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Abstract

We present a general and simple procedure to construct quasi-inter-
polants in hierarchical spaces, which are composed of a hierarchy of
nested spaces. The hierarchical quasi-interpolants are described in
terms of the truncated hierarchical basis. Once for each level in the
hierarchy a quasi-interpolant is selected in the corresponding space,
the hierarchical quasi-interpolants are obtained without any addi-
tional manipulation. The main properties of the quasi-interpolants
selected at each level are preserved in the hierarchical construction.
In particular, hierarchical local projectors are constructed, and the
local approximation order of the underling hierarchical space is in-
vestigated. The presentation is detailed for the truncated hierarchi-
cal B-spline basis, and we discuss its extension to a more general
framework.
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Abstract We present a general and simple procedure to construct quasi-interpolants in hier-

archical spaces, which are composed of a hierarchy of nested spaces. The hierarchical quasi-

interpolants are described in terms of the truncated hierarchical basis. Once for each level

in the hierarchy a quasi-interpolant is selected in the corresponding space, the hierarchical

quasi-interpolants are obtained without any additional manipulation. The main properties of

the quasi-interpolants selected at each level are preserved in the hierarchical construction. In

particular, hierarchical local projectors are constructed, and the local approximation order of

the underling hierarchical space is investigated. The presentation is detailed for the truncated

hierarchical B-spline basis, and we discuss its extension to a more general framework.
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1 Introduction

In many application areas, ranging from geometric modeling to numerical simulation, it

is important to use function spaces that support local refinement in order to address local

features in an effective way. Dealing with local refinement is usually not so difficult in

one-dimensional problems. However, it can be an arduous task in bivariate and multivariate

applications, where the complexity of the discretization can be prohibitive. Additionally,

the considered spaces are often required to have a good approximation power and a low

dimension. Nestedness of these spaces is also an interesting property because it ensures that

successive levels of discretization improve the accuracy of the approximation. Spline spaces,

H. Speleers

University of Leuven, Department of Computer Science

Celestijnenlaan 200A, B-3001 Leuven, Belgium

E-mail: hendrik.speleers@cs.kuleuven.be

C. Manni

University of Roma ‘Tor Vergata’, Department of Mathematics

Via della Ricerca Scientifica, 00133 Roma, Italy

E-mail: manni@mat.uniroma2.it



2 Hendrik Speleers, Carla Manni

in all the accepted meanings of the word, are very popular function spaces in applications,

see e.g. [5,9,13,27,41].

Besides the structure of the space, a good basis to represent its elements is an essen-

tial ingredient for designing efficient and stable algorithms. Usually, a good spline basis

possesses the following properties:

– the basis elements have local – possibly minimum – support, so that the influence of any

basis function is as local as possible;

– the basis is stable, so that a small perturbation of the coefficients has a small influence

on the corresponding spline function and vice versa;

– the basis forms a convex partition of unity, which is a crucial property for geometric

design and also ensures numerical stability.

In the bivariate (and multivariate) setting, the most common (polynomial) spline struc-

tures are tensor-product splines and splines on triangulations. Tensor-product splines are a

very simple and elegant multivariate extension of univariate splines, and they are equipped

with a basis possessing all the above properties: the tensor-product B-spline basis, see

e.g. [41]. A main drawback is that the tensor-product structure prevents any possibility of

local refinement.

Local refinement is inherently supported by spline spaces defined over general trian-

gulations. However, in this case the structure of smooth spaces is often quite involved. In

general, the dimension of such a space is not completely understood and the construction

of a suitable basis is an arduous task. There are only results for particular choices of de-

gree and smoothness, see [27] and references therein. Using triangulations endowed with a

macro-structure can be of some help to analyze the corresponding spline spaces [27] and

to construct bases with the above properties [15,44,45,46]. On the other hand, it can be

quite toilsome to built sequences of (locally refined) nested spline spaces based on such

macro-structures.

In the literature there exist several alternative approaches to construct spline spaces

which allow local refinements. Examples are T-splines [2,43], LR-splines [16], polynomial

splines over T-meshes [29,42], and hierarchical splines [18,20,21].

T-splines and LR-splines form a convex partition of unity, but they are not always lin-

early independent. Linear independence is not so relevant in the context of geometric design,

but it is imperative for certain simulation paradigms like isogeometric analysis [13]. Particu-

lar subclasses and algorithms to detect and avoid linear dependence were recently identified

in both cases, see [2,16,30] and references therein. However, the related refinement pro-

cedures can be quite complex, especially for high-dimensional applications. On the other

hand, polynomial spline spaces over T-meshes possess similar strong and weak points as

spline spaces over triangulations.

In this paper we focus on hierarchical splines because they provide a flexible framework

coupled with a remarkable intrinsic simplicity. Hierarchical B-splines are defined in terms

of a hierarchy of locally refined meshes, reflecting different levels of refinement. They were

introduced in [18] as an accumulation of tensor-product B-splines with nested knot vectors.

Applications of the hierarchical approach can be found in [18,22,38,50]. The original set

of hierarchical B-splines in [18] is not linearly independent and does not form a partition

of unity, but the problem of linear independence has been solved in [24,25]. In addition, a

quasi-interpolant that achieves the optimal local approximation order has been introduced

in [25] as well.

An alternative basis for the same hierarchical space has been proposed in [20] and is

called truncated hierarchical B-spline (THB-spline) basis. This basis forms a convex parti-
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tion of unity, and its elements are more locally supported than those of the classical hier-

archical basis. Moreover, the THB-spline basis possesses some other interesting properties,

see [21]. Under mild assumptions on the knot configurations, this basis is strongly stable

with respect to the supremum norm. This means that the constants to be considered in the

stability analysis of the basis do not depend on the number of hierarchical levels. It is also

worth to mention that the truncation procedure preserves the coefficients of a function rep-

resented with respect to the underlying basis considered at a certain level in the hierarchy.

The construction of truncated hierarchical bases is not confined to tensor-product poly-

nomial spline spaces. It has also been investigated in [47] for hierarchical spline spaces

over Powell-Sabin triangulations, and in [21] for a broad class of hierarchical spaces. In this

general setting, the truncated hierarchical bases maintain properties like convex partition of

unity, stability, and preservation of coefficients.

In this paper we exploit the above properties of truncated hierarchical bases to obtain a

general and very simple procedure for the construction of quasi-interpolants in hierarchical

spaces. Thanks to the preservation of coefficients, the construction is basically effortless.

It is sufficient to consider a quasi-interpolant in each space associated with a particular

level in the hierarchy, which will be referred to as a one-level quasi-interpolant. Then, the

coefficients of the proposed hierarchical quasi-interpolant are nothing else than a proper

subset of the coefficients of the one-level quasi-interpolants. No additional manipulations

are required. Important properties – like polynomial reproduction – of the one-level quasi-

interpolants are preserved in the hierarchical construction. It is easy to construct hierarchical

local projectors, and so to provide dual bases. We also investigate the local approximation

order of the hierarchical quasi-interpolants.

The neat and general construction of the presented hierarchical quasi-interpolants is a

consequence of the nice properties of the truncated hierarchical bases. It makes these bases

and the corresponding spaces even more attractive for applications where local refinement

is of interest.

For an easier reading, we elaborate the construction of hierarchical quasi-interpolants,

the analysis of the hierarchical space, and the study of its local approximation power in terms

of THB-splines. However, the procedure is completely general and can be applied to any set

of bases (and corresponding spaces) that fits into the broad framework defined in [21].

The remaining of the paper is organized as follows. In Section 2 we recall the definition

and main properties of THB-splines, and in the next section we give a characterization of the

space they span. Section 4 is devoted to the construction of hierarchical quasi-interpolants,

and in Section 5 we discuss their local approximation power. Section 6 briefly describes how

the results in the previous sections can be extended to the general framework defined in [21].

We present several examples of hierarchies of spaces and bases that fit into this framework.

In Section 7 we detail a simple but effective construction of hierarchical quasi-interpolants

which are local projectors onto the THB-spline space. Their effectiveness is illustrated with

two numerical experiments. We end in Section 8 with some concluding remarks.

