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1 Introduction

After the discovery of the Higgs boson, the lack of the evidence of new physics and the

precision measurement of the Higgs properties have already pushed the cut-off scale of

the Standard Model (SM) up to TeV if we view it as an effective field theory (EFT),

thereby leaving the origin of the smallness of the electroweak (EW) scale and the question

whether the ultraviolet (UV) theory is weakly-couple or strongly-coupled as mysteries. To

be specific, the nature of the Higgs boson is still unknown. One of the most theoretically-

motivated scenarios is to treat the Higgs boson as pseudo Nambu-Goldstone boson (PNGB)

emerging from spontaneously broken global symmetry at TeV scale [1–3], or in contrast it
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can just be a SM-like fundamental scalar. For the case of PNGB Higgs, the Higgs boson

transforms nonlinearly in the coset space, exhibiting the curvature of this space [4–7], which

is denoted as the Higgs nonlinearity.

Since there is no significant evidence of new physics observed so far at the Large

Hadron Collider (LHC), it is highly motivated to study phenomena involving only the SM

particles within the framework of effective theories. In the top-down approach, one can use

the techniques, such as equation of motion, or covariant derivative expansion [8], to derive

effective theories by directly integrating out the heavy degrees of freedom. One of the most

popular EFT frameworks is the SMEFT [9–11], which inherits the SM gauge symmetries

and parameterizes new physics effects by a cut-off scale Λ and Wilson coefficients of high

dimensional local operators. For the fundamental Higgs theories, all the heavy particles

can be integrated out and thus decoupled, the low energy theory is well approximated by

the SMEFT with dimensional-six operators. However, up to dimension-six, the effective

operators in SMEFT do not fully capture the information of the Higgs nonlinearity. Thus if

the UV theory is strongly coupled and the Higgs is a PNGB, one has to resum operators to

all order of O(v2/Λ2) to recover the full Higgs nonlinearity effects, which is quite inefficient

in the SMEFT. A better way is using the CCWZ formalism [4, 5], which maintains the

Higgs nonlinearity effect, to construct the chiral Lagrangian order by order below the mass

scale of composite states mρ, with the chiral expansion O(E2/m2
ρ) if the typical energy

transfer E is much smaller than mρ [12–15]. In composite Higgs [16–18] and neutral

naturalness [19, 20] models, the UV dynamics is strongly coupled, and contains composite

states. After integrating out heavy composite states, one obtains the low energy chiral

Lagrangian in which the Higgs boson is parametrized as one of the PNGBs in the coset

space. For convenience, this EFT is dubbed as “PNGB Higgs chiral Lagrangian”. Within

each order of chiral expansion, only after truncating the series expansion of Higgs field up to

a certain order, the high dimensional local operator of SMEFT can be matched on. It is this

procedure that renders the nonlinearity of PNGB Higgs somewhat lost in the dimensional-

six Lagrangian of the SMEFT. After electroweak symmetry breaking (EWSB), one can

expand the Higgs field in both SMEFT and PNGB Chiral Lagrangian around the vacuum

expectation value (VEV) and match to the effective Higgs couplings defined in Higgs EFT

(HEFT) [21–30], in which the Higgs boson is a singlet scalar with EWSB and the coset

space only includes the longitudinal W and Z bosons. These effective Higgs couplings

are directly related to the Higgs coupling measurements at the LHC. The relation between

these EFTs is depicted in figure 1. Note that by matching PNGB chiral Lagrangian directly

on the Higgs couplings in HEFT, the Higgs nonlinearity effect is kept to all orders.

In this paper, we aim to systematically study patterns of Higgs effective couplings

caused by Higgs nonlinearity and compositeness in the general framework of composite

Higgs/neutral-naturalness scenarios. These scenarios are usually constructed under the

paradigm of partial compositeness [31, 32], namely the Lagrangian consists of three parts:

the elementary sector, the composite sector and the mixing sector. To be specific, the

model spectrum contains the elementary SM particles and the composite states, and thus

we have

Ltotal = Lcomposite + Lelementary + Lmix. (1.1)
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Figure 1. Illustration of the relations between different EFTs.

To see the impact of Lmix on Higgs coupling deviations below the scale of composite res-

onances, it is convenient to use “form factors”, defined as the two point functions of the

elementary fields, to parametrize the information of spectrum of composite particles and

the Higgs nonlinearity after integrating out composite states. In contrast to the local op-

erators defined in SMEFT or PNGB Higgs chiral Lagrangian, these two point functions

contain non-trivial momentum dependence Q2 from which one can derive the Higgs poten-

tial [33–35]. Higgs couplings in HEFT are nevertheless derived by taking the low energy

limit as Q2 → 0 without using PNGB Higgs chiral Lagrangian. The deviations of the Higgs

couplings from the SM values exhibit the Higgs nonlinearity effects, characterized by the

ratio of the EW scale v and the global symmetry breaking scale f . Interestingly, we find

the impact of Higgs nonlinearity is enlarged in Higgs couplings when composite states have

large mass splittings (right panel of figure 2), including both the mass splitting between full

composite multiplets, and the splitting inside any individual composite multiplet caused by

mixing with elementary particles. In contrast, it is normally expected that there is roughly

only one mass scale mρ for all the composite states (left panel of figure 2).

In this work we focus on the low energy Lagrangian and its phenomena in the Higgs

sector in various composite Higgs model with and without hidden sectors, with fermions

embedded in fundamental and higher dimensional representations. These include minimal

composite Higgs models (MCHM) [17, 36], composite twin Higgs models (CTHM) [37–39]

and composite minimal neutral naturalness model (CMNNM) [40]. Instead of studying the

low energy theories model by model, we organize the low energy Lagrangian in a general

way, and several works are in order:

• We organize several naturalness conditions that can be realized in the top sector in

a general manner. One of the following symmetries: collective symmetry, left-right

parity, and mirror parity, can be imposed to eliminate quadratic divergence in the

top sector.
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Figure 2. The mass spectrum for composite states. All the composite states are normally

expected at the mass scale mψ (left panel), or there are large mass splittings between different

composite states (right panel). Compared to the case that all the masses are almost at mψ, we find

the impact of Higgs nonlinearity can be enlarged with the mass spectrum as shown in the right

panel.

