the image provided in each of the datasets. We perform a

limited set of random data augmentations including flipping

and scaling within the range of [0.5, 2.0]. We initialize the

backbone of our EfficientPS with weights from the Efficient-

Net model pre-trained on the ImageNet dataset (Russakovsky

et al 2015) and initialize the weights of the iABN sync layers

to 1. We use Xavier initialization (Glorot and Bengio 2010)

for the other layers, zero constant initialization for the biases

and we use Leaky ReLU with a slope of 0.01. We use the same

hyperparameters as Girshick (2015) for our instance head

and additionally set TH = 0.7, TL = 0.3, and TN = 0.5. In

our proposed panoptic fusion module, we use a confidence

threshold of ct = 0.5, overlap threshold of ot = 0.5 and

minimum stuff area of minsa = 2048.

We train our model with Stochastic Gradient Descent

(SGD) with a momentum of 0.9 using a multi-step learning

rate schedule i.e. we start with an initial base learning rate and

train the model for a certain number of iterations, followed

by lowering the learning rate by a factor of 10 at each mile-

stone and continue training until convergence. We denote

the base learning rate lrbase, milestones and the total num-

ber of iterations t i for each dataset in the following format:

{lrbase, {milestone, milestone}, t i}. The training schedule

for Cityscapes, Mapillary Vistas, KITTI and IDD are {0.07,

{32K, 44K}, 50K}, {0.07, {144K, 176K}, 192K}, {0.07,

{16K, 22K}, 25K} and {0.07 ,{108K, 130K}, 144K} respec-

tively. At the beginning of the training, we have a warm-up

phase where the lrbase is increased linearly from 1
3

· lrbase

to lrbase in 200 iterations. Aditionally, we freeze the iABN

sync layers and further train the model for 10 epochs with a

fixed learning rate of lr = 10−4. The final loss Ltotal that

we optimize is computed as

Ltotal = Lsemantic + Linstance, (16)

where Lsemantic and Linstance are given in Equation (2) and

Equation (11) respectively. We train our EfficientPS with a

batch size of 16 on 16 NVIDIA Titan X GPUs where each

GPU tends to a single-image.

4.3 Benchmarking Results

In this section, we report results comparing the per-

formance of our proposed EfficientPS architecture against

current state-of-the-art panoptic segmentation approaches.

For comparisons on the Cityscapes and Mapillary Vistas

datasets, we directly report the performance metrics of the

state-of-the-art methods as stated in their corresponding

manuscripts. While for KITTI and IDD, we report results for

the models that we trained using the official implementations

that have been publicly released by the authors after further

tuning of hyperparameters to the best of our ability. Note

that existing methods have not reported results on KITTI

and IDD validation sets. We report results on the validation

sets for all the datasets and we additionally report results on

the test set for the Cityscapes dataset by evaluating them on

the official server. Note that at the time of submission, only

the Cityscapes benchmark has the provision to evaluate the

results on the test set. On each of the datasets, we report both

the single-scale and multi-scale evaluation results. Following

standard practise, we perform horizontal flipping and scaling

(scales of {0.75, 1, 1.25, 1.5, 1.75, 2}) during the multi-scale

evaluations.
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Table 1 Performance comparison of panoptic segmentation on the Cityscapes validation set. Superscripts St and Th refer to ‘stuff’ and ‘thing’

classes respectively. − denotes that the metric has not been reported for the corresponding method

Mode Network Pre-training PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Single-Scale WeaklySupervised 47.3 − − 39.6 − − 52.9 − − 24.3 71.6

TASCNet 55.9 − − 50.5 − − 59.8 − − − −

Panoptic FPN 58.1 − − 52.0 − − 62.5 − − 33.0 75.7

AUNet 59.0 − − 54.8 − − 62.1 − − 34.4 75.6

UPSNet 59.3 79.7 73.0 54.6 79.3 68.7 62.7 80.1 76.2 33.3 75.2

DeeperLab 56.3 − − − − − − − − − −

Seamless 60.3 − − 56.1 − − 63.3 − − 33.6 77.5

SSAP 61.1 − − 55.0 − − − − − − −

AdaptIS 62.0 − − 58.7 − − 64.4 − − 36.3 79.2

Panoptic-DeepLab 63.0 − − − − − − − − 35.3 80.5

EfficientPS (ours) 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2 38.3 79.3

TASCNet COCO 59.3 − − 56 − − 61.5 − − 37.6 78.1

UPSNet COCO 60.5 80.9 73.5 57.0 − − 63.0 − − 37.8 77.8

Seamless Vistas 65.0 − − 60.7 − − 68.0 − − − 80.7

Panoptic-Deeplab Vistas 65.3 − − − − − − − − 38.8 82.5

EfficientPS (ours) Vistas 66.1 82.5 78.9 62.7 81.9 75.2 68.5 82.9 81.6 41.9 81.0

Multi-Scale Panoptic-DeepLab 64.1 − − − − − − − − 38.5 81.5

EfficientPS (ours) 65.1 82.2 79.0 61.5 81.4 75.4 67.7 82.8 81.7 39.7 80.3

TASCNet COCO 60.4 − − 56.1 − − 63.3 − − 39.1 78.7

M-RCNN + PSPNet COCO 61.2 80.9 74.4 54.0 − − 66.4 − − 36.4 80.9

UPSNet COCO 61.8 81.3 74.8 57.6 77.7 70.5 64.8 81.4 39.0 79.2

Panoptic-Deeplab Vistas 67.0 − − − − − − − − 42.5 83.1

EfficientPS (ours) Vistas 67.5 83.2 80.2 63.5 82.2 77.2 70.4 83.9 82.4 43.8 82.1

Table 2 Comparison of

panoptic segmentation

benchmarking results on the

Cityscapes test set

Network Pre-training PQ SQ RQ PQTh PQSt

(%) (%) (%) (%) (%)