2 THB-splines

Let D be a hyper-rectangle in Rd . We consider a nested sequence of tensor-product d-variate

spline function spaces defined on D,

V0 ⊂ V1 ⊂ V2 ⊂ . . . (1)
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Fig. 1 A sequence of two-dimensional subsets Ω 0 ⊇Ω 1, together with their cells, used to build a hierarchical

spline space. Left: Ω 0; center: Ω 1; right: the corresponding hierarchical mesh.

Any element of Vℓ is a piecewise polynomial defined over a partition of D consisting of

hyper-rectangles, which will be called cells of level ℓ. Let Nℓ be the dimension of Vℓ, we

denote by

B
ℓ := {Bi,ℓ, i = 1, . . . ,Nℓ} (2)

the normalized tensor-product B-spline basis of Vℓ. It is well known (see e.g. [5,41]) that

these basis functions are locally linearly independent, they have local support, they are non-

negative, and they form a partition of unity. Moreover, for any level ℓ, each basis function in

Bℓ can be expressed as a linear combination of basis functions in Bℓ+1 with nonnegative

coefficients. We will refer to this property as the two-scale relations with only nonnegative

coefficients between bases of consecutive levels.

In addition to the spaces Vℓ and the corresponding bases Bℓ, we consider a nested

sequence of closed subsets of D,

Ω 0 ⊇ Ω 1 ⊇ Ω 2 ⊇ . . . , (3)

where each Ω ℓ is the union of a selection of cells of level ℓ. We assume that there exists

n ∈ N, such that

Ω n := /0. (4)

Because of (4), the sequence in (3) is basically a finite one, which will be denoted by

ΩΩΩn := {Ω 0,Ω 1, . . . ,Ω n−1}. (5)

We will refer to ΩΩΩn as the hierarchy of subsets of D of depth n. Moreover, the collection of

the corresponding cells in the hierarchy of the considered meshes will be shortly referred

to as the hierarchical mesh of depth n. Note that a hierarchical mesh is not a partition of

the domain because it consists of overlapping cells, in contrast to the conventional concept

of (one-level) mesh. We also remark that each Ω ℓ is not necessarily a hyper-rectangle and

can have several connected components. Figure 1(left–center) shows a sequence of two-

dimensional subsets Ω 0 ⊇ Ω 1, together with their cells. The corresponding hierarchical

mesh is depicted in Figure 1(right).

Finally, given a function f defined on D, we denote by supp( f ) the intersection of the

support of f with Ω 0.
Given a sequence of spaces and bases as in (1)–(2) and a hierarchy of subsets as in

(5), we can now construct the corresponding set of so-called hierarchical basis functions as

follows. We first take all the basis elements in B0 whose support overlaps Ω 0. Then, we

apply an iterative procedure which selects at each level ℓ all the basis functions obtained in
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the previous step whose support is not entirely contained in Ω ℓ and all the basis functions

in Bℓ whose support is entirely contained in Ω ℓ. More precisely, we state the following

definition, see [20,21,50].

Definition 1 The hierarchical set of basis functions HΩΩΩ n
associated to a hierarchy of sub-

sets of D as in (5) is recursively constructed as follows:

i) H 0 := {Bi,0 ∈ B0 : supp(Bi,0) 6= /0};

ii) for ℓ= 0, . . . ,n−2 :

H
ℓ+1 := H

ℓ+1
C ∪H

ℓ+1
F ,

where

H
ℓ+1

C := {Bi, j ∈ H
ℓ : supp(Bi, j) 6⊆ Ω ℓ+1},

H
ℓ+1

F := {Bi,ℓ+1 ∈ B
ℓ+1 : supp(Bi,ℓ+1)⊆ Ω ℓ+1};

iii) HΩΩΩn
:= H n−1.

Note that by (1) and the construction of the set of functions H ℓ we easily see that

〈
H

ℓ
〉
⊆
〈
H

ℓ+1
〉
, (6)

where 〈H 〉 stands for the span of the functions in the set H . Let

SΩΩΩn
:=
〈
Bi, j : Bi, j ∈ HΩΩΩn

〉
(7)

be the space spanned by the set of functions constructed in Definition 1. We refer to it as the

hierarchical space associated to ΩΩΩ n.

Since the elements in Bℓ are locally linearly independent, Definition 1 provides a set

of linearly independent functions, see [50]. Therefore, the elements in HΩΩΩ n
form a basis

of SΩΩΩn
, which will be referred to as the hierarchical basis of SΩΩΩn

. The elements of the

hierarchical basis are obviously nonnegative but they do not form a partition of unity.

For each ℓ= 0, . . . ,n−1, let Iℓ,ΩΩΩ n
be the set of indices of the elements in Bℓ belonging

to HΩΩΩ n
, i.e.,

Iℓ,ΩΩΩ n
:= {i : Bi,ℓ ∈ B

ℓ∩HΩΩΩn
}. (8)

From Definition 1 it follows that

Iℓ,ΩΩΩ n
= {i : Bi,ℓ ∈ B

ℓ, supp(Bi,ℓ)∩Dℓ 6= /0, supp(Bi,ℓ)⊆ Ω ℓ}, (9)

where

Dℓ := Ω ℓ \Ω ℓ+1. (10)

By using (8), we can represent any element s ∈ SΩΩΩn
as

s =
n−1

∑
ℓ=0

∑
i∈Iℓ,ΩΩΩn

di,ℓBi,ℓ.

We now modify the elements in HΩΩΩ n
in order to construct an alternative basis for SΩΩΩn

with enhanced properties (like smaller support, convex partition of unity, . . . ). The construc-

tion is based on the so-called truncation procedure which will be detailed in the following.
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Let s ∈ Vℓ ⊂ Vℓ+1 be represented with respect to the tensor-product B-spline basis Bℓ+1,

i.e.

s =
Nℓ+1

∑
i=1

ci,ℓ+1 Bi,ℓ+1, (11)

where ci,k denotes the coefficient of s ∈ Vk with respect to the basis element Bi,k ∈ Bk. We

define the truncation of s at level ℓ+1 as the sum of the terms appearing in (11) related to

the basis functions whose support is not a subset of Ω ℓ+1, i.e.,

truncℓ+1(s) := ∑
i :supp(Bi,ℓ+1)*Ω ℓ+1

ci,ℓ+1 Bi,ℓ+1. (12)

Due to (4), we have that truncn(s) = s. By using successive truncations of the functions

constructed in Definition 1, we can define a new set of basis functions of SΩΩΩn
.

Definition 2 The truncated hierarchical set of basis functions TΩΩΩn
associated to a hierarchy

of subsets of D as in (5) is recursively constructed as follows:

i) T 0 := {Bi,0 ∈ B0 : supp(Bi,0) 6= /0};

ii) for ℓ= 0, . . . ,n−2 :

T
ℓ+1 := T

ℓ+1
C ∪T

ℓ+1
F ,

where

T
ℓ+1

C := {truncℓ+1(BT
i, j) : BT

i, j ∈ T
ℓ, supp(BT

i, j) 6⊆ Ω ℓ+1},
T

ℓ+1
F := {Bi,ℓ+1 ∈ B

ℓ+1 : supp(Bi,ℓ+1)⊆ Ω ℓ+1};

iii) TΩΩΩn
:= T n−1.

We denote the elements of TΩΩΩn
by

{BT

i,ℓ,ΩΩΩ n
, i ∈ Iℓ,ΩΩΩn

, ℓ= 0, . . . ,n−1},
and will refer to them as the truncated hierarchical B-splines (THB-splines). They are ob-

tained by a successive truncation of the basis functions in HΩΩΩ n
, i.e.,

BT

i,ℓ,ΩΩΩ n
= Truncℓ+1

ΩΩΩn
(Bi,ℓ), i ∈ Iℓ,ΩΩΩ n

, ℓ= 0, . . . ,n−1, (13)

where for any s ∈ Vℓ ⊂Vℓ+1, ℓ= 0, . . . ,n−1,

Truncℓ+1
ΩΩΩ n

(s) := truncn−1(truncn−2(. . .(truncℓ+1(s)) . . .)).

According to [20], the THB-splines form an alternative basis of SΩΩΩn
. They are nonnegative

and sum up to one, so they form a convex partition of unity. Moreover, the truncation mech-

anism ensures that the THB-splines have the same or smaller support than in the case of the

classical hierarchical basis.