• Then we analyze the PNGB-Higgs dependence of form factors in a universal way

without any detailed information from the UV models, which is a generalization of

the form factor method in literatures.

• We are the first to present expressions of the form factors in the composite twin Higgs

and minimal neutral naturalness models.

• The Higgs effective couplings in the HEFT are derived systematically using general

form factors, in which the information of Higgs nonlinearity effect and the spectrum

of composite states is encoded.

• Finally we perform the global fit on the Higgs couplings with the latest tth data, and

obtain numerical results which could serve as a theoretical guidance for the future

Higgs coupling measurements.

The paper is organized as follows. In section 2, we list several naturalness conditions

from which several different composite models are motivated. In section 3, we lay out the

general framework of the form factors and discuss their general properties from a bottom-up

perspective. In section 4, we derive all the Higgs couplings based on general form factors.

In section 5, the experimental constraints are discussed. In section 6, we present details

on numerical studies and parameter scan. Finally we conclude in section 7 with all the

results of form factors in specific models and other supplemental details being collected in

sections A–D.
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2 Natural top quark sector

In this work, we focus on the properties of Higgs boson, such as nature of Higgs and Higgs

couplings, in the composite Higgs framework. Using the PNGB Higgs chiral Lagrangian,

up to the O(p2) order, the Higgs couplings to the W and Z bosons are universal, which is

not affected by integrating out heavy vector resonances, as presented in the appendix A.

On the other hand, the Higgs couplings to fermions depend on the fermion embedding, and

the Higgs potential is radiatively generated by the loop corrections in the fermion sector,

especially the top quark sector. Therefore, the fermion embedding is essential to the form

of the Higgs couplings in composite Higgs and neutral naturalness models.

Furthermore, there are special requirements on the fermion embedding in the composite

Higgs model. In the original composite Higgs model proposed in 1980s [1–3], large fine

tuning was required to make the scale separation f ≫ v, because there is no special

symmetry in the fermion sector to cancel the quadratic dependence on Λ from the top quark

loop. In 2000s, the old idea of PNGB Higgs has been revived [41, 42] due to the collective

symmetry breaking imposed in the fermion sector. Same idea was applied to minimal

composite Higgs model [17]. So we will focus on the fermion sector in the composite Higgs

framework, with naturalness conditions imposed. After realizing the naturalness condition,

the Higgs mass (hence the electroweak scale) is therefore at most logarithmically sensitive

to the cutoff scale Λ. Because of the large top Yukawa coupling, the top sector contributes

the most to the Higgs potential among all the SM fermions. Symmetries can relate the

top quark to the so-called top partners in such a way that naturalness is realized, which is

dubbed as natural top quark sector.

In the composite Higgs framework, the fermionic sector of composite Higgs models

can be systematically constructed under the paradigm of partial compositeness [31, 32]. In

this framework, the SM fermions are regarded as the mixed states of elementary fermions

and their composite counterparts. To be specific, we have the following Lagrangian that

denotes the mixing between elementary and composite particles as

Lmix = yLψ̄LOR + yRψ̄ROL + h.c. , (2.1)

where ψ is elementary fermions external to the composite sector, while O is the operator

only consisting of composite fields, precisely the PNGB Higgs and composite partners.

The couplings yL,R denote the strength of mixing between ψL,R and OR,L, respectively.

The shift symmetry of PNGB Higgs is usually explicitly broken due to the mixings, and

hence the non-derivative coupled Yukawa couplings as well as the Higgs potential can be

generated from the above Lagrangian. The larger the corresponding Yukawa coupling, the

larger the mixing angle between the composite and elementary sector will be, hence the

third generation fermions are the most relevant for our consideration.

Under the paradigm of partial compositeness, the composite sector contains the PNGB

Higgs and the top partners that are responsible for eliminating the quadratic divergence.

Although conceptually easy, it is nontrivial to realize the naturalness conditions in concrete

models technically. Usually various symmetries are imposed as naturalness conditions. The
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general mixing Lagrangian for the top sector is parameterized as

Lmix = yLf t̄L (ash(Ts)R + bch(Tc)R) + yRf t̄R
(
a′ch(Ts)L + b′sh(Tc)L

)
+ h.c.

+ ỹLf
¯̃tL

(
ãch(T̃s)R + b̃sh(T̃c)R

)
+ h.c. , (2.2)

where the first line denotes the SM sector while the second line denotes the possible existing

hidden sector. Here Ts, Tc, T̃s, T̃c denote the composite fermions with which the elementary

fermions tL, tR, t̃L are mixed after EWSB. sh and ch are the shorthand notations for sh ≡
sin(h/f) = sin

(
2
√
H†H/f

)
and ch ≡ cos(h/f) = cos

(
2
√
H†H/f

)
. For our purpose, we

only include the left-handed part for the hidden sector in the above equation, one can

generalize it to include the right-handed part once the embedding of t̃R is specified. Note

that the embedding of t̃R is not trivial in concrete models, e.g. CTHM [37, 39]. Kinetic

terms and mass terms for the composite partners are omitted, as they are irrelevant for

realizing the naturalness condition. By the SU(2)L doublet nature of sh and singlet nature

of ch, it is not hard to see that Ts and Tc belong to SU(2)L singlet and doublet respectively.

Similarly, composite T̃s and T̃c belong to SU(2)L singlet and doublet respectively. As we

will see, the general Lagrangian in eq. (2.2) can be realized in concrete MCHM or CTHM

depending on whether the hidden sector exists.

Let us first focus on the case there is no hidden sector. The mixing Lagrangian can be

realized in MCHM based on the coset SO(5)/SO(4) [17]. Regrading fermion embeddings,

for example, both qL = (tL, bL)
T and tR can be embedded in the fundamental represen-

tation of SO(5), which is then dubbed as MCHM5+5 [36]. Other choices are also possible

and have been studied in refs. [43–51], from the perspective of Higgs coupling deviations

and Higgs potential. Considering quadratic divergence cancellation, several options are

in order:

collective symmetry : a2 = b2, (a′)2 = (b′)2; (2.3)

left-right Z2 symmetry : y2L = y2R, a2 = (a′)2, b2 = (b′)2. (2.4)

In above equations, we assume all the mixing parameters are real. The Feynman diagrams

corresponding to the above two conditions are depicted in figure 3 and figure 4; they can

be realized in the two-site model [52, 53] and the left-right symmetric model, respectively.