SSAP 58.9 82.4 70.6 48.4 66.5

TASCNet COCO 60.7 81.0 73.8 53.4 66.0

Panoptic-Deeplab 62.3 82.4 74.8 52.1 69.7

Seamless Vistas 62.6 82.1 75.3 56.0 67.5

Panoptic-Deeplab Vistas 66.5 83.5 78.8 58.8 72.0

EfficientPS (ours) 64.1 82.6 76.8 56.7 69.4

EfficientPS (ours) Vistas 67.1 83.4 79.6 60.9 71.6

Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

Table 3 Comparison of model efficiency with both state-of-the-art top-

down and bottom-up panoptic segmentation architectures

Network Input Size Params. FLOPs Time

(pixels) (M) (B) (ms)

DeeperLab 1025 × 2049 − − 463

UPSNet 1024 × 2048 45.05 487.02 202

Seamless 1024 × 2048 51.43 514.00 168

Panoptic-Deeplab 1025 × 2049 46.73 547.49 175

EfficientPS (ours) 1024 × 2048 40.89 433.94 166

We compare the performance of our proposed EfficientPS

against state-of-the-art models on the Cityscapes dataset

including WeaklySupervised (Li et al 2018b), TASCNet (Li

et al 2018a), Panoptic FPN (Kirillov et al 2019a), AUNet (Li

et al 2019b), UPSNet (Xiong et al 2019), DeeperLab (Yang

et al 2019), Seamless (Porzi et al 2019), SSAP (Gao et al

2019), AdaptIS (Sofiiuk et al 2019), and Panoptic-DeepLab

(Cheng et al 2020). Table 1 shows the results on the

Cityscapes validation set. For a fair comparison, we cat-

egorize models in the table separately according to those
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Table 4 Performance comparison of panoptic segmentation on the Mapillary Vistas validation set

Mode Network PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Single-Scale JSIS-Net 17.6 55.9 23.5 10.0 47.6 14.1 27.5 66.9 35.8 − −

DeeperLab 32.0 − − − − − − − − − 55.3

TASCNet 32.6 − − 31.1 − − 34.4 − − 18.5 −

AdaptIS 35.9 − − 31.5 − − − 41.9 − − −

Seamless 37.7 − − 33.8 − − 42.9 − − 16.4 50.4

Panoptic-DeepLab 37.7 − − 30.4 − − 47.4 − − 14.9 55.3

EfficientPS (ours) 38.3 74.2 48.0 33.9 73.3 43.0 44.2 75.4 54.7 18.7 52.6

Multi-Scale TASCNet 34.3 − − 34.8 − − 33.6 − − 20.4 −

Panoptic-DeepLab 40.3 − − 33.5 − − 49.3 − − 17.2 56.8

EfficientPS (ours) 40.5 74.9 49.5 35.0 73.8 44.4 47.7 76.2 56.4 20.8 54.1

Note that no additional data was used for training EfficientPS on this dataset other than pre-training the encoder on ImageNet. Superscripts St and

Th refer to ‘stuff’ and ‘thing’ classes respectively. − denotes that the metric has not been reported for the corresponding method

that report single-scale and multi-scale evaluation, as well as

without any pre-training and pre-training on other datasets,

namely Mapillary Vistas (Neuhold et al 2017) denoted as

Vistas and Microsoft COCO (Lin et al 2014) abbreviated as

COCO. We report the performance of all the aforementioned

variants of our EfficientPS model. Note that we do not use the

Cityscapes coarse annotations, depth data or exploit temporal

data. Our EfficientPS model trained only on the Cityscapes

fine annotations and with single-scale evaluation outperforms

the previous best proposal based approach AdaptIS by 1.9%

in PQ and 2.0% in AP, while outperforming the best bottom-

up approach Panoptic-Deeplab by 0.9% in PQ and 3.0% in

AP. Furthermore, our EfficientPS model trained only on the

Cityscapes fine annotations and with multi-scale evaluation

achieves an improvement of 1.0% in PQ and 1.2% in AP over

Panoptic-Deeplab. We observe a similar trend while compar-

ing with models that have been pre-trained with additional

data, where our proposed EfficientPS outperforms the former

state-of-the-art Panoptic-Deeplab in both single-scale evalu-

ation and multi-scale evaluation. EfficientPS pre-trained on

Mapillary Vistas and with single-scale evaluation outper-

forms Panoptic-Deeplab in the same configuration by 0.8%

in PQ and 3.1% in AP, while for multi-scale evaluation it

exceeds the performance of Panoptic-Deeplab by 0.5% in

PQ and 1.3% in AP.

We report the benchmarking results on the Cityscapes

test set in Table 2, where the results were obtained directly

from the leaderboard. Note that the official Cityscapes bench-

mark only reports the PQ, PQSt, PQTh, SQ and RQ metrics,

and ranks the methods primarily based on the standard

PQ metric. Our proposed EfficientPS without pre-training

on any extra data achieves a PQ of 64.1% which is an

improvement of 1.8% over the previous state-of-the-art

Panoptic-Deeplab trained only using Cityscapes fine annota-

tions and an improvement of 1.5% in PQ over the Seamless

model that also uses extra data. More importantly, our pro-

posed EfficientPS model pre-trained on Mapillary Vistas, sets

the new state-of-art on the Cityscapes panoptic benchmark

achieving a PQ score of 66.4%. This accounts for an improve-

ment of 0.9% in PQ compared to the previous state-of-the-art

Panoptic Deeplab pre-trained on Mapillary Vistas. Moreover,

our EfficientPS model ranks second in the semantic segmen-

tation task with a mIoU of 84.2% as well as second in the

instance segmentation task with an AP of 39.1%, among all

the published methods in the Cityscapes benchmark.

We compare the efficiency of our proposed EfficientPS

architecture against state-of-the-art models in terms of the

number of parameters and FLOPs that it consumes as well

as the runtime on the Cityscapes dataset. Operations that

involve addition and multiplication at their core are only con-

sidered while computing FLOPs. We compute the end-to-end

runtime of inference for our architecture as well as for the

state-of-the-art methods whose runtime is not reported in

their respective paper. We use a single Nvidia Titan RTX

GPU and an Intel Xenon@2.20GHz CPU. We average over

1000 runs on the same image with single scale test. In the

case of parallel components in the architecture, maximum

runtime among all the components contribute to the total

runtime. Table 3 shows the comparison with the top two top-

down and bottom-up panoptic segmentation architectures.