Figure 2 illustrates an example in the univariate case where the hierarchical basis and

the truncated hierarchical basis are compared on a hierarchical mesh of depth 2. This hier-

archical mesh is defined starting from two nested knot vectors with knots of multiplicities 4

at the two endpoints of the interval and single knots elsewhere. In this example, all the basis

functions have degree 3.

From (13) we see that any THB-spline BT

i,ℓ,ΩΩΩ n
corresponds to a basis function Bi,ℓ ∈

Bℓ. This correspondence has an important consequence, namely the so-called property of

preservation of coefficients. This means that the THB-spline representation preserves the

coefficients of functions represented with respect to one of the bases Bℓ. This property is

stated more precisely in the following theorem (see [21, Theorem 12]).
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Ω 0

Ω 1

 

Fig. 2 Univariate classical and truncated hierarchical B-splines of degree 3 considered on a hierarchical mesh

of depth 2. Left: hierarchy of subsets Ω 0 ⊇ Ω 1; right: classical hierarchical B-splines (top) and truncated

hierarchical B-splines (bottom).

Theorem 1 Let ℓ ∈ {0, . . . ,n−1} be given. Let s|Dℓ be the restriction of s ∈ SΩΩΩn
to Dℓ, see

(10), and consider its representation with respect to Bℓ and TΩΩΩn
,

s|Dℓ =
Nℓ

∑
j=1

c j,ℓB j,ℓ|Dℓ =
n−1

∑
k=0

∑
i∈Ik,ΩΩΩn

cT
i,kBT

i,k,ΩΩΩ n
|Dℓ .

Then,

cT
i,ℓ = ci,ℓ, i ∈ Iℓ,ΩΩΩn

.

Due to the nestedness of the spaces (1) we have the following corollary.

Corollary 1 Let s ∈ V0, and consider its representation with respect to TΩΩΩn
and Bℓ, ℓ =

0, . . . ,n−1,

s =
Nℓ

∑
j=1

c j,ℓB j,ℓ =
n−1

∑
k=0

∑
i∈Ik,ΩΩΩn

cT
i,kBT

i,k,ΩΩΩ n
.

Then,

cT
i,ℓ = ci,ℓ, i ∈ Iℓ,ΩΩΩn

.

3 The space SΩΩΩn

In this section we characterize the elements of the space SΩΩΩn
spanned by the hierarchical

basis HΩΩΩ n
as well as by the truncated hierarchical basis TΩΩΩn

.

We first define the restriction of the space Vℓ|ϒ as the span of the restrictions of all its

basis functions Bi,ℓ|ϒ, for any ϒ ⊆ D. For the characterization of SΩΩΩn
proposed in the next

theorem, we need to introduce the subsets

Rℓ := Ω 0 \Ω ℓ+1, ℓ= 0, . . . ,n−1, (14)

so that from (3) we obtain that

Rℓ ⊆ Rℓ+1,

and from (10) we have

Rℓ = ∪ℓ
k=0Ω k \Ω k+1 = ∪ℓ

k=0Dk, ℓ= 0, . . . ,n−1.
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Theorem 2 Let

WΩΩΩn
:= {s : s|Rℓ ∈ Vℓ|Rℓ , ℓ= 0, . . . ,n−1}, (15)

then

SΩΩΩn
=WΩΩΩn

on Ω 0. (16)

Proof First we show that SΩΩΩn
⊆WΩΩΩn

. Because of the nestedness of the sequence of spaces

(1), it is easy to see that for any s ∈ SΩΩΩn
we have

s|Rℓ ∈ Vℓ|Rℓ , ℓ= 0, . . . ,n−1.

Now we will prove that SΩΩΩn
⊇WΩΩΩn

. Let us consider s ∈WΩΩΩn
. The restriction of s to

R0 = D0 belongs to V0|R0 . Therefore, we can represent s|R0 as a linear combination of the

basis elements in B0 whose support intersects R0, and by using (9) we have

s|R0 = ∑
i :supp(Bi,0)∩D0 6= /0

ci,0Bi,0|R0 = ∑
i∈I0,ΩΩΩn

ci,0Bi,0|R0 .

Then, we define the following functions on Ω 0:

s(0) := ∑
i∈I0,ΩΩΩn

ci,0Bi,0,

r(0) := s− s(0),

so that

s(0)|R0 = s|R0 , r(0)|R0 = 0.

For any g ∈ WΩΩΩn
we have g|R1 ∈ V1|R1 , so we can express the restriction of r(0) to R1 as

follows,

r(0)|R1 = ∑
i :supp(Bi,1)∩R1 6= /0

ci,1Bi,1|R1

= ∑
i :supp(Bi,1)∩R0 6= /0

ci,1Bi,1|R1 + ∑
i :supp(Bi,1)∩D1 6= /0,supp(Bi,1)⊆Ω1

ci,1Bi,1|R1 . (17)

Moreover, since r(0)|R0 = 0 and R0 ⊆ R1, we know that

r(0)|R0 = ∑
i :supp(Bi,1)∩R0 6= /0

ci,1Bi,1|R0 = 0.

By the local linear independence of the basis elements in B1 we have that all the coefficients

in the above sum are equal to 0. Therefore, the first sum in (17) is zero, and by using (9), we

obtain

r(0)|R1 = ∑
i :supp(Bi,1)∩D1 6= /0,supp(Bi,1)⊆Ω1

ci,1Bi,1|R1 = ∑
i∈I1,ΩΩΩn

ci,1Bi,1|R1 .

Let s(1), r(1) be defined as

s(1) := ∑
i∈I1,ΩΩΩn

ci,1Bi,1,

r(1) := r(0)− s(1) = s− s(0)− s(1),
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so that

s(1)|R1 = r(0)|R1 , r(1)|R1 = 0.

As a consequence, (
s(1)+ s(0)

)
|R1 = s|R1 .

We can repeat the same procedure for all the levels of the hierarchy by taking

s(ℓ) := ∑
i∈Iℓ,ΩΩΩn

ci,ℓBi,ℓ,

r(ℓ) := s− s(0)− s(1)− . . .− s(ℓ),

so that

r(ℓ)|Rℓ = 0,
(

s(ℓ)+ . . .+ s(1)+ s(0)
)
|Rℓ = s|Rℓ .

Since Ω n = /0, we have Rn−1 = Ω 0. Hence, for ℓ= n−1 the above equality reads as

s|Ω0 =
n−1

∑
ℓ=0

s(ℓ)|Ω0 =
n−1

∑
ℓ=0

∑
i∈Iℓ,ΩΩΩn

ci,ℓBi,ℓ|Ω0 ∈ SΩΩΩn
.

So, we conclude that SΩΩΩn
=WΩΩΩn

on Ω 0. ⊓⊔

Note that any element s ∈WΩΩΩn
satisfies

s|Dℓ ∈ Vℓ|Dℓ .

The global smoothness of the elements in WΩΩΩn
is determined by the smoothness of the

spaces Vℓ in the sequence (1).

An interesting case is described in the following example.

Example 1 Let each Vℓ be a tensor-product spline space with degree p in each coordinate

and with maximal smoothness Cp−1 defined on D. Then,

SΩΩΩn
⊆ {s ∈Cp−1(Ω 0) : s|Dℓ ∈ Vℓ|Dℓ , ℓ= 0, . . . ,n−1}.

The relation between the space SΩΩΩn
and the space of piecewise polynomials with degree p in

each coordinate and with maximal smoothness has been investigated in [19] for the bivariate

case. The trivariate case has been addressed in [3].

Assume we have two hierarchies of subsets of D, namely ΩΩΩ n and Ω̂ΩΩ n̂ of depth n and n̂,

respectively. We say that Ω̂ΩΩ n̂ enlarges ΩΩΩn if

n ≤ n̂, Ω 0 = Ω̂ 0, Ω ℓ ⊆ Ω̂ ℓ, ℓ= 1, . . . ,n−1. (18)

The next corollary states that the corresponding hierarchical spaces are nested as well. This

has already been proved in [21, Proposition 6] in a different way.

Corollary 2 Let ΩΩΩ n and Ω̂ΩΩ n̂ be two hierarchies of subsets of D of depth n and n̂, respec-

tively, such that Ω̂ΩΩ n̂ enlarges ΩΩΩn. Then,

SΩΩΩn
⊆ SΩ̂ΩΩ n̂

on Ω 0. (19)

Proof Let R̂ℓ := Ω̂ 0\Ω̂ ℓ+1 and let Rℓ be defined as in (14). From (18) it follows that R̂ℓ ⊆Rℓ.