For the case if the right-handed top quark tR is fully composite, such as MCHM5+1, there

is no mixing in the right-handed top quark sector, and thus the case of left-right symmetry

cannot be realized. The collective symmetry could be realized in the MCHM5+1 with

a′ = 0, b′ = 0.

Let us first illustrate the scenarios with collective symmetry [36]. Here we consider

the two-site model with the coset SO(5)1 × SO(5)2/SO(5)V [52, 53]. In the MCHM5+5

representation, the elementary tL and tR can be embedded in the representations of SO(5)1,

while composite partners Ts and Tc are embedded within the representations of SO(5)2.

They can mix with each other through the link field Σ between two sites. In unitary gauge,

– 6 –
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Figure 3. Naturalness condition by collective symmetry, which is realized in the two-site composite

model. Quadratic divergence is cancelled as V (h) ∼ Λ2 · (s2h + c2h).

Figure 4. Naturalness condition by left-right Z2 symmetry, which is realized if the parity between

the left-handed sector and right-handed sector is assigned. Quadratic divergence is cancelled as

V (h) ∼ Λ2 · (s2h + c2h).

the Σ field is

Σ =




13×3

ch sh
−sh ch


 . (2.5)

Then the explicit mixing terms in the two-site model is

L2-site = yLQ̄LΣΨR + yRQ̄RΣΨL + h.c. , (2.6)

where QL and QR are 5-plets under SO(5)1 in which qL and tR are embedded, while Ψ is

a 5-plet under SO(5)2 in which Tc and Ts are the fourth and fifth component, respectively.

Since Ts and Tc arise from a single fermionic multiplet, their mixing parameters equal

such that the case of collective symmetry is realized. With collective symmetry breaking,

the Higgs field Σ can be rotated away if the global symmetry SO(5)1 or SO(5)2 is exact.

Typically soft terms are needed to prevent the Higgs boson to be an exact Goldstone

particle. On the other hand, in the MCHM5+1 representation, the right-handed top quark

tR is fully composite and a singlet under SO(4)2 [54]. Thus the Lagrangian is written as

L2-site = yLQ̄LΣΨR + yRf t̄RΨ1L + h.c. , (2.7)

where there is no Higgs dependence on the tR term.

The scenario with left-right symmetry has not yet been studied in the literature. The

left-right parity is realized if we assume the theory is invariant under the following trans-

formation

left-right Z2 symmetry : tL ↔ tR, (Ts,c)L ↔ (Ts,c)R, sh ↔ ch. (2.8)
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As the above symmetry assignment explicitly relates the left-handed sector with the right-

handed sector, it is named as the left-right parity. To be specific, we consider the SO(6)/

SO(5) coset and this parity can be realized in the following Lagrangian

LLR = yLf(q̄L)
i
[
ΣiJΨ

J
5 +Σi6Ψ1

]
+ yRf(q̄R)

i
[
ΣiJΨ

J
5 +Σi6Ψ1

]
, (2.9)

where Σ is the Goldstone matrix generalized to the SO(6)/SO(5) coset, Ts,c are compo-

nents inside Ψ5,Ψ1 respectively, and accordingly the tL and tR can be embedded into the

fundamental representation

qL =
1√
2
(ibL, bL, itL,−tL, 0, 0)T , qR =

1√
2
(0, 0, 0, 0, tR, tR)

T . (2.10)

In the SO(5)/SO(4) coset, there is a factor
√
2 in qR which can cause complications in the

normalization of the kinetic term.

Hidden sectors can possibly exist in addition to the visible sector (or SM sector), and

it can contribute to the Higgs potential. In this case, the naturalness condition yields the

relation between couplings:

mirror Z2 symmetry : y2L = ỹ2L, a
2 = ã2, b2 = b̃2, (2.11)

if the parity between the hidden sector and visible sector is assigned. Parameters a′ and
b′ could be assumed to be zero. This case is depicted in figure 5, and it can be realized in

the twin Higgs model [19]. One typically requires the global symmetry groups larger than

SO(5) to accommodate the extra hidden fermions. In this paper, we will systematically

study CTHM with the coset SO(8)/SO(7) [37–39]. Similar constructions are realized in

the coset of SO(6)/SO(5) [55, 56] due to the existence of trigonometric parity, and the

most minimal coset that can accommodate the trigonometric parity is SU(3)/SU(2) [56] if

custodial symmetry is not required. With the presence of the hidden sector, a Z2 mirror

parity can be assigned explicitly between the SM sector and the hidden sector (or the

mirror sector) as

mirror Z2 symmetry : tL ↔ t̃L, Ts,c ↔ T̃s,c, sh ↔ ch. (2.12)

As an explicit example, the above mirror symmetry can be realized in CTHM8+1 as

L8+1 = yLf(q̄
8
L)

i
[
ΣiJΨ

J
7 +Σi8Ψ1

]
+ twin sector(yL, q̄L,Ψ→ ỹL, ¯̃qL, Ψ̃) , (2.13)

where Σ is the Goldstone matrix generalized to the SO(8)/SO(7) coset, Ts,c and T̃s,c are

components inside Ψ7,Ψ1 and Ψ̃7, Ψ̃1 respectively.

Although there are many methods as shown above that can be utilized to eliminating

quadratic divergence, it is still motivated to find novel ways to realize the realistic Higgs

potential. The Higgs potential can be generated radiatively, and vacuum misalignment

between the electroweak scale and the scale f is naturally realized even with only infrared

(IR) fermionic loop contributions. For that, the elementary top partners in the color-

neutral sector may carry electroweak quantum numbers, and the vacuum misalignment is

– 8 –
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Figure 5. Naturalness condition by mirror Z2 symmetry is realized if the mirror parity between the

visible sector and hidden sector is assigned. Quadratic divergence is cancelled as V (h) ∼ Λ2·(s2h+c2h).

connected to the masses of these particles. In case that a color-neutral sector with more

than one elementary top partner is introduced to realize the idea of neutral naturalness,

the Lagrangian of eq. (2.2) can be further generalized to

L′mix = yLf t̄L (ash(Ts)R + bch(Tc)R) + h.c.