Our proposed EfficientPS has a runtime of 166ms for an

input image resolution of 1024 × 2048 pixels which makes

it faster than the competing methods. We also observe that

our EfficientPS architecture consumes the least amount of

parameters and FLOPs, thereby making it the most efficient

state-of-the-art panoptic segmentation model.

In Table 4, we report results on the Mapillary Vistas

validation set. The Mapillary Vistas dataset presents a sub-

stantial challenge as it contains images from varying seasons,

weather conditions and time of day as well as the presence of
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Table 5 Performance comparison of panoptic segmentation on the KITTI validation set

Mode Network PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Single-Scale Panoptic FPN 38.6 70.4 51.2 26.1 68.3 40.1 47.6 71.9 59.2 24.4 52.1

UPSNet 39.1 70.7 51.7 26.6 68.5 40.6 48.3 72.4 59.8 24.7 52.6

Seamless 41.3 71.7 52.3 28.5 69.2 42.3 50.6 73.6 59.6 25.9 53.8

EfficientPS (ours) 42.9 72.7 53.6 30.4 69.8 43.7 52.0 74.9 60.9 27.1 55.3

Multi-Scale Panoptic FPN 39.3 70.8 51.6 26.9 68.7 40.4 48.3 72.4 59.8 24.8 52.8

UPSNet 39.9 71.2 52.0 27.2 68.8 40.8 49.1 72.9 60.2 25.2 53.2

Seamless 42.2 72.3 52.9 29.1 69.7 42.9 51.8 74.2 60.1 26.6 55.1

EfficientPS (ours) 43.7 73.2 54.1 30.9 70.2 44.0 53.1 75.4 61.5 27.9 56.4

Note that no additional data was used for training EfficientPS on this dataset other than pre-training the encoder on ImageNet. Superscripts St and

Th refer to ‘stuff’ and ‘thing’ classes respectively

Table 6 Performance comparison of panoptic segmentation on the Indian Driving Dataset (IDD) validation set

Mode Network PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Single-Scale Panoptic FPN 45.9 75.9 60.8 46.1 77.8 60.9 45.8 74.9 60.7 27.8 68.1

UPSNet 46.6 76.5 60.9 47.6 78.9 61.1 46.0 75.3 60.8 28.2 68.4

Seamless 47.7 77.2 61.2 48.9 79.5 61.5 47.1 76.1 61.1 30.1 69.6

EfficientPS (ours) 50.1 78.4 62.0 50.7 80.6 61.6 49.8 77.1 62.2 31.6 71.3

Multi-Scale Panoptic FPN 46.7 77.0 61.0 47.3 78.9 61.1 46.4 76.1 61.0 28.9 70.1

UPSNet 47.1 77.9 60.9 47.6 79.8 61.2 46.8 76.9 60.8 29.2 70.6

Seamless 48.5 78.2 61.9 49.5 80.4 62.2 47.9 77.1 61.7 31.4 71.3

EfficientPS (ours) 51.1 78.8 63.5 52.6 81.2 65.4 50.3 77.5 62.5 32.9 72.1

Note that no additional data was used for training EfficientPS on this dataset other than pre-training the encoder on ImageNet. Superscripts St and

Th refer to ‘stuff’ and ‘thing’ classes respectively

65 semantic object classes. Our proposed EfficientPS model

exceeds the state-of-the-art for both single-scale and multi-

scale evaluation. For single-scale evaluation, it achieves an

improvement of 0.6% in PQ over the top-down approach

Seamless and the bottom-up approach Panoptic-DeepLab.

While for multi-scale evaluation, it achieves an improve-

ment of 0.4% in PQ and 3.6% in AP over the previous

state-of-the-art Panoptic-DeepLab. Note that we do not use

model ensembles. Our network falls short of the bottom-up

approach Panoptic-Deeplab in PQSt score primarily due to

the output stride of 16 at which it operates which increases

the computational complexity, whereas our EfficientPS uses

an output stride of 32, hence is more efficient. On the one

hand, bottom-up approaches tend to have a better semantic

segmentation ability which is evident from the high PQSt

of Panoptic-Deeplab. While on the other hand, top-down

approaches tend to have better instance segmentation ability

as they can handle large-scale variations in object instances.

It would be interesting to investigate architectures that can

combine the strengths of the two in future.

We present results on the KITTI validation set in Table 5.

Our proposed EfficientPS outperforms the previous state-of-

the-art Seamless by 1.6% in PQ, 1.2% in AP and 1.5% mIoU

for single scale evaluation and 1.5% in PQ, 1.3% in AP and

1.3% in mIoU for multi-scale evaluation. This dataset con-

sists of cluttered and occluded objects that often have object

masks split into two or more parts. In these cases context

aggregation plays a major role. Hence, the improvement that

we observe can be attributed to three factors: the multi-scale

feature aggregation in our 2-way FPN due to the bidirectional

flow of information, the long-range context being captured

by our semantic head, and the adaptive fusion in our panoptic

fusion module that effectively leverages the predictions from

the individual heads.

Finally, we also report results on the Indian Driving

Dataset (IDD) largely due to the fact that it contains images of

unstructured urban environments and scenes that do not have

clear delineated road infrastructure which makes it extremely

challenging. Table 6 presents results on the IDD validation

set. Our proposed EfficientPS substantially exceeds the state-

of-the-art by achieving a PQ score of 50.1% and 51.1%

for single-scale and multi-scale evaluation respectively. This

amounts to an improvement of 2.6% in PQ over Seamless

and 4% in PQ over UPSNet for multi-scale evaluation. The
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unstructured scenes in this dataset challenges the ability of

models to detect object boundaries of ‘stuff’ classes such as

road and sidewalk. Our EfficientPS achieves a PQSt score of

49.8% for single-scale evaluation which is an improvement

of 2.7% over Seamless and this can be attributed to the effec-

tiveness of our proposed semantic head in capturing object

boundaries.