Since the spaces in (1) are nested, the definition in (15) implies that WΩΩΩn
⊆ WΩ̂ΩΩ n̂

, and

Theorem 2 gives (19). ⊓⊔
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4 Quasi-interpolants in SΩΩΩn

The term quasi-interpolation denotes a general approach to construct, with a low compu-

tational cost, efficient approximants to a given set of data or a given function. A quasi-

interpolant (QI) is usually obtained as a linear combination of the elements of a suitable set

of functions that form a convex partition of unity and possess a small local support. These

properties ensure both numerical stability and local control of the constructed approximant.

Quasi-interpolants in polynomial spline spaces are a common and powerful approximation

tool, see e.g. [4,6,32,39].

In this section we focus on quasi-interpolation in the space SΩΩΩn
. As stated in Section 2,

the THB-splines form a convex partition of unity, whereas the elements in HΩΩΩ n
do not.

Moreover, THB-splines have in general a smaller (or the same) support than the correspond-

ing elements in HΩΩΩ n
. Hence, we will construct QIs in the space SΩΩΩn

in terms of THB-splines

as defined in Definition 2, see also (13). In addition, the THB-spline basis possesses the

property of preservation of coefficients, see Theorem 1. This allows an easy construction of

QIs in SΩΩΩn
, once a sequence of QIs in the spaces Vℓ, ℓ= 0, . . . ,n−1, is given.

Let f ∈C(Ω 0) be given. We now consider a sequence of one-level QIs, namely

Q
ℓ( f ) :=

Nℓ

∑
i=1

λi,ℓ( f )Bi,ℓ, ℓ= 0, . . . ,n−1, (20)

where λi,ℓ are suitable linear functionals on C(Ω 0). We say that λi,ℓ is supported on Λi,ℓ if

f |Λi,ℓ
= 0 ⇒ λi,ℓ( f ) = 0. (21)

Examples of interesting QIs of the form (20) can be found in [4,6,28,32,39].

In order to construct a suitable QI in SΩΩΩn
, it is sufficient to select as coefficient for each

basis element BT
i,ℓ,ΩΩΩ n

the coefficient of the corresponding basis element in Bℓ in (20). More

precisely, we set

Q( f ) :=
n−1

∑
ℓ=0

∑
i∈Iℓ,ΩΩΩn

λi,ℓ( f )BT
i,ℓ,ΩΩΩn

. (22)

We will refer to QIs of the form (22) as hierarchical QIs.

Given a set of degrees

ppp := (p1, . . . , pd),

let Pppp be the space of tensor-product polynomials of degree pi in the i-th coordinate. When

assuming Pppp ⊂ V0 on Ω 0, from (1) and (6) it follows that

Pppp ⊂ SΩΩΩn
on Ω 0.

We now describe QIs reproducing polynomials in Pppp.

Theorem 3 Let Qℓ be a given sequence of QIs as in (20), and let Q be the corresponding

hierarchical QI as in (22). If

Q
ℓ(q) = q, ∀q ∈ Pppp, ℓ= 0, . . . ,n−1, (23)

then

Q(q) = q, ∀q ∈ Pppp.
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Proof Let q ∈ Pppp ⊂ Vℓ, then it can be uniquely represented as a linear combination of the

basis elements in Bℓ,

q =
Nℓ

∑
i=1

ci,ℓBi,ℓ,

and since Qℓ(q) = q we have λi,ℓ(q) = ci,ℓ. On the other hand, q ∈ SΩΩΩn
, so

q =
n−1

∑
ℓ=0

∑
i∈Iℓ,ΩΩΩn

cT
i,ℓBT

i,ℓ,ΩΩΩ n
.

From Corollary 1 it follows

cT
i,ℓ = ci,ℓ = λi,ℓ(q), i ∈ Iℓ,ΩΩΩ n

, ℓ= 0, . . . ,n−1,

implying that Q(q) = q. ⊓⊔
In the next theorem we present a sufficient condition to construct QIs which are projec-

tors onto SΩΩΩn
.

Theorem 4 Let Qℓ be a given sequence of QIs as in (20), and let Q be the corresponding

hierarchical QI as in (22). Assume

Q
ℓ(s) = s, ∀s ∈ Vℓ, ℓ= 0, . . . ,n−1,

and each λi,ℓ used in (22) is supported on Dℓ, see (10). Then,

Q(s) = s, ∀s ∈ SΩΩΩn
.

Proof Due to the linearity of the QI, it suffices to prove that

λi,ℓ(B
T
j,k,ΩΩΩn

) = δi, jδℓ,k, i ∈ Iℓ,ΩΩΩ n
, j ∈ Ik,ΩΩΩn

, k, ℓ= 0, . . . ,n−1, (24)

where δr,s stands for the classical Kronecker delta. Let i and ℓ be fixed. To prove (24) we

consider three cases.

– Let k > ℓ, then BT

j,k,ΩΩΩ n
|Dℓ = 0, see Definition 2. Since λi,ℓ is only supported on Dℓ, it

follows from (21) that λi,ℓ(B
T

j,k,ΩΩΩ n
) = 0.

– We now consider the case k = ℓ. Since Qℓ is a projector onto Vℓ, we have that λi,ℓ(B j,ℓ)=
δi, j. From the preservation of coefficients, see Theorem 1, we obtain

λi,ℓ(B
T

j,ℓ,ΩΩΩ n
) = δi, j, i, j ∈ Iℓ,ΩΩΩ n

.

– Finally, let k < ℓ. Any BT

j,k,ΩΩΩ n
|Dℓ can then be expressed as a linear combination of the

basis elements in Bℓ restricted to Dℓ, namely

BT

j,k,ΩΩΩ n
|Dℓ =

Nℓ

∑
r=1

c
j,k
r,ℓ Br,ℓ|Dℓ .

Due to the definition of BT

j,k,ΩΩΩ n
and the preservation of coefficients, we have

c
j,k
r,ℓ = 0, if r ∈ Iℓ,ΩΩΩ n

.

Thus, by the support restriction of λi,ℓ, we have for i ∈ Iℓ,ΩΩΩ n
,

λi,ℓ(B
T

j,k,ΩΩΩn
) =

Nℓ

∑
r=1

c
j,k
r,ℓ λi,ℓ(Br,ℓ) =

Nℓ

∑
r=1

c
j,k
r,ℓ δi,r = c

j,k
i,ℓ = 0.

⊓⊔
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Remark 1 The sequence of one-level QIs as in (20) considered in Theorem 4 has to satisfy

constraints more restrictive than those in Theorem 3: for each level ℓ, Qℓ has to be a projector

onto Vℓ and each λi,ℓ, i ∈ Iℓ,ΩΩΩn
, has to be supported in Dℓ. The former constraint connects

the one-level QIs with the sequence of spaces V0, . . . ,Vn−1 and has a similar counterpart in

Theorem 3. The latter constraint links the same sequence of QIs with the hierarchy of subsets

ΩΩΩn. In Section 7 we describe a possible simple strategy to construct one-level QIs satisfying

such constraints. However, once a sequence of QIs as in (20) satisfying the hypotheses of

Theorem 4 is available, the construction of a hierarchical QI which is a projector onto SΩΩΩn

does not require additional efforts with respect to a hierarchical QI which just reproduces

polynomials.

Remark 2 Let {λi,ℓ} be a set of linear functionals in (22) that provide a projector onto SΩΩΩn
.

Then, because of (24), it is a dual basis for TΩΩΩn
.

The hierarchical QI defined in (22) can be interpreted as a telescopic approximant, where

for each level an approximant of the residual is added. A similar telescopic approach was

also considered in [25]. To show this, we define the following set of indices

Jℓ,ΩΩΩ n
:= {i : Bi,ℓ ∈ B

ℓ, supp(Bi,ℓ) ⊆ Ω ℓ}.

Referring to (9), it is easy to see that Iℓ,ΩΩΩ n
⊆ Jℓ,ΩΩΩn

.