+ ỹLf
[
¯̃tL

(
ãch(T̃s)R + b̃sh(T̃c)R

)
+ ¯̃t′L

(
ã′sh(T̃s)R + b̃′ch(T̃c)R

)]
+ h.c. , (2.14)

where t̃L is a SU(2)L singlet while t̃′L belongs to a SU(2)L doublet. The minimal model

can be realized with the coset SO(5)/SO(4) [40], the same coset utilized in the popular

minimal composite Higgs model [17] if custodial symmetry is required. Thus the model

in ref. [40] is dubbed as the minimal neutral naturalness model (MNNM). The quadratic

divergence is cancelled as

V (h) ∼ Λ2 ·
(
1

2
s2h +

1

2
s2h + c2h

)
. (2.15)

In its composite extension following the paradigm of partial compositeness, eq. (2.15) is

realized as

Composite MNNM : y2L = ỹ2L, a
2 = b2 = (ã′)2 = (̃b′)2 =

1

2
(ã)2 =

1

2
(̃b)2; (2.16)

This can easily be realized by typical fermion embeddings as shown in ref. [40]. As we

see, quadratic divergence is eliminated by cancellation between the SM sector and the

color-neutral sector, and also the composite partners of each individual elementary fermion.

Furthermore, such a framework of the composite neutral naturalness model (CMNNM) will

lead to novel Higgs dependence in the color-neutral sector after the composite particles are

integrated out.

3 General framework

Below the scale of compositeness, one can calculate all the low energy observables which

can directly be tested at the electroweak scale. Those observables include the Higgs po-

tential and all the Higgs couplings, especially the Higgs coupling to the top quark. At

low energies, one can use form factors to encode the information of composite particles

– 9 –
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and Higgs nonlinearity. Following the spirit of ref. [33], the effective Lagrangian of the top

sector in momentum space is

Leff = t̄Lp/ΠtL(p
2)tL + t̄Rp/ΠtR(p

2)tR −
(
t̄LΠtLtR(p

2)tR + h.c.
)

+¯̃tLp/Πt̃L
(p2)t̃L +¯̃tRp/Πt̃R

(p2)t̃R −
(
¯̃tLΠt̃L t̃R

(p2)t̃R + h.c.
)
.

(3.1)

The first line of the above equation denotes the ordinary top sector, while the second line

denotes the hidden top sector. We include the hidden sector for generality, although it does

not have to exist in specific models. All the Π functions are the form factors, and different

models in principle can result in different specific form factors. In this section, we focus

on the general form of form factors based on several general symmetry arguments rather

than derive their expressions in specific models. Note that the form factors in the bosonic

sector are discussed in the appendix A, as they are less relevant to our focus in this paper.

Let us first focus on the form factors ΠtL ,ΠtR and Πt̃L
,Πt̃R

that are the chirality-

preserving ones. From a bottom-up perspective, ΠtL ,ΠtR defined above can be organized

in powers of s2h based on the SU(2)L doublet nature of Higgs (see e.g. ref. [50] and others),

ΠtL(−Q2) = Π0tL(−Q2) + Π1tL(−Q2) s2h +Π2tL(−Q2) s4h + · · · ,
ΠtR(−Q2) = Π0tR(−Q2) + Π1tR(−Q2) s2h +Π2tR(−Q2) s4h + · · · ,

(3.2)

and Πt̃L
,Πt̃R

are conveniently expanded in powers of c2h accordingly,

Πt̃L
(−Q2) = Π0t̃L

(−Q2) + Π1t̃L
(−Q2) c2h + · · · ,

Πt̃R
(−Q2) = Π0t̃R

(−Q2) + Π1t̃R
(−Q2) c2h +Π2t̃R

(−Q2) c4h + · · · .
(3.3)

Given a certain fermion representation, only finite number of the form factors after the

above expansion exist. The form factors defined above are already enough to analyze the

representations that we consider in this paper, and the dots do not represent omission

of higher order contributions. Furthermore, the above equations imply that ΠtL ,ΠtR ,

Πt̃L
,Πt̃R

are all SU(2)L singlets. According to the above definition, the loop momentum

has already been Wick-rotated to Euclidean space as Q2 = −p2. For MCHM, all the form

factors in the hidden sector are fixed to zero as the hidden sector does not exist. For

CTHM, on the other hand, the mirror parity in the top sector relates not only the Higgs

dependence as sh ↔ ch between two sectors, but also the form factors after expansion.

To be specific, the mirror parity would enforce that Π0tL = Π0t̃L
,Π1tL = Π1t̃L

, Π0tR =

Π0t̃R
,Π1tR = Π1t̃R

,Π2tR = Π2t̃R
. Note that Π2tL is included in the visible sector, but not

for its counterpart in the hidden sector. This is because tL (or the left-handed doublet

QL = (tL, bL)
T ) can be embedded in the symmetric tensor representation (14) of SO(5)

in MCHM, but it, and accordingly its hidden counterpart t̃L, can only be embedded in

the fundamental representation (8) of SO(8) in CTHM [37, 39]. Thus Π2t̃L
automatically

vanishes.