4.4 Ablation Studies

In this section, we present extensive ablation studies on the

various architectural components that we propose in our

EfficientPS architecture in comparison to their counterparts

employed in state-of-the-art models. Primarily, we study the

impact of our proposed network backbone, semantic head

and panoptic fusion module on the overall panoptic segmen-

tation performance of our network. We begin with a detailed

analysis of various components of our EfficientPS architec-

ture, followed by comparisons of different encoder network

topologies and FPN architectures for the network backbone.

We then study the impact of different parameter configu-

rations in our proposed semantic head and its comparison

with existing semantic head topologies. Finally, we assess

the performance of our proposed panoptic fusion module by

comparing with different panoptic fusion methods proposed

in the literature. For all the ablative experiments, we train our

models on the Cityscapes fine annotations and evaluate it on

the validation set. We use the PQ metric as the primary evalu-

ation criteria for all the experiments presented in this section.

Nevertheless, we also report the other metrics defined in the

beginning of Sect. 4.

4.4.1 Detailed Study on the EfficientPS Architecture

We first study the improvement due to the various compo-

nents that we propose in our EfficientPS architecture. Results

from this experiment are shown in Table 7. The basic model

M1 employs the network configuration and panoptic fusion

heuristics as Kirillov et al (2019b). It uses the ResNet-50

with FPN as the backbone and incorporates Mask R-CNN

for the instance head. It employs group norm (Wu and He

2018) for the normalization layer. The semantic head of this

network is comprised of an upsampling stage which has a

3 × 3 convolution, group norm (Wu and He 2018), ReLU,

and ×2 bilinear upsampling. At each FPN level, this upsam-

pling stage is repeated until the feature maps are 1/4 scale

of the input. These resulting feature maps are then summed

element-wise and passed through a 1 × 1 convolution, fol-

lowed by ×4 bilinear upsampling, and softmax to yield the

semantic segmentation output. This model M1 achieves a PQ

of 57.8%, AP of 31.1% and an mIoU score of 74.1%. For the

M2 and M3 model, we use BN sync and IABN sync as the

normalization layer. Additionally in M3 ReLU is replaced

with leakyReLU activation layer. We observe that M3 and

M2 obtains a gain of 0.4% and 0.3% over M1 respectively,

implying that with a higher batch size of 16 it is better to

employ BN sync or iABN sync than group norm as the nor-

malization layer. As M3 has a slight improvement over M2

we build subsequent models based on M3.

The next model M4 that incorporates our proposed panop-

tic fusion module achieves an improvement of 0.6% in

PQ, 2.2% in AP and 0.8% in the mIoU score without

increasing the number of parameters. This increase in perfor-

mance demonstrates that the adaptive fusion of semantic and

instance head outputs is effective in resolving the inherent

overlap conflict. In the M5 model, we replace all the standard

convolutions in the instance head with depthwise separable

convolutions which reduces the number of parameters of the

model by 2.09 M with a drop of 0.2% in PQ, 0.1% drop in

AP and mIoU score. However, from the aspect of having an

efficient model, a reduction of 5% of the model parameters

for a drop of 0.2% in PQ can be considered as a reasonable

trade-off. Therefore, we employ depthwise separable con-

volutions in the instance head of our proposed EfficientPS

architecture.

In the M6 model, we replace the ResNet-50 encoder with

our modified EfficientNet-B5 encoder that does not have any

squeeze-and-excitation connections, and we replace all the

normalization layers and ReLU activations with iABN sync

and leaky ReLU. This model achieves a PQ of 59.7% which

is an improvement of 1.1% in PQ over the M3 model and a

larger improvement is also observed in the mIoU score. The

improvement in performance can be attributed to the richer

representational capacity of the EfficientNet-B5 architecture.

Subsequently in the M7 model, we replace the standard FPN

with our proposed 2-way FPN which additionally improves

the performance by 1.8% in PQ and 2.7% in AP. The addition

of the parallel bottom-up branch in our 2-way FPN enables

bidirectional flow of information, thus breaking away from

the limitation of the standard FPN.

Finally, we incorporate our proposed semantic head into

the M8 model that fuses and aligns multi-scale features effec-

tively which enables it to achieve a PQ of 63.9%. Although

our semantic head contributes to this improvement of 2.4% in

the PQ score, it cannot not be solely attributed to the seman-

tic head. This is due to the fact that if we employ standard

panoptic fusion heuristics, an improvement in semantic seg-

mentation would only contribute to an increase in PQst score.

However, our proposed adaptive panoptic fusion yields an

improvement in PQth as well, which is evident from the over-

all improvement in the PQ score. We denote this M8 model

configuration as EfficientPS in this work. In the following

sections, we further analyze the individual architectural com-

ponents of the M6 model in more detail.
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Table 8 Performance comparison of various encoder topologies employed in the M8 model

Encoder Params FLOPs PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU

(M) (B) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

MobileNetV3 5.40 9.44 55.8 78.1 70.2 50.4 77.4 67.1 59.8 78.6 72.4 29.1 72.2

ResNet-50 25.60 172.19 60.3 80.1 72.6 55.3 79.9 68.9 63.9 80.3 75.3 34.9 76.1

ResNet-101 44.50 327.99 61.1 80.3 75.1 56.5 80.1 71.9 64.2 80.5 77.4 35.9 77.2

Xception-71 27.50 210.38 62.1 81.1 75.4 58.5 80.9 72.3 64.7 81.2 77.7 36.2 78.1

ResNeXt-101 86.74 636.84 63.2 81.2 76.0 59.6 80.4 72.9 65.8 81.7 78.3 36.9 78.9

Mod. EfficientNet-B5 (Ours) 30.00 250.97 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2 38.3 79.3

Results are shown for the models trained on the Cityscapes fine annotations and evaluated on the validation set. Superscripts St and Th refer to

‘stuff’ and ‘thing’ classes respectively

Table 9 Performance

comparison of various FPN

architectures employed in the

M8 model

Architecture PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Bottom-Up FPN 60.4 80.6 73.7 56.3 80.4 69.9 63.4 80.8 76.4 35.2 75.3

Top-Down FPN 62.2 80.9 75.7 58.1 80.1 72.4 65.1 81.4 78.0 36.5 78.2

PANet FPN 63.1 81.1 75.5 59.4 80.3 72.3 65.8 81.6 77.8 37.1 78.8

2-way FPN (Ours) 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2 38.3 79.3

Results are shown for the models trained on the Cityscapes fine annotations and evaluated on the validation

set. Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

4.4.2 Comparison of Encoder Topologies

There are numerous network architectures that have been

proposed for addressing the task of image classification.