Theorem 5 Let Qℓ be a given sequence of QIs as in (20), and let Q be the corresponding

hierarchical QI as in (22). Assume

Q
ℓ(s) = s, ∀s ∈ Vℓ, ℓ= 0, . . . ,n−1,

then

Q( f ) =
n−1

∑
ℓ=0

f (ℓ), (25)

where

f (ℓ) := ∑
i∈Jℓ,ΩΩΩn

λi,ℓ

(
f − f (0)− f (1)− . . .− f (ℓ−1)

)
Bi,ℓ, ℓ= 0, . . . ,n−1.

Proof Each quasi-interpolant Qℓ, ℓ = 0, . . . ,n− 1, is assumed to be a projector onto the

space Vℓ, and because of the nestedness of the spaces Vℓ ⊂ Vℓ+1, every basis function Bi,ℓ

can be represented as

Bi,ℓ =
Nℓ+1

∑
j=1

λ j,ℓ+1(Bi,ℓ)B j,ℓ+1. (26)

By exploiting the definition of the truncated basis (13) and (26), we obtain

f (0) = ∑
i∈J0,ΩΩΩn

λi,0( f )Bi,0 = ∑
i∈I0,ΩΩΩn

λi,0( f )BT

i,0,ΩΩΩn
+ ∑

i∈J0,ΩΩΩn

λi,0( f )

(

∑
j∈J1,ΩΩΩn

λ j,1(Bi,0)B j,1

)
.

Moreover,

f (1) = ∑
i∈J1,ΩΩΩn

λi,1( f )Bi,1 − ∑
i∈J1,ΩΩΩn

λi,1( f (0))Bi,1

= ∑
i∈J1,ΩΩΩn

λi,1( f )Bi,1 − ∑
i∈J1,ΩΩΩn

(

∑
j∈J0,ΩΩΩn

λ j,0( f )λi,1(B j,0)

)
Bi,1.
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Hence,

f (0)+ f (1) = ∑
i∈I0,ΩΩΩn

λi,0( f )BT

i,0,ΩΩΩn
+ ∑

i∈J1,ΩΩΩn

λi,1( f )Bi,1. (27)

We now remark that from the truncation definition (12)–(13) it follows that λi,2(B
T

j,0,ΩΩΩ n
) = 0

for any i ∈ J2,ΩΩΩn
and j ∈ I0,ΩΩΩn

, and so

∑
i∈J2,ΩΩΩn

λi,2(B
T

j,0,ΩΩΩ n
)Bi,2 = 0, ∀ j ∈ I0,ΩΩΩ n

. (28)

By using similar arguments as before, we can write (27) as

f (0)+ f (1) =

∑
i∈I0,ΩΩΩn

λi,0( f )BT

i,0,ΩΩΩn
+ ∑

i∈I1,ΩΩΩn

λi,1( f )BT

i,1,ΩΩΩn
+ ∑

i∈J1,ΩΩΩn

λi,1( f )

(

∑
j∈J2,ΩΩΩn

λ j,2(Bi,1)B j,2

)
,

and by means of (27) and (28) we obtain

f (2) = ∑
i∈J2,ΩΩΩn

λi,2( f )Bi,2 − ∑
i∈J2,ΩΩΩn

λi,2( f (0)+ f (1))Bi,2

= ∑
i∈J2,ΩΩΩn

λi,2( f )Bi,2 − ∑
i∈J2,ΩΩΩn

(

∑
j∈J1,ΩΩΩn

λ j,1( f )λi,2(B j,1)

)
Bi,2,

resulting in

f (0)+ f (1)+ f (2) = ∑
i∈I0,ΩΩΩn

λi,0( f )BT

i,0,ΩΩΩn
+ ∑

i∈I1,ΩΩΩn

λi,1( f )BT

i,1,ΩΩΩn
+ ∑

i∈J2,ΩΩΩn

λi,2( f )Bi,2.

By iterating over all levels in the hierarchy and repeating the same arguments, we get the

relation (25). ⊓⊔
From Theorem 5 one can derive the representation of the proposed QI in (22) in terms of the

classical hierarchical basis as defined in Definition 1. This conversion can be easily done by

means of the knot insertion formula for B-splines.

5 Approximation properties

In this section we investigate the local approximation power of the space SΩΩΩn
in the supre-

mum norm. Let f ∈C(Ω 0), and let ϒ be a subset of Ω 0. We use the following notation,

‖ f ‖ := sup
xxx∈Ω0

| f (xxx)|, ‖ f ‖ϒ := sup
xxx∈ϒ

| f (xxx)|.

For a given quasi-interpolant Q, we denote by ‖Q‖ the usual induced norm, namely

‖Q‖ := sup
‖ f‖=1

‖Q f ‖.

Since the basis TΩΩΩn
forms a convex partition of unity, for any QI of the form (22) it is easy

to see that

‖Q‖ ≤ sup
ℓ=0,...,n−1; i∈Iℓ,ΩΩΩn

‖λi,ℓ‖Λi,ℓ
=: CQ, (29)

where ‖λi,ℓ‖Λi,ℓ
stands for the induced norm of the linear functional λi,ℓ on its support Λi,ℓ,

see (21). Finally, we denote by diam(Ψ) the diameter of the set Ψ , and by conv(Ψ) the

convex hull of Ψ .

With some standard arguments we obtain the following result.
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Theorem 6 Let a hierarchical quasi-interpolant Q as in (22) be given, such that CQ in (29)

is bounded. Let ϒ be a cell, we set

Λϒ := conv

(
⋃

(i,ℓ) :supp(BT
i,ℓ,ΩΩΩn

)
⋂

ϒ6= /0

Λi,ℓ ∪ ϒ

)
, (30)

where Λi,ℓ are the supports defined in (21). If f ∈Cp+1(Λϒ), and

Q(q)|ϒ = q|ϒ, ∀q ∈ Pppp, ppp := (p, . . . , p), (31)

then

‖ f −Q( f )‖ϒ ≤C (diam(Λϒ))
p+1 (1+CQ) ∑

|ααα |=p+1

‖Dααα f ‖Λϒ , (32)

where C is a constant independent of f and diam(Λϒ).

Proof Thanks to (31), for any polynomial q ∈ Pppp, we have

‖ f −Q( f )‖ϒ = ‖ f −q+q−Q( f )‖ϒ ≤ ‖ f −q‖ϒ +‖Q( f −q)‖ϒ.

Moreover, from (22) and from the convex partition of unity property of the basis TΩΩΩn
, we

have

‖Q( f −q)‖ϒ = sup
xxx∈ϒ

∣∣∣∣∣ ∑
(i,ℓ) :supp(BT

i,ℓ,ΩΩΩn
)
⋂

ϒ6= /0

λi,ℓ( f −q)BT

i,ℓ,ΩΩΩ n
(xxx)

∣∣∣∣∣≤CQ‖ f −q‖Λϒ .

Therefore,

‖ f −Q( f )‖ϒ ≤ (1+CQ)‖ f −q‖Λϒ ,

and the bound (32) follows from the approximation properties of the space Pppp. ⊓⊔

Some remarks about the previous theorem are in order.

Remark 3 If the value CQ does not depend on diam(Λϒ), then (32) provides the optimal

local approximation order. This is the case when the “building blocks” in the construction

of Q, namely Qℓ in (20), have a similar property, i.e., when

CQℓ := sup
i=1,...,Nℓ

‖λi,ℓ‖Λi,ℓ
(33)

does not depend on diam(Λϒ). For a one-level QI with such a property, see e.g. [28].

Remark 4 Suppose the spaces Vℓ in (1) are tensor-product d-variate spline spaces such that

Ppppℓ ⊂ Vℓ, pppℓ := (pℓ, . . . , pℓ). Then, thanks to the locality of the assumptions in Theorem 6,

our construction can provide hierarchical QIs with local approximation order pℓ+1.