Let us investigate the chirality-flipping form factors next. For MCHM, depending

on specific fermionic embedding in the SO(5) representation, the expansion of ΠtLtR can
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nevertheless be different. For example, in the case both left-handed and right-handed top

quark are embedded in the fundamental representation of SO(5), ΠtLtR is expanded as

ΠtLtR(−Q2) = Π1tLtR(−Q2) chsh +Π2tLtR(−Q2) chs
3
h + · · · . (3.4)

Thus ΠtLtR is a SU(2)L doublet. It turns out that the above expansion of ΠtLtR is quite gen-

eral, and it is valid in many cases of top quark embeddings in MCHM, such as MCHM5+5,

MCHM10+10 and MCHM14+14. (See appendix C for explicit result of the form factors in

these models.) Nevertheless, if the right-handed top is a SO(5) singlet such as in MCHM5+1,

ΠtLtR is expanded as

ΠtLtR(−Q2) = Π1tLtR(−Q2) sh +Π2tLtR(−Q2) s3h + · · · . (3.5)

Because of the difference between above two expansions, the resulting Higgs coupling de-

viations in the top sector will be slightly different. Other choices of fermion embeddings

in MCHMs are also possible [47]. On the other hand, if the hidden sector exists, the

chirality-flipping form factors ΠtLtR and Πt̃L t̃R
are

ΠtLtR(−Q2) = Π1tLtR(−Q2) sh +Π2tLtR(−Q2) s3h + · · · ,
Πt̃L t̃R

(−Q2) = Π1t̃L t̃R
(−Q2) ch +Π2t̃L t̃R

(−Q2) c3h + · · · .
(3.6)

An important argument is in order. Compared to the previous case, there is no ambi-

guity for the expansion of ΠtLtR due to different fermion embeddings, namely the Higgs

dependence of ch in ΠtLtR is forbidden because of the mirror parity. To be specific, mir-

ror particles t̃L,R are unambiguisely both SU(2)L singlets, then Higgs dependence of odd

power of sh (which is known as SU(2)L doublet) in Πt̃L t̃R
is not allowed in the mirror

sector. In turn, this leads to the fact that ΠtLtR can be expanded solely in terms of in-

teger powers of sh because of the mirror parity exchanging sh with ch between the two

sectors. We see concrete models such as CTHM8+1, CTHM8+28 and CTHM8+35 satisfy

the above form factor expansion (see appendix C). Furthermore, the mirror parity enforces

Π1tLtR = Π1t̃L t̃R
,Π2tLtR = Π2t̃L t̃R

.

Based on eq. (3.1), Higgs potential can straightforwardly be derived as

V (h)TH = − 2Nc

16π2

∫ Λ2

0
dQ2Q2

{
log[ΠtLΠtR ·Q2 +Π2

tLtR
] + log[Πt̃L

Πt̃R
·Q2 +Π2

t̃L t̃R
]
}
. (3.7)

At the low energy limit of Q2 → 0, masses of the top quark and its twin partner are roughly

mt =
ΠtLtR(0)√

ΠtL(0)ΠtR(0)
≃ Π1tLtR(0) sh√

Π0tL(0) Π0tR(0)
,

mt̃ =
Πt̃L t̃R

(0)
√

Πt̃L
(0)Πt̃R

(0)
≃

Π1t̃L t̃R
(0) ch√

Π0t̃L
(0) Π0t̃R

(0)
.

(3.8)

The second equality in the above equation holds if only the leading terms of the expan-

sion are included. Then the ratio of the masses of the top quark and its twin partner is

approximately

mt

mt̃

≃ 〈sh〉〈ch〉
. (3.9)
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As we will see later, 〈sh〉 (and hence 〈ch〉) is directly related to the ratio of the electroweak

scale v and the f scale, i.e., 〈sh〉 = v/f ≃ 1/3. Given the SM top mass mt ∼ ytv/
√
2, the

mass of top twin partner will be mt̃ ∼ ytf/
√
2, whose numerical value can be around TeV.

In the case that the color-neutral sector contains several elementary top partners with

and without carrying electroweak quantum numbers, novel Higgs dependence in the color-

neutral sector can result from the SU(2)L quantum numbers of these top partners. In this

work, we will limit our discussion within the example raised in ref. [40] with its generaliza-

tion left to future study. If the color-neutral top sector has one SU(2)L doublet and one

SU(2)L singlet, the effective Lagrangian is

Leff = t̄Lp/ΠtLtL + t̄Rp/ΠtRtR − t̄LΠtLtRtR +
¯̃
Lp/Π̃LL̃+

¯̃
Rp/Π̃RR̃− ¯̃

LΠ̃LRR̃+ h.c. , (3.10)

where L̃ ≡ (t̃L, T̃L)
T and R̃ ≡ (t̃R, T̃R)

T , with t̃L,R arising from the doublet while T̃L,R aris-

ing from the singlet. Depending on fermion embeddings, the form factors of the SM sector

ΠtL ,ΠtR ,ΠtLtR have the same patterns of Higgs dependence as in MCHM. For example,

we assume ΠtL ,ΠtR have no Higgs dependence while

ΠtLtR = Π1tLtRsh (3.11)

as in the composite minimal neutral naturalness model (CMNNM) [40]. This assumption

is explicitly realized if mass splitting between different components of the full composite

multiplet is turned off, and tR is a SO(5) singlet. On the other hand, the form factors of the

color-neutral sector Π̃L, Π̃R, Π̃LR have both the Higgs dependence of sh and ch ≃ 1− s2h/2.
For example, the diagonal terms are expanded as

Π̃ii = Π̃ii
0 + Π̃ii

1 s
2
h + · · · (i = 1, 2) , (3.12)

while the off-diagonal terms are

Π̃ij = sh

(
Π̃ij

1 + · · ·
)

(i, j = 1, 2 and i 6= j) , (3.13)

which denotes the mixings between the doublet and singlet in the color-neutral sector. In

above equations, the index L,R,LR of the form factors is neglected for convenience.

4 Effective Higgs couplings

One can define the effective Higgs coupling after EWSB. To be specific, we have the fol-

lowing couplings defined in the Higgs EFT [21–27]:

LH =
αs

12π
Ga

µνG
aµν

(
cg
h

v
+

1

2
cgghh

h2

v2
+ · · ·

)
+

α

8π
FµνF

µν

(
cγ
h

v
+ · · ·

)

− mt

v
ctt̄th−

mt

v2
ctt̄hht̄th

2 − m2
h

2v
c3hh

3 − m2
h

8v2
c4hh

4 + · · ·

+
v2

4
Tr
[
(DµU)† (DµU)

](
1 + 2cW

h

v
+ · · ·

)
,

(4.1)

– 12 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
0

where the SM limit with the fundamental Higgs boson corresponds to the case that ct =

c3h = c4h = cg = cgghh = cγ = cW = 1 while ctt̄hh = 0. Here αs = g2s/(4π) and α =

e2/(4π), where gs and e are couplings for QCD interaction and electromagnetic interaction

respectively. Being different from previous discussion, it is worth noting that h denotes the

physical Higgs boson (without VEV) in the above equation.