Typically, these networks serve as the encoder or feature

extractor for more complex tasks such as panoptic segmen-

tation. In this section, we evaluate the performance of our

proposed modified EfficientNet-B5 in comparison to five

widely employed encoder architectures. For a fair compar-

ison, we keep all the other components of our EfficientPS

network the same and only replace encoder. More specifi-

cally, we compare with MobileNetV3 (Howard et al 2019),

ResNet-50 (He et al 2016), ResNet-101 (He et al 2016),

Xception-71 (Chollet 2017), ResNeXt-101 (Xie et al 2017),

and EfficientNet-B5 (Tan and Le 2019). Results from this

experiment are presented in Table 8. We observe that our

modified EfficientNet-B5 architecture yields the highest PQ

score, closely followed by the ResNeXt-101 architecture.

However, ResNext-101 has an additional 56.74 M param-

eters which is more than twice the number of parameters

consumed by our modified EfficientNet-B5 architecture.

Similarly, ResNeXt-101 in FLOPs is 385.87 B more. We can

see that the other encoder models, especially MobileNetV3,

ResNet-50 and Xception-71 have a comparable or fewer

parameters and FLOPs than our modified EfficientNet-B5.

However they also yield a substantially lower PQ score.

Therefore, we employ our modified EfficientNet-B5 as the

encoder backbone in our proposed EfficientPS architecture.

The computation of FLOPs presented in Table 8 architectures

is only for the encoder part of the network.

4.4.3 Evaluation of the 2-way FPN

In this section, we compare the performance of our novel

2-way FPN with other existing FPN variants. For a fair com-

parison, we keep all the other components of our EfficientPS

network the same and only replace the 2-way FPN in the

backbone. We compare with the top-down FPN (Lin et al

2017), bottom-up FPN and PANet FPN variants. We refer to

the FPN architecture described in Liu et al (2018) as PANet

FPN in which the top-down path is followed by a bottom-up

path. For each of the FPN variants we use iABN sync and

leaky ReLU layers instead of BN and Relu layers. The results

from comparing with various FPN architectures are shown

in Table 9.

The top-down FPN model predominantly propagates

semantically high-level features which describe entire objects,

whereas the bottom-up FPN model propagates low-level

information such as local textures and patterns. The Effi-

cientPS model with the bottom-up FPN achieves a PQ of

60.4%, while the model with the top-down FPN achieves

a PQ of 62.2%. Both these models achieve a performance

which is 3.2% and 1.4% lower in PQ than our 2-way FPN

respectively. A similar trend can also be observed in the other

metrics. The lower PQ score of the individual bottom-up FPN

and top-down FPN models substantiate the limitation of the

unidirectional flow of information in the standard FPN topol-
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ogy. Both the PANet FPN and our proposed 2-way FPN aim

to mitigate this problem by adding another bottom-up path to

the standard FPN in a sequential or parallel manner respec-

tively. We observe that the model with our proposed 2-way

FPN demonstrates an improvement of 0.5% in PQ over the

model with the PANet FPN. This implies that the parallel

information pathways are more likely to capture better multi-

scale features to predict stuff regions at varying resolutions

as well as are able to encode sufficiently rich semantics to

precisely predict class labels.

4.4.4 Detailed Study on the Semantic Head

We construct the topology of our proposed semantic head

considering two critical factors. First, since large-scale out-

puts comprise of characteristic features and small-scale

outputs consist of contextual features, they both should be

captured distinctly by the semantic head. Second, while fus-

ing small and large-scale outputs, the contextual features

need to be aligned to obtain semantically reinforced fine fea-

tures. In order to demonstrate that these two critical factors

are essential, we perform ablative experiments on various

configurations of our semantic head incorporated into the M8

model described in Sect. 4.4.4. Results from this experiment

are presented in Table 10.

The output at each level of the 2-way FPN, P32, P16, P8

and P4 are the inputs to our semantic head. In the first M81

model configuration, we employ two cascaded 3 × 3 convo-

lutions, iABN sync and leaky ReLU activation sequentially

at each level of the 2-way FPN. The aforementioned series

of layers constitute the LSFE module which is followed by

a bilinear upsampling layer at each level of the 2-way FPN

to yield an output which is 1/4 scale of the input image.

These upsampled features are then concatenated and passed

through a 1 × 1 convolution and bilinear upsamplig to yield

an output which is the same scale as the input image. This

M61 model achieves a PQ of 61.6%. In the subsequent M82

model configuration, we replace all the standard 3 × 3 con-

volutions with 3 × 3 depthwise separable convolutions in

the LSFE module to reduce the number of parameters. This

also yields a minor improvement in performance compared

to the M81 model, therefore we employ depthwise separable

convolutions in all the experiments that follow.