Remark 5 In practice it is of interest that diam(Λϒ) is of the same order of diam(ϒ). To

obtain this, we have to control both the supports of the linear functionals λi,ℓ and those of

the basis elements BT
i,ℓ,ΩΩΩ n

. The former supports can be fixed by a proper selection of the

QIs in (20). There are several examples of efficient spline QIs where the support of λi,ℓ is

contained in the one of Bi,ℓ, see [28,32]. The latter supports depend on the hierarchies of

the subsets (3) and of the spaces (1). It is possible to provide selection strategies for Ω ℓ,

ℓ = 0, . . . ,n− 1, such that only basis elements BT
i,ℓ,ΩΩΩ n

corresponding to a given number of

consecutive levels are supported on a given cell. For example, the strategy in [21, Appendix

A] ensures that only basis elements corresponding to at most two consecutive levels ℓ−1, ℓ
are supported on a cell of level ℓ in Dℓ. This will be elaborated in more detail in Example 2.
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Remark 6 Theorem 6 is not confined to cells and it still holds for any subset Ψ of Ω 0. If

Ψ is a large subset, then the straightforward application of (32) does not provide any useful

information because diam(ΛΨ) is large as well. However, the bound can be improved as

follows. Let ϒ1, . . . ,ϒM be a given set of cells such that Ψ ⊆⋃M
j=1ϒj, then

‖ f −Q( f )‖Ψ ≤
{

max
j=1,...,M

(
diam(Λϒj

)
)p+1

}
C(1+CQ) ∑

|ααα |=p+1

‖Dααα f ‖∆Ψ , (34)

where ∆Ψ :=
⋃M

j=1 Λϒj
.

Remark 7 Because of the form of our QI in (22) and the local support of the basis functions,

it is natural to require that the support of λi,ℓ is in the neighborhood of the support of the

corresponding basis function. This ensures a complete locality of the QI. It is well known

that this is a golden rule to construct good QIs. The choice of the support of λi,ℓ can also

be motivated by the classical structure of the error bounds in (32) and (34). First, in view

of (30), the diameter of Λi,ℓ has to be small in order to obtain a small error bound (see also

Remark 5). Second, any set Λi,ℓ involved in (30) must be close to ϒ so that the difference

between f and Q( f ) on ϒ is controlled by the behavior of f in the neighborhood of ϒ.

Finally, we recall that, in order to obtain a hierarchical projector, the support of λi,ℓ is also

constrained by the hierarchy ΩΩΩ n, see Theorem 4. However, this additional constraint can be

easily satisfied under some mild assumptions on the hierarchy. We refer to Section 7 for a

practical construction.

Finally, inspired by Remark 5, we apply Theorem 6 to a specific case of interest where

we consider a hierarchy of nested uniform spline spaces and a restricted local refinement

strategy.

Example 2 We consider a sequence of spaces as in (1) where Vk is a tensor-product d-

variate spline space of degree ppp := (p, . . . , p) on a uniform grid with mesh size hk, and Vk

is obtained from Vk−1 by dyadic refinement. Hence, we have hk = hk−1/2. In addition, we

define h−1 := h0 for notational convenience. To construct the hierarchy of subsets ΩΩΩ n as in

(5), we follow the strategy proposed in [21, Appendix A]: given the auxiliary subsets

ωk = {xxx ∈ Ω k |∀Bi,k ∈ B
k : xxx ∈ supp(Bi,k)⇒ supp(Bi,k)⊆ Ω k}, k = 0, . . . ,n−1,

we choose Ω k+1 ⊆ ωk for k = 0, . . . ,n− 2. Roughly speaking, this strategy ensures that

Ω k+1 is “sufficiently far” from the boundary of Ω k. In this case, from [21] we know that only

THB-splines of level k−1 and k can have support intersecting Dk. Let us take the set ϒ in

Theorem 6 as a cell of a given level ℓ in Dℓ, and it will be denoted by ϒℓ. Finally, we consider

a sequence of one-level QIs as in (20) satisfying (23) with λi,k such that Λi,k ⊆ supp(Bi,k),
see e.g. [28,32]. Due to our specific construction of the hierarchy, we have for ℓ≥ 1,

Λϒℓ ⊆ conv

(
⋃

(i,k) :supp(BT
i,k,ΩΩΩn

)
⋂

ϒℓ 6= /0

supp(Bi,k)

)

⊆ conv

(
⋃

k∈{ℓ−1,ℓ}

⋃

i :supp(Bi,k)
⋂

ϒℓ 6= /0

supp(Bi,k)

)
= conv

(
⋃

i :supp(Bi,ℓ−1)
⋂

ϒℓ 6= /0

supp(Bi,ℓ−1)

)
,

and for ℓ= 0,

Λϒ0
⊆ conv

(
⋃

i :supp(Bi,0)
⋂

ϒ0 6= /0

supp(Bi,0)

)
.
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Hence, Λϒℓ is contained in the hyper-cube in Rd consisting of (2p+1)×·· ·× (2p+1) cells

of level max{0, ℓ− 1}, and centered at the cell of level max{0, ℓ− 1} containing ϒℓ. We

denote this hyper-cube by �ϒℓ . Moreover,

diam(Λϒℓ)≤
√

d (2p+1)hℓ−1 = 2
√

d (2p+1)hℓ.

Then, from Theorem 6 it follows that for any f ∈ Cp+1(�ϒℓ) the quasi-interpolant Q as in

(22) satisfies

‖ f −Q( f )‖ϒℓ ≤C(hℓ)
p+1(1+CQ) ∑

|ααα |=p+1

‖Dααα f ‖�ϒℓ
, (35)

where C is a constant independent of f and hℓ.

6 Beyond tensor-product polynomial B-splines

Both the definition of the truncated hierarchical bases and the construction of the related

QIs presented in the previous sections have been elaborated for tensor-product polynomial

B-splines due to their relevant interest. However, for both of them it is not necessary to use

tensor-product polynomial B-splines as building blocks. They can be replaced by different

sets of basis functions possessing similar properties. In this section we recall from [21] a

more general framework for the construction of truncated hierarchical bases, and we show

that all the previous results can be straightforwardly extended to it.

Let D be a bounded domain in Rd . We consider a nested sequence of spaces Vℓ, where

each of them is assumed to be a finite-dimensional subspace of the space C(D). Each space

Vℓ is spanned by a basis

B
ℓ := {Bi,ℓ, i = 1, . . . ,Nℓ}

with the following properties.

(A1) The functions in Bℓ are locally linearly independent.

(A2) The functions in Bℓ have local support. Moreover, for each function Bi,ℓ ∈ Bℓ, the

boundary of the support consists of a finite number of smooth arcs.

(A3) The functions in Bℓ are nonnegative.

(A4) The functions in Bℓ form a partition of unity.

(A5) There exists a two-scale relation with only nonnegative coefficients between Bℓ and

Bℓ+1.

In this general framework each basis Bℓ naturally leads to a collection of cells of level

ℓ which tessellates the domain D, see [21]. A sequence of nested subsets (3) can then be

considered where Ω ℓ is the union of a selection of cells of level ℓ.
Whenever a sequence of spaces Vℓ spanned by bases Bℓ satisfying (A1–A5) is given,

and a corresponding sequence of subsets Ω ℓ is selected, then we can follow the same steps

as in Definition 2 to obtain a truncated hierarchical basis. This basis forms a convex par-

tition of unity and possesses the property of preservation of coefficients, see [21]. Simi-

larly, any sequence of suitable quasi-interpolants in the spaces Vℓ allows us to construct

quasi-interpolants in the resulting hierarchical space by means of the procedure detailed in

Section 4.

Beyond classical polynomial univariate B-splines and their tensor-product extension,

several families of basis functions and their corresponding function spaces satisfy assump-

tions (A1–A5). We consider in the following some relevant examples. For all of them there

exist in the literature quasi-interpolants of the form (20). Therefore, the strategy proposed
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in Section 4 can be easily applied and the corresponding results can be straightforwardly

generalized.

Example 3 Box splines are a possible generalization to the multivariate setting of the con-

cept of univariate B-splines with uniform knots. They can be defined by successive uni-

variate convolutions with the characteristic function over the interval [0,1) along given di-

rections, see [7]. Hence, a box spline MΞ in Rd is associated with a set of directions in

Rd , usually collected in a d × n matrix Ξ , n ≥ d, with columns in Rd \ 000. There is a well

established theory for spaces spanned by integer translates of box splines, namely
{

MΞ (.− jjj), jjj ∈ Zd
}
, (36)

defined by directions in Zd such that Ξ has full rank. Assumptions (A2–A4) are satisfied

by this set of functions. Moreover, their smoothness and the polynomial space contained in

the space they span can be completely characterized by means of Ξ , see [7]. Suitable scaled

versions of MΞ and of its translates immediately provide a sequence of nested spaces as in

(1). Such scaled versions of MΞ (.− jjj) can be connected by means of a two-scale relation

with only nonnegative coefficients, see (A5).