In the rest part of this section, we derive all the Higgs effective couplings listed in

eq. (4.1) based on the general framework of composite Higgs discussed in section 3. We

refer the reader to ref. [57] for Higgs coupling modifications in weakly-coupled Twin Higgs

models.

4.1 Higgs self couplings

Despite of the global symmetry breaking pattern, the general Higgs potential of the PNGB

Higgs can be parametrized by

V (h) = −γfs2h + βfs
4
h + · · · , (4.2)

with the so-called “vacuum misalignment” [1] parameter explicitly defined as

ξ =
v2

f2
= sin2

(〈h〉
f

)
, (4.3)

where v is the usual electroweak scale which gives the correct W± and Z mass, γf and βf
are the coefficients determined by the dynamics that is responsible for generating the Higgs

potential. The condition for EWSB (∂V (〈h〉)/∂〈h〉 = 0) and the physical Higgs mass are

respectively

ξ = 〈s2h〉 =
γf
2βf

, (4.4)

m2
h =

∂2V (〈h〉)
∂〈h〉2 =

8βf
f2

ξ(1− ξ). (4.5)

With above results, one can see γf and βf can be re-parameterized by ξ and mh. More

importantly, the Higgs self interactions are

c3h =
−1

6
∂3V (〈h〉)
∂〈h〉3

−m2
h

2v

= 1− 3

2
ξ +O(ξ2), (4.6)

c4h =
− 1

24
∂4V (〈h〉)
∂〈h〉4

−m2
h

8v2

= 1− 25

3
ξ +O(ξ2). (4.7)

The ratio of the Higgs self couplings with their SM values c3h and c4h only depend on ξ,

rather than the coefficients γf and βf which parametrize the origin of the Higgs potential.

Although it is experimentally challenging, measuring c3h and c4h can directly probe the

Higgs boson nature.

For minimal composite Higgs of SO(5)/SO(4), EWSB is not automatically guaranteed

and it requires γf > 0 to trigger EWSB. It has been pointed out that γf > 0 is correlated
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to the sign of ct− cg [50]. However, EWSB automatically happens in composite twin Higgs

of SO(8)/SO(7) due to the property of the mirror parity transformation: sh ↔ ch. To be

specific, the Higgs potential for composite twin Higgs can be rewritten as

V (h)TH =
βf
2
(c4h + s4h) = −βfs2hc2h = −βfs2h + βfs

4
h. (4.8)

We see the above Higgs potential is invariant under mirror transformation. More impor-

tantly, the minus sign necessary to trigger EWSB is automatically generated with ξ = 1/2.

Extra Z2 breaking effects are needed in twin Higgs models for realizing realistic EWSB with

ξ ≪ 1. Following this direction, a recent work [40] shows the construction that naturally

realize realistic EWSB with small ξ.

4.2 Higgs couplings in the top sector

Before deriving the Higgs-top effective couplings in different classes of composite models,

it is useful to have some general discussions on the Higgs contact interactions with gluons

and top quark. The contact interaction between the Higgs boson and the gluons h(n)gg

can be derived from [58–60]

L(g)eff =
αs

24π
Ga

µνG
aµν
∑

i

log m2
i (h) (4.9)

where m2
i (h) denotes the general Higgs-dependent masses for the fermions circulating in

the gluon loop. In the SM, the Higgs-dependent top mass is mt(h) = yt(h + v)/
√
2 with

yt = 1 the top Yukawa coupling. Therefore, the contact interaction of h(n)gg induced by

the SM top loop is obtained as

L(g)top =
αs

12π
Ga

µνG
aµν log

(
h+ v

v

)
, (4.10)

after mt(h) is normalized with the EW scale v. For composite models, the particles cir-

culating in the gluon loop are the top quark and the top partners. In general, eq. (4.9) is

expanded as

L(g)eff ≡
αs

12π
Ga

µνG
aµν

(
cg
h

v
+

1

2
cgghh

h2

v2
+ · · ·

)
(4.11)

where cg and cgghh can be derived

cg = v
∂

∂〈h〉

[
1

2

∑

i

log m2
i (h)

]
,

cgghh = −v2 ∂2

∂〈h〉2

[
1

2

∑

i

log m2
i (h)

]
,

(4.12)

Thus one obtains the contributions of SM top loop to hgg and hhgg couplings are αs/(12πv)

and −αs/(24πv
2), respectively. For composite Higgs models considered in the paper,∑

i log m
2
i (h) can be generalized by the expression with the general mass matrix of the
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top sector log
[
DetM †

tMt

]
, as there are in general off-diagonal entries denoting the mixings

between the top and top partners.

The Higgs coupling with the top quark ct and ctt̄hh can be straightforwardly derived

from the Higgs-dependent mass of the top quark,

ct = v
∂

∂〈h〉 log(mt) , ct̄thh =
v2

2

1

mt

∂2mt

∂〈h〉2 , (4.13)

where mt is explicitly derived in eq. (3.8).

In the following, Higgs couplings are derived in terms of form factors explicitly in

different classes of models, and we will see the Higgs couplings in the top sector are sensitive

to both the Higgs nonlinearity and the heavy resonances.

4.2.1 Higgs couplings in minimal composite Higgs models

In the minimal composite Higgs, we only study models MCHM5+5, MCHM10+10 and

MCHM14+14 here, of which the expansion of ΠtLtR ∼ Π1tLtR chsh + · · · is valid. The

expansion ΠtLtR ∼ Π1tLtR sh + · · · and the corresponding models, such as MCHM5+1, are

more similar to the case of CTHM, which are left to the discussion in the next subsection.