In the M83 model, we replace the LSFE module in the

P32 level of the 2-way FPN with dense prediction cells (DPC)

described in Sect. 3.2. This M83 model achieves an improve-

ment of 0.6% in PQ and 0.7% in the mIoU score. This can

be attributed to the ability of DPC to effectively capture

long-range context. In the M84 model, we replace the LSFE

module in the P16 level with DPC and in the subsequent M85

model, we introduce DPC at both P16 and P8 levels. We find

that the M84 model achieves an improvement of 0.6% in

PQ over M63, however the performance drops in the M85

model by 0.5% in PQ when we add the DPC module at the

P8 level. This can be attributed to the fact that DPC con-

sisting of dilated convolutions do not capture characteristic

features effectively at this large-scale. The final M86 model is

derived from the M84 model to which we add our mismatch

correction (MC) module along with the feature correlation

connections as described in Sect. 3.2. This model achieves

the highest PQ score of 63.9% which is an improvement of

1.0% compared to the M84 model. This can be attributed to

the MC module that correlates the semantically rich contex-

tual features with fine features and subsequently merges them

along the feature correlation connection to obtain semanti-

cally reinforced features that results in better object boundary

refinement.

Additionally, we present experimental comparisons of our

proposed semantic head against those that are used in other

state-of-the-art panoptic segmentation architectures. Specif-

ically, we compare against the semantic head proposed by

Kirillov et al (2019a) which we denote as the baseline,

UPSNet (Xiong et al 2019) and Seamless (Porzi et al 2019).

For a fair comparison, we keep all the other components of

the EfficientPS architecture the same across different exper-

iments while only replacing the semantic head. Table 11

presents the results of this experiment.

The semantic head of UPSNet which is essentially a sub-

network comprising of sequential deformable convolution

layers (Dai et al 2017) achieves a PQ score of 62.0% which

is an improvement of 0.5% over the baseline model. The

semantic head of the Seamless model employs their MiniDL

module at each level of the 2-way FPN that further improves

the PQ by 0.9% over semantic head of UPSNet. The seman-

tic heads of all these models use the same module at each

level of the 2-way FPN output which are of different scales.

In contrast, our proposed semantic head that employs a com-

bination of LSFE and DPC modules at different levels of the

2-way FPN achieves the highest PQ score of 63.9% and con-

sistently outperforms the other semantic head topologies in

all the evaluation metrics.

4.4.5 Evaluation of Panoptic Fusion Module

In this section, we evaluate our proposed Fusion Eq. (12)

to fuse M L A and M L B to its simple addition and multiplica-

tion counterpart. Here, M L A and M L B are the same entity as

defined in Sect. 3.4. At a glance, addition and multiplication

operations might seem like a logical choice for fusing the log-

its to attain adaptive attenuation or amplification according to

the consensus. But they are in fact sub-optimal choices with

respect to Equation (12). Table 12 shows the results from

this experiment. We observe our proposed fusion strategy

achieves the highest performance of 63.9% in P Q. It is 0.5%

higher than addition and 1.6% higher than multiplication. In

the case of multiplication, the resulting thing logits attain
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Table 11 Performance

comparison of various existing

semantic head topologies

employed in the M8 model

Semantic Head PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Baseline 61.5 80.7 75.6 57.2 80.6 72.5 64.6 80.9 77.9 36.8 77.3

UPSNet 62.0 81.0 74.7 58.5 80.5 70.9 64.5 81.3 77.5 35.9 76.1

Seamless 62.9 81.1 75.5 58.9 80.4 71.3 65.6 81.6 78.5 36.8 78.5

Ours 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2 38.3 79.3

Results are reported for the model trained on the Cityscapes fine annotations and evaluated on the validation

set. Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

Table 12 Performance

comparison of our proposed

adaptive fusion (σ (M L A) +

σ(M L B)) ⊙ (M L A + M L B),

with Multiply: (M L A ⊙ M L B)

and Add: (M L A + M L B) ,

employed in the M8 model

where σ(·) is the sigmoid

function and ⊙ is the Hadamard

product

Model PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Multiply 62.3 80.7 76.0 56.9 79.1 71.9 66.3 81.9 79.0

Add 63.4 81.4 76.9 59.3 80.4 73.5 66.4 82.0 79.3

Ours 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2

Results are reported for the model trained on the Cityscapes fine annotations and evaluated on the validation

set. Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

Table 13 Performance

comparison of our proposed

panoptic fusion module with

various other panoptic fusion

mechanisms employed in the

M8 model

Model PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Baseline 62.4 80.8 75.4 58.7 80.4 72.6 65.1 81.1 77.4

TASCNet 62.5 80.9 75.6 58.6 80.5 72.8 65.3 81.2 77.7

UPSNet 63.1 81.3 76.1 59.5 80.6 73.2 65.7 81.8 78.2

Ours 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2

Results are reported for the model trained on the Cityscapes fine annotations and evaluated on the validation

set. Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

high values in comparison to stuff logits when concatenated

together to form intermediate panoptic logits. This leads to

over-representation of thing classes, as a result, PQTh suffers

a lot due to an increase in false positives. PQTh of 56.9% for

multiplication is the lowest out of all the strategies.

Similarly, in the case of addition, the different range values

of M L A and M L B results in biased fused logits. Gener-

ally, semantic logits have higher values out of the two and

hence the fused logits are biased towards M L B . This again

doesn’t allow optimal adaptive attenuation or amplification.

PQTh for this strategy is 59.3% which is 2.4% higher than

multiplication. Clearly, addition is a better strategy than

multiplication but is not the best. In contrast to the above

strategies, our proposed strategy addresses the aforemen-

tioned shortcomings by normalizing the sum of the two logits

(M L A + M L B) based on the sum of their individual confi-

dence ((σ (M L A) + σ(M L B)) where σ(·) is the sigmoid

function. This enables the proposed fusion module to be

adaptive, achieving a gain of 1.4% in PQTh while remain-

ing relatively equal in stuff.

Next, we evaluate the performance of our proposed panop-

tic fusion module in comparison to other existing panoptic

fusion mechanisms. First, we compare with the panoptic

fusion heuristics introduced by Kirillov et al (2019b) which

we consider as a baseline as it is extensively used in sev-

eral panoptic segmentation networks. We then compare with

Mask-Guided fusion (Li et al 2018a) and the panoptic fusion

heuristics proposed in (Xiong et al 2019) which we refer to

as TASCNet and UPSNet in the results respectively. Once

again for a fair comparison, we keep all the other network

components the same across different experiments and only

change the panoptic fusion mechanism.