In view of assumption (A1), we recall that for the elements in the set (36) local linear in-

dependence is equivalent to (global) linear independence. Their linear independence can be

characterized in a very elegant way in terms of the matrix Ξ , see [7, Theorem 57]. The func-

tions in (36) are linearly independent if and only if each regular d ×d submatrix Ξ̄ of Ξ is

unimodular, i.e.,

det(Ξ̄) ∈ {1,−1}.
A relevant example of linearly independent box splines are bivariate box splines defined

on the three-directional mesh [7,27]. For such box splines, several quasi-interpolants which

reproduce polynomials up to a certain degree can be found in the literature, see [1,7,9,10,

14,27] and references therein. For local quasi-interpolant projectors we also refer to [31].

Linearly independent box splines on more general lattices also result in bases satisfying

assumptions (A1–A5). Their definition and some corresponding quasi-interpolants of the

form (20) can be found in [23] and references therein.

Example 4 Powell-Sabin splines are bivariate quadratic C1 splines defined over any given

triangulation endowed with a particular 6-split macro-structure. For this spline space a B-

spline-like basis has been constructed in [15], which satisfies assumptions (A1–A4). A se-

quence of nested spaces can be obtained by using suitable triadic refinements [49], and the

corresponding B-spline-like bases satisfy (A5).

Besides the standard Hermite interpolant, several other quasi-interpolants of the form (20)

have been proposed in the literature for Powell-Sabin splines, see [35,40,46].

Truncated hierarchical bases1 based on Powell-Sabin B-splines have been previously pre-

sented in [47], and the local approximation power of the corresponding spaces has been

investigated in [48] by exploiting hierarchical Hermite interpolants of the form (22).

Example 5 Piecewise Chebyshevian splines are splines with pieces taken from (different)

extended Chebyshev spaces. Whenever piecewise Chebyshevian splines are good for de-

sign2, see [37, Section 5] and [36], they possess a B-spline-like basis which satisfies as-

sumptions (A1–A5). Interesting examples of nested piecewise Chebyshevian spline spaces

1 Note that the truncated hierarchical basis is called quasi-hierarchical basis in [47,48].
2 Basically this means that the spline space contains constants and that an appropriate blossom can be

constructed therein.
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good for design are the classical trigonometric/hyperbolic splines [8,41], the so-called gen-

eralized trigonometric/hyperbolic splines [8,11,26,51], and piecewise Müntz splines [37].

Some restrictions on the knot sequences can be necessary. Assumptions (A1–A5) also hold

for tensor-products of these univariate splines which are defined on Cartesian grids.

Local quasi-interpolant projectors for classical and generalized trigonometric/hyperbolic

splines of the form (20) can be found in [12,33,41]. A hierarchical framework based on

generalized splines has already been described in [34].

7 Numerical examples

In this section we elaborate a simple example of hierarchical QIs as described in Section 4

where the underlying bases Bℓ consists of tensor-product B-splines. We also present some

numerical results based on this construction in the case of THB-splines over uniform nested

sequences of knots.

We now explain the construction of a possible hierarchical QI for any given function

f ∈C(D). To this end, we first describe a quasi-interpolant

Q̃
ℓ( f ) :=

Nℓ

∑
i=1

λ̃i,ℓ( f )Bi,ℓ (37)

in the space Vℓ for a particular level ℓ. It is based on the local projector procedure presented

in [28]. With each basis element Bi,ℓ ∈ Bℓ we associate the linear functional λ̃i,ℓ in (37)

as follows. Let Θi,ℓ be a subset of the support of Bi,ℓ. We select a unisolvent set of Mi,ℓ

interpolation points {xxx j,i,ℓ ∈Θi,ℓ, j = 1, . . . ,Mi,ℓ}, where Mi,ℓ is the number of the elements

in Bℓ whose supports intersect Θi,ℓ. Then we solve the corresponding local interpolation

problem

∑
k :supp(Bk,ℓ)

⋂
Θi,ℓ 6= /0

ck,ℓBk,ℓ(xxx j,i,ℓ) = f (xxx j,i,ℓ), j = 1, . . . ,Mi,ℓ. (38)

Finally, λ̃i,ℓ( f ) is taken as the coefficient ci,ℓ of Bi,ℓ in (38). Note that Q̃ℓ is a projector

onto Vℓ.

According to (22), the sequence of quasi-interpolants Q̃ℓ, ℓ = 0, . . . ,n−1, leads to the

hierarchical quasi-interpolant

Q̃( f ) :=
n−1

∑
ℓ=0

∑
i∈Iℓ,ΩΩΩn

λ̃i,ℓ( f )BT

i,ℓ,ΩΩΩn
, (39)

which ensures polynomial reproduction as described in Theorem 3.

To obtain a projector onto SΩΩΩn
, we need to select Θi,ℓ in agreement with the sequence of

the subsets (3). More precisely, according to Theorem 4, we look for linear functionals λ̃i,ℓ,

i ∈ Iℓ,ΩΩΩn
, which are supported on Dℓ, see (10). Hence, we require that

Θi,ℓ ⊆ Dℓ, i ∈ Iℓ,ΩΩΩ n
. (40)

The above constraint can always be satisfied. Indeed, by the definition in (9) we have that

supp(Bi,ℓ)∩Dℓ 6= /0 for any i ∈ Iℓ,ΩΩΩ n
.

In practice, a natural choice is to select Θi,ℓ as a cell of level ℓ in the support of Bi,ℓ.

With such a selection the fulfillment of the constraint (40) requires some mild assumptions

on the hierarchy ΩΩΩn. For instance, (40) can be satisfied when the sets Ω k in (3) are taken as



Effortless quasi-interpolation in hierarchical spaces 19

the union of a selection of cells of level k−1, for k ≥ 1. An example of such a hierarchical

mesh is depicted in Figure 1. Note that this assumption on the sets Ω k is usually satisfied

because it is nothing else than a standard cell refinement. Moreover, selecting Θi,ℓ as a cell

of level ℓ results in some further benefits.

– From the implementation point of view, it is easy to find a cell of level ℓ which is in the

support of the corresponding B-spline Bi,ℓ and satisfies (40). Indeed, it just requires to

run over the few a priori known cells forming the support of Bi,ℓ and check (40). Once

we have selected an appropriate cell, the coefficient λ̃i,ℓ can be immediately constructed

without any further information about the hierarchy.

– A too small support of λ̃i,ℓ can incur numerical instabilities and a dangerous deteriora-

tion of the constructed quasi-interpolant. Because of the constraint (40), this can occur

when Dℓ is small. By selecting Θi,ℓ as a cell of level ℓ we avoid such problems.

We now illustrate the use of the hierarchical quasi-interpolant Q̃, with Θi,ℓ selected as a

cell of level ℓ, by means of two numerical examples (Examples 6 and 7). In both examples,

we choose the following setup. The THB-splines are constructed starting from a hierarchy of

tensor-product B-splines of bidegree (p1, p2) and maximal smoothness defined on uniform

nested knot sequences. We have implemented two possible selections of the cell Θi,ℓ in the

support of the B-spline Bi,ℓ consisting of (p1 +1)× (p2 +1) cells of level ℓ, locally indexed

by {( j1, j2)}p1 ,p2
j1=0, j2=0.

– Take Θi,ℓ as the central cell of level ℓ in the support of Bi,ℓ, with local cell index

(⌊p1/2⌋,⌊p2/2⌋).

The corresponding one-level QI is a projector onto Vℓ but (40) is not necessarily satis-

fied. Therefore, the resulting hierarchical QI only guarantees polynomial reproduction

(see Theorem 3), and is indicated by Q̃p.

– Let Ki,ℓ be the set of local indices of admissible cells of level ℓ in the support of Bi,ℓ,

namely those that belong to Dℓ. If (⌊p1/2⌋,⌊p2/2⌋) ∈ Ki,ℓ, then take Θi,ℓ as the corre-

sponding cell of level ℓ. Otherwise, take Θi,ℓ as one of the cells in the support of Bi,ℓ

with local cell index

arg min
( j1, j2)∈Ki,ℓ

(
min(| j1 −⌊p1/2⌋|, | j1 −⌈p1/2⌉|)+min(| j2 −⌊p2/2⌋|, | j2 −⌈p2/2⌉|)

)
.