With the leading approximation of ξ, the relevant effective Higgs couplings are

ct = v
∂

∂〈h〉 log(mt) = 1− 3

2
ξ − ξ

(
Π1tL(0)

Π0tL(0)
+

Π1tR(0)

Π0tR(0)

)
+ 2ξ

Π2tLtR

Π1tLtR

+O(ξ2), (4.14)

cg =
v

2

∂

∂〈h〉 log Det(M †
tMt) = 1− 3

2
ξ + 2ξ

Π2tLtR

Π1tLtR

+O(ξ2). (4.15)

In the framework of partial compositeness, it is proved that Det(Mt) ∝ ΠtLtR up to an

overall Higgs-independent factor [43]. This factor is cancelled out when evaluating cg.

Based on the above expressions of ct and cg, a few comments are in order. First, for

models where the form factor Π2tLtR vanishes, cg is insensitive to the information of heavy

resonances. Thus measuring cg is useful for probing Higgs nonlinearity. Second, the sign

of ct − cg is correlated with the positiveness of γf , regardless of the presence of Π2tLtR . As

EWSB requires γf > 0, ct − cg is preferred to be negative [50]. Third, with the presence

of Π2tLtR , both ct − 1 and cg − 1 can be positive, negative and zero. Otherwise, ct and cg
must be smaller than one when Π2tLtR vanishes.

Beyond single Higgs vertices, ct̄thh and cgghh can also be derived following the same

method. The results are

ct̄thh =
v2

2

1

mt

∂2mt

∂〈h〉2 = −2ξ − 3

2
ξ

(
Π1tL(0)

Π0tL(0)
+

Π1tR(0)

Π0tR(0)

)
+ 3ξ

Π2tLtR

Π1tLtR

+O(ξ2), (4.16)

cgghh = −v
2

2

∂2

∂〈h〉2 log Det(M †
tMt) = 1 + ξ

(
1− 2

Π2tLtR

Π1tLtR

)
+O(ξ3/2). (4.17)

Both ct̄thh and cgghh are important to the double Higgs production gg → hh.

Based on the above results, we see that there are strong correlations between different

Higgs couplings. For example, considering all the effective couplings we have

ct̄thh = −1

6
cg +

3

2
ct −

1

6
cgghh −

7 + ξ

6
, (4.18)
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where the SM limit corresponds to cg = ct = cgghh = 1 and ct̄thh = 0. In turn, ξ can

be re-parametrized by the couplings c3h and c4h. Furthermore, considering the correlation

between ct and ctt̄hh, we obtain the relation

3

2
ct − ctt̄hh −

3

2
+
ξ

4
= 0. (4.19)

4.2.2 Higgs couplings in composite twin Higgs models

Analog to minimal composite Higgs models, we then derive all the effective Higgs couplings

in composite twin Higgs models of SO(8)/SO(7). With the leading approximation of ξ,

we obtain

ct = 1− ξ

2
− ξ

(
Π1tL(0)

Π0tL(0)
+

Π1tR(0)

Π0tR(0)

)
+ 2ξ

Π2tLtR

Π1tLtR

+O(ξ2), (4.20)

cg = 1− ξ

2
+ 2ξ

Π2tLtR

Π1tLtR

+O(ξ2), (4.21)

ct̄thh = −ξ
2
− 3

2
ξ

(
Π1tL(0)

Π0tL(0)
+

Π1tR(0)

Π0tR(0)

)
+ 3ξ

Π2tLtR

Π1tLtR

+O(ξ2), (4.22)

cgghh = 1− 2ξ
Π2tLtR

Π1tLtR

+O(ξ3/2). (4.23)

Comments are in order, including similarities and differences compared to MCHM. First,

cg is only sensitive to Higgs nonlinearity when the form factor Π2tLtR vanishes. This is

similar to the previous case of MCHM. Second, contrary to MCHM, ct − cg and ct − 1

can in principle be positive, negative or zero, as the form factor
(
Π1tL

(0)

Π0tL
(0) +

Π1tR
(0)

Π0tR
(0)

)
is not

constrained by the condition of EWSB. Fourth, we see the correlation between different

Higgs couplings still exists, such as

ct̄thh = −1

2
cg +

3

2
ct −

1

2
− 1

2
cgghh , (4.24)

and

3

2
ct − ctt̄hh −

3

2
+
ξ

4
= 0. (4.25)

4.2.3 Higgs couplings in composite minimal neutral naturalness model

Based on the assumption that the SM form factors ΠtL ,ΠtR have no Higgs dependence

while ΠtLtR = Π1tLtRsh, one can derive the Higgs couplings with the top quark. With the

leading approximation of ξ, we obtain

ct = cg = 1− ξ

2
+O(ξ2), (4.26)

ct̄thh = −ξ
2
+O(ξ2), (4.27)

cgghh = 1 +O(ξ3/2). (4.28)

One can see it is similar to CTHM when the combinations of form factors vanish. That

make senses since different components inside a full composite multiplet is assumed to be

completely degenerate.
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4.3 Higgs couplings with photons and W±, Z

Similar to the Higgs couplings to gluons, the contact interactions with photons h(n)γγ is

derived from

LAeff =
α

4π
FµνF

µν

(
∑

i

Q2
i log m2

i (h)−
7

4
log m2

W (h)

)
, (4.29)

considering both the fermionic and bosonic contributions where m2
i (h) denotes the Higgs-

dependent masses of the top quark and top partners circulating in the photon loop with

corresponding electric charge Qi, and m2
W (h) is the Higgs-dependent mass for W± such

that m2
W (h) = g2

4 v
2 = g2f2

4 s2h, as shown in appendix A. After expanding LAeff as

LAeff =
α

4π
FµνF

µν

(
cγ
h

v
+

1

2
cγγ

h2

v2
+ · · ·

)
, (4.30)

the effective coupling cγ is directly obtained

cγ ≃
4Q2

t cg − Jγ
(
4m2

W

m2
h

)
cW

4Q2
t − Jγ

(
4m2

W

m2
h

) . (4.31)

In the above equation, we assume that all the top partners have the same electric charge

as the top quark for composite models. Here cW is explicitly

cW =
√

1− ξ (4.32)

and the loop function is

Jγ(x) = 2 + 3x[1 + (2− x)f(x)], f(x) = arcsin2(x−1/2), (4.33)

which would be Jγ(∞) = 7 at the limit of large x. Note that the result of cW derived

from the form factors is consistent with the result derived from the chiral Lagrangian

at the order of O(p2). Integrating out the composite ρ meson will not contribute to the

O(p2) operator [12]. However, integrating out heavy particles that explicitly break the shift

symmetry of PNGB Higgs can also cause cW deviate from the SM value. Fully resolving

this effect in cW from the effect caused by Higgs nonlinearity requires novel method [61].