Table 13 presents results from this experiment. Combin-

ing the outputs of the semantic head and instance head that

have an inherent overlap is one of the critical challenges faced

by panoptic segmentation networks. The baseline approach

directly chooses the output of the instance head, i.e, if there

is an overlap between predictions of the ‘thing’ and ‘stuff’

classes for a given pixel, the baseline heuristic classifies

the pixel as a ‘thing’ class and assigns it an instance ID.

This baseline approach achieves the lowest performance

of 62.4% in PQ demonstrating that this fusion problem is

more complex than just assigning the output from one of

the heads. The Mask-Guided fusion method of TASCNet

seeks to address this problem by using a segmentation mask.

The mask selects which pixel to consider from the instance
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segmentation output and which pixel to consider from the

semantic segmentation output. This fusion approach achieves

a PQ of 62.5% which is comparable to the baseline method.

Subsequently, the model that employs the UPSNet fusion

heuristics achieves a larger improvement with a PQ score of

63.1%. This method computes the panoptic logits by adding

the non-overlapping instance segmentation logits M L A to

M L B that is obtained using the semantic logits as described

in Section 3.4 while concatenating it to stuff logits from

semantic segmenation logits. As shown, in previous exper-

iment this is sub-optimal. However, our proposed adaptive

fusion method that dynamically fuses the outputs from both

the heads while refining the stuff segmentation using seman-

tic head predictions achieves the highest PQ score of 63.9%

which is an improvement of 0.8% over the UPSNet method.

We also observe a consistently higher performance in all the

other metrics.

4.5 Qualitative Evaluations

In this section, we qualitatively evaluate the panoptic seg-

mentation performance of our proposed EfficientPS archi-

tecture in comparison to the state-of-the-art Seamless (Porzi

et al 2019) model on each of the datasets that we benchmark

on. We use the publicly available official implementation

of the Seamless architecture to obtain the outputs for the

qualitative comparisons. The best performing state-of-the-art

model Panoptic-Deeplab does not provide any publicly avail-

able implementation or pre-trained models which makes such

comparisons infeasible. Figure 6 presents two examples from

the validation sets of each of the urban scene understanding

dataset. For each example, we show the input image, the cor-

responding panoptic segmentation output from the Seamless

model and our proposed EfficientPS model. Additionally, we

show the improvement and error map where a green pixel

indicates that our EfficientPS made the right prediction but

the Seamless model misclassified it (improvement of Effi-

cientPS over Seamless), a blue pixel indicates that Seamless

model made the right prediction but EfficientPS misclassi-

fied it, and a red pixel denotes that both models misclassified

it with respect to the groundtruth.

Figure 6a and b show examples from the Cityscapes

dataset in which the improvement over the Seamless model

can be seen in the ability to segment heavily occluded ‘thing’

class instances. In the first example, the truck far behind on

the bridge is occluded by cars and a cyclist, and in the second

example, the distant car parked on the left side of the image

is only partially visible as the car in the front occludes it. We

observe from the improvement maps that our proposed Effi-

cientPS model accurately detect, classify and segment these

instances, while the Seamless model misclassifies these pix-

els. This can be primarily attributed to our 2-way FPN that

effectively aggregates multi-scale features to learn semanti-

cally richer representations and the panoptic fusion module

that addresses the instance overlap ambiguity in an adaptive

manner.

In Figure 6c and d, we qualitatively compare the per-

formance on the challenging Mapillary Vistas dataset. We

observe that in Fig. 6c the group of people towards left side

of the image who are behind the fence are misclassified in

the output of the Seamless model and the instances of these

people are not detected. Whereas, our EfficientPS model

accurately segments each of the instances of the people. Sim-

ilarly, the distant van on the right side of the image shown in

Fig. 6d is partially occluded by the neighboring cars and is

entirely misclassified by the Seamless model. However, our

EfficientPS model accurately captures this heavily occluded

object instance. In Fig. 6c, interestingly, the Seamless model

misclassifies the cyclist on the road as a pedestrian. We

hypothesize that this might be due to the fact that one of

the legs of the cyclist is touching the ground and the other

leg which is on the pedal of the bicycle is barely visible.

Hence, this causes the Seamless model to misclassify the

object instance. Whereas, our EfficientPS model effectively

leverages both the semantic and instance prediction in our

panoptic fusion module to accurately address this ambiguity

in the scene. We also observe in Fig. 6c that the EfficientPS

model misclassifies the traffic sign fixed on the fence and

only partially segments the advertisement board attached to

the building near the fence while it accurately segments all

the other instances of this class. This is primarily due to the

fact that there is a lack of relevant examples for this type of

traffic sign which is atypical of those found in the training

set.

Figure 6e and f show qualitative comparisons on the KITTI

dataset. In Fig. 6e, we see that the Seamless model misclas-

sifies the bus that is towards the right of the image as a truck

although it segments the object coherently. This is primarily

due to the fact that there are poles as well as an advertisement

board in front of the bus which divides the it into different

subregions. This leads the model to predict it as a truck that

has a transition between the tractor unit and the trailer. How-

ever, our proposed EfficientPS model mitigates this problem

with its bidirectional aggregation of multi-scale features that

effectively captures contextual information. In Fig. 6f, we

observe that a distant truck on the right lane is partially

occluded by cars behind it which causes the Seamless model

to not detect the truck as a new instance, rather it detects the

truck and the car behind it as being the same object. This is

similar to the scenario observed on the Cityscapes dataset in

Fig. 6a. Nevertheless, our proposed EfficientPS model yields

accurate predictions in such challenging scenarios consis-

tently across different datasets.

In Fig 6g and h, we present examples from the IDD dataset.