It means that the selected cell Θi,ℓ is one of the most central cells that satisfies (40).

The resulting hierarchical QI is a projector (so it reproduces hierarchical splines, see

Theorem 4), and is indicated by Q̃s.

The corresponding unisolvent set of interpolation points required in (38) is taken as a uni-

form (p1 + 1)× (p2 + 1) tensor-product grid over the selected cell Θi,ℓ. Note that Mi,ℓ =
(p1 +1)(p2 +1) in this case.

Remark 8 The one-level QIs given in (37) which are used in the construction of Q̃p are

very easy to compute, and do not require any information about the hierarchy of the locally

refined meshes. We may say that the construction of Q̃p is truly effortless. On the other

hand, as mentioned in Remark 1, in order to obtain a hierarchical spline projector (and so

also Q̃s), it is unavoidable that the construction of the corresponding one-level QIs needs to

exploit knowledge about the local refinement. Of course, it is clear that for globally refined

meshes Q̃p is equal to Q̃s, so they are both projectors.
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Fig. 3 Locally refined hierarchical meshes of depth 6. Left: Example 6; right: Example 7.

In Examples 6 and 7, we present several hierarchical quasi-interpolants of the form (39)

computed on different sequences of hierarchical meshes of depths n = 1, . . . ,6 according to

the above setup. In order to confirm the theoretical approximation order investigated in Sec-

tion 5, we consider nested hierarchical spaces (7). We recall that nestedness of hierarchical

spaces is ensured whenever sequences of enlarged hierarchies of subsets of D are used, see

Corollary 2. For all the mesh sequences, the coarsest mesh (n = 1) consists of 4× 4 cells,

and any cell of level ℓ is of size hℓ := 2−(ℓ+1) , ℓ = 0, . . . ,5. The maximum error is always

computed on a uniform 150×150 grid.

Example 6 We approximate the function

f (x,y) =
tanh(9y−9x)+1

9
,

on the square Ω 0 = [−1,1]× [−1,1]. This function is taken from [17] and simulates a sharp

diagonal rise. We consider a sequence of hierarchical meshes of depths n = 1, . . . ,6, which

are locally refined in the neighborhood of the diagonal rise. The final mesh of depth n = 6 is

depicted in Figure 3(left). The remaining meshes of depth n ≤ 5 can be obtained by taking

the first n levels of the final mesh. We also consider a sequence of six uniform (globally

refined) meshes. We then compute the hierarchical quasi-interpolants Q̃s( f ) of bidegree

(p, p), p = 2,3,4 with maximal smoothness on both sequences of meshes, according to

the method described above. The dimension of the corresponding spaces and the maximum

errors are given in Table 1. We observe that the locally refined QIs obtain the same accuracy

as the corresponding globally refined ones of the same depth, but of course with a lower

dimension. For the sake of completeness, we also provide a comparison with discrete least-

squares approximations defined on the same locally refined meshes given a 150×150 grid of

sampled data; they are far more expensive to compute because they require a global system

to solve. Finally, as expected for a smooth function f , all the sequences of QIs present

an optimal approximation order of p+ 1. Note that the higher degree splines have more

difficulties to approximate accurately a step-like function on coarse meshes.
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global refinement local refinement

bidegree depth dim max error Q̃s dim max error Q̃s max error LS

(2,2) 1 36 7.434e-02 36 7.434e-02 4.744e-02

2 100 4.165e-02 100 4.165e-02 2.389e-02

3 324 1.000e-02 264 1.000e-02 5.836e-03

4 1156 1.280e-03 754 1.280e-03 7.125e-04

5 4356 1.025e-04 2260 1.025e-04 7.757e-05

6 16900 1.099e-05 6120 1.099e-05 9.175e-07

(3,3) 1 49 4.691e-02 49 4.691e-02 4.038e-02

2 121 7.645e-02 121 7.645e-02 1.953e-02

3 361 1.287e-02 289 1.287e-02 3.763e-03

4 1225 4.515e-04 775 4.515e-04 2.387e-04

5 4489 1.124e-05 2257 1.124e-05 8.455e-06

6 17161 6.927e-07 6037 6.927e-07 9.814e-08

(4,4) 1 64 1.730e-01 64 1.730e-01 3.461e-02

2 144 1.015e-01 144 1.015e-01 1.733e-02

3 400 2.945e-02 316 2.945e-02 3.129e-03

4 1296 4.710e-04 798 4.710e-04 1.343e-04

5 4624 1.028e-05 2256 1.028e-05 1.608e-06

6 17424 1.982e-07 5956 2.036e-07 1.373e-08

Table 1 Dimensions and maximum errors of spline quasi-interpolants Q̃s of different degrees and maximal

smoothness defined on globally and locally refined hierarchical meshes of different depths, see Example 6.

The maximum errors of the corresponding least-squares (LS) approximations are also provided.

global refinement local refinement

depth dim max error Q̃s dim max error Q̃p max error Q̃s

1 36 5.686e-01 36 5.686e-01 5.686e-01

2 100 4.465e-01 64 4.177e-01 4.483e-01

3 324 2.575e-01 112 2.636e-01 2.575e-01

4 1156 1.472e-01 190 1.472e-01 1.472e-01

5 4356 5.955e-02 456 5.955e-02 5.955e-02

6 16900 2.156e-02 600 3.177e-02 2.156e-02

Table 2 Dimensions and maximum errors of the biquadratic C1 spline quasi-interpolants Q̃p and Q̃s defined

on globally and locally refined hierarchical meshes of different depths, see Example 7.

Example 7 We approximate the following function composed of three peaks,

f (x,y) =
2

3exp(
√

(10x−3)2 +(10y−3)2)
+

2

3exp(
√
(10x+3)2 +(10y+3)2)

+
2

3exp(
√
(10x)2 +(10y)2)

,

on the square Ω 0 = [−1,1]× [−1,1], see [20]. We now consider the sequence of locally

refined hierarchical meshes given in [20, Figure 6], and again a sequence of uniform (glob-

ally refined) meshes. The locally refined hierarchical mesh of depth n = 6 is depicted in

Figure 3(right). We consider biquadratic C1 hierarchical spline spaces. Their dimensions

and the maximum errors of the corresponding quasi-interpolants Q̃p and Q̃s are shown in

Table 2. Because of the low smoothness of f it is not possible to obtain an approximation

order three, but we observe that a comparable accuracy can be reached with a much smaller

dimension thanks to the local refinements. On average, the projector Q̃s performs slightly

better than the less complicated quasi-interpolant Q̃p, see also Remark 8. For a comparison

with the corresponding discrete least-squares approximations, we refer to [20].
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8 Conclusions

In this paper we have presented a general and simple procedure to construct QIs in hierarchi-

cal spaces. Such spaces are composed of a hierarchy of nested spaces, in order to deal with

local refinement in a straightforward way. The presented hierarchical QIs are described in

terms of the truncated hierarchical basis, and their construction deeply benefits from many

interesting properties of this basis, in particular the property of preservation of coefficients.

These hierarchical QIs are obtained without any additional manipulation, once a QI is

selected in the space associated to each level in the hierarchy. Important properties – like

polynomial reproduction – of the one-level QIs are preserved in the hierarchical construc-

tion. Hierarchical local projectors (and so dual bases) can be constructed easily. In addition,

we have provided a characterization of the underlying hierarchical space, and we have ana-

lyzed its local approximation power.

We have detailed the construction of hierarchical QIs and their properties in terms of

hierarchies of truncated tensor-product polynomial B-splines, the so-called THB-splines.

Nevertheless, the procedure is completely general and can be applied to any set of bases that

fits into the broad framework defined in [21]. Other examples are box splines on the three-

directional mesh and linearly independent box splines on more general lattices, Powell-

Sabin B-splines with triadic refinement, and Chebyshevian B-splines good for design.

From [20,21] we know that the truncated hierarchical basis has many attractive proper-

ties. The presented neat and completely general construction of hierarchical QIs makes the

truncated hierarchical basis even more appealing for applications where local refinement is

of interest.

An interesting generalization of the above results is to consider spaces spanned by a

set of linearly dependent functions, e.g. the well-known case of box splines on the four-

directional mesh. In this perspective, the above construction cannot be immediately extended

due to the lack of linear independence and requires a deeper investigation.
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