We can see that our EfficientPS model captures the bound-

aries of ‘stuff’ classes more precisely than the Seamless
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Fig. 6 Qualitative panoptic segmentation results of our proposed

EfficientPS network in comparison to the state-of-the-art Seamless

architecture (Porzi et al 2019) on different benchmark datasets. In addi-

tion to the panoptic segmentation output, we also show the improvement

error map which denotes the pixels that are misclassified by the Seam-

less model but correctly predicted by the EfficientPS model in green,

the pixels that are misclassified by the EfficientPS model but correctly

predicted by the Seamless model in blue, and the pixels that are mis-

classified by both the EfficientPS model and the Seamless model in red
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Fig. 7 Visual panoptic segmentation results of our proposed Effi-

cientPS model on each of the challenging urban scene understanding

datasets that we benchmark on which in total encompasses scenes from

over 50 countries. These examples show complex urban scenarios with

numerous object instances in multiple scales and with partial occlusion.

These scenes also show diverse lighting conditions from dawn to dusk

as well as seasonal changes
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model in both the examples. For instance, the pillar of the

bridge in Fig. 6g and the extent of the sidewalk in Fig. 6h

are more well defined in the panoptic segmentation output

of our EfficientPS model. This can be attributed to the object

boundary refinement ability of our semantic head that cor-

relates features of different scales before fusing them. In

Fig. 6h, the Seamless model misclassifies the auto-rickshaw

as a caravan due to the similar visual appearances of these two

objects, however our proposed EfficientPS model with our

novel panoptic backbone has an extensive representational

capacity which enables it to accurately classify objects even

with such subtle differences. We observe that although the

upper half of the cyclist towards the left of the image is accu-

rately segmented, the front leg of the cyclist is misclassifies

as being part of the bicycle. This is a challenging scenario

due to the high contrast in this region. We also observe that

the boundary of the sidewalk towards the left of the auto

rickshaw is misclassified. However, on visual inspection of

the groundtruth, it appears that the sidewalk boundary in this

region is mislabeled in groundtruth mask, while the model is

making a reasonable prediction.

4.6 Visualizations

We present visualizations of panoptic segmentation results

from our proposed EfficientPS architecture on Cityscapes,

Mapillary Vistas, KITTI, and Indian Driving Dataset (IDD)

in Fig. 7. The figures show the panoptic segmentation output

of our EfficientPS model using single scale evaluation, which

is overlaid on the input image. Fig. 7a and b show exam-

ples from the Cityscapes dataset which exhibit complex road

scenes consisting of a large number of traffic participants.

These examples show challenging scenarios with dynamic

as well as static pedestrian groups in close proximity to each

other and distant parked cars that are barely visible due to

their neighbouring ‘thing’ class instances. Our proposed Effi-

cientPS architecture effectively addresses these challenges

and yields reliable panoptic segmentation results. In Fig. 7c

and d, we present results on the Mapillary Vistas dataset

that show drastic viewpoint variations and scenes in different

times of day. Figure 7c.iv, d.i and d.iv show scenes that were

captured from uncommon viewpoints from those observed in

the training data and Fig. 7d.iii shows a scene that was cap-

tured during nighttime. Nevertheless, our EfficientPS model

demonstrates substantial robustness against these perceptual

variations.

In Fig. 7e and f, we present results on the KITTI dataset

which show residential and highway road scenes consist-

ing of several parked and dynamic cars, as well as a large

amount of thin structures such as poles. We observe that

our EfficientPS model generalizes effectively to these com-

plex scenes even when the network was only trained on

the relatively small dataset. Figure 7g and h show exam-

ples from the IDD dataset that highlight challenges of an

unstructured environment. One such challenge is the accu-

rate segmentation of sidewalks, as the transition between the

road and the sidewalk is not well delineated often caused

by a layer of sand over asphalt. The examples also show

heavy traffic with numerous types of vehicles, motorcycles

and pedestrians scattered all over the scene. However, our

proposed EfficientPS model shows exceptional robustness in

these immensely challenging scenes thereby demonstrating

its suitability for autonomous driving applications.

5 Conclusions

In this paper, we presented our EfficientPS architecture for

panoptic segmentation that achieves state-of-the-art perfor-

mance while being computationally efficient. It incorporates

our proposed panoptic backbone with a variant of Mask R-

CNN augmented with depthwise separable convolutions as

the instance head, a new semantic head that captures fine

and contextual features efficiently, and our novel adaptive

panoptic fusion module. We demonstrated that our panop-

tic backbone consisting of the modified EfficientNet encoder

and our 2-way FPN achieves the right trade-off between per-

formance and computational complexity. Our 2-way FPN

achieves effective aggregation of semantically rich multi-

scale features due to its bidirectional flow of information.

Thus in combination with our encoder, it establishes a new

strong panoptic backbone. We proposed a new semantic head

that employs scale-specific feature aggregation to capture

long-range context and characteristic features effectively, fol-

lowed by correlating them to achieve better object boundary

refinement capability. We also introduced our parameter-free

panoptic fusion module that dynamically fuses logits from

both heads based on their mask confidences and congru-

ously integrates instance-specific ‘thing’ classes with ‘stuff’

classes to yield the panoptic segmentation output.

Additionally, we introduced the KITTI panoptic segmen-

tation dataset that contains panoptic groundtruth annotations

for images from the challenging KITTI benchmark. We

hope that our panoptic annotations complement the suite of

other perception tasks in KITTI and encourage the research

community to develop novel multi-task learning methods

that include panoptic segmentation. We presented exhaus-

tive benchmarking results on Cityscapes, Mapillary Vistas,

KITTI and IDD datasets that demonstrate that our pro-

posed EfficientPS sets the new state-of-the-art in panoptic

segmentation while being faster and more parameter effi-

cient than existing state-of-the-art architectures. In addition

to being ranked first on the Cityscapes panoptic segmen-

tation leaderboard, our model is ranked second on both

the Cityscapes semantic segmentation and instance seg-

mentation leaderboards. We also presented detailed ablation
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studies, qualitative analysis and visualizations that highlight

the improvements that we make to various core modules

of panoptic segmentation architectures. To the best of our

knowledge, this work is the first to benchmark on all the

four standard urban scene understanding datasets that sup-

port panoptic segmentation and exceed the state-of-the-art on

each of them while simultaneously being the most efficient.
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