In this paper, we will not consider this more complicated situation.

5 Experimental constraints on Higgs couplings

In this section, we will discuss the sets of experimental data that we use to derive the

constraints on the Higgs couplings and parameters in the model classes we study above.

The first set of experimental data we consider is the single Higgs measurement. We

will perform a global fit analysis using the Higgs signal data listed in table 1. From

section 4, we find that once we fix the global symmetry breaking scale f , the value of cg
and ct will uniquely determine the signal strengths of all the combinations of the single
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ATLAS

γγ ττ WW ZZ bb

ggH 0.81+0.19
−0.18 [62] 1.02+0.63

−0.55 [63] 0.829+0.148
−0.142 [64] 1.11+0.249

−0.225 [65] N.A.

V BF 2.0+0.6
−0.5 [62] 1.18+0.60

−0.54 [63] 1.626+0.977
−0.951 [64] 3.987+1.728

−1.513 [65] N.A.

V H 0.7+0.9
−0.8 [62] N.A. N.A. N.A. 1.08+0.47

−0.43(WH) 1.2+0.33
−0.31(ZH) [66]

ttH 1.39+0.48
−0.42 [67] N.A. N.A. N.A. 0.79+0.61

−0.6 [67]

CMS [68]

γγ ττ WW ZZ bb

ggH 1.16+0.21
−0.18 1.05+0.53

−0.47 1.35+0.21
−0.19 1.220.23−0.21 N.A.

V BF 0.67+0.59
−0.46 1.12+0.45

−0.43 0.28+0.64
−0.60 −0.09+1.02

−0.76 N.A.

WH 3.76+1.48
−1.35 N.A. 3.91+2.26

−2.01 0.00+2.33
−0.00 1.73+0.7

−0.68

ZH 0.00+1.44
−0.00 N.A. 0.96+1.81

−1.46 0.00+4.26
−0.00 0.99+0.47

−0.45

ttH 2.18+0.88
−0.75 0.23+1.03

−0.88 1.60+0.65
−0.59 0.00+1.5

−0.00 0.91+0.45
−0.43

Table 1. Higgs signal measurements used in the global fit.

Higgs production and decay channels listed in table 1. For Higgs couplings to ττ and

bb, we only take into account the effect that comes from Higgs nonlinearity, i.e. assuming

cb = cτ = cW =
√
1− ξ in CTHMs/CMNNM and cb = cτ = (1 − 2ξ)/

√
1− ξ, cW =√

1− ξ in MCHMs, and neglect the composite states for the b and τ sector. We therefore

choose cg and ct as two independent parameters and perform a global fit for MCHM and

CTHM/CMNNM independently. The results for f = 1TeV are shown in figure 6, where

the green bands represents the 1σ, 2σ, and 3σ bounds without taking into account the

recent tth measurements, while the red regions are those obtained with all the data listed

in table 1. The entry with N.A. in the table means the data is not currently available.

We find that the global fit results are very similar within two scenarios, since the main

difference comes from the Higgs couplings to bottom and τ leptons which is proportional

to a small ξ.

The details of the global fit are described below. We use the public code Lilith [69]

to implement the global fit. We use the relative signal strength µX,Y defined below as

observable:

µX,Y =
σ(X → H)BR(H → Y )

σSM (X → H)BRSM (H → Y )
, (5.1)

where X represents the production mode, e.g. gluon fusion, vector boson fusion etc. and

Y represents the final state that the Higgs boson decays into. The test statistic χ2 is then

constructed by:

χ2 = (µ− µobs)TC−1(µ− µobs), (5.2)

where C−1 is the inverse of the covariance matrix cov[µobsi , µobsj ]. In principle we need to

know the whole n × n covariance matrix (n is the number of observables we use in the
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Figure 6. The global fit on the values of ct and cg for MCHM (left) and CTHM/CMNNM (right).

The green regions (from dark to light) are the 1σ, 2σ, and 3σ bounds without the tth measurements

corresponding to χ2 < (2.9, 5.99, 11.83). The red regions (from dark to light) are the 1σ, 2σ, and 3σ

allowed regions corresponding to χ2 < (2.9, 5.99, 11.83) including all the Higgs signal measurements

listed in the table 1.

global fit) to compute χ2, but this is obviously impossible and the relevant information is

not provided by ATLAS and CMS collaborations. Therefore we just ignore the off-diagonal

part in the covariance matrix and approximate the χ2 as:

χ2 =
∑

X,Y

(µX,Y − µobsX,Y )
2

σ2X,Y

, (5.3)

where σX,Y is the corresponding 1σ uncertainty for the given observable. For the detailed

treatment of different plus and minus uncertainties one can consult the Lilith documen-

tation [69].

Electroweak precision data (EWPD) is another set of experimental data that we use

to constraint these models. A set of electroweak precision observable (EWPO) S, T , W ,

Y [70] as an extension of the Peskin-Takeuchi parameters [71] can be defined to analyze

the corrections coming from the heavy new physics under the assumption of the quark and

lepton universality. Several detailed analysis of these observables in the minimal composite

Higgs models and composite twin Higgs models can be found in refs. [72–74]. Due to the fact

that the twin sector does not contribute to the EWPO at 1-loop level, the constraints for

the MCHM and CTHM are similar. For simplicity, in our analysis we only take into account

the constraint from the T parameter with heavy composite fermions circulating in the loop,

and approximate the contribution from the heavy resonance by the formula [11, 72, 74]:

T ∼ 3ξ

16π2
y4Lf

2

m2
min

, (5.4)

where the mmin is the smallest mass parameter for the vector-like fermion resonance.

In addition to the above two sets of data, we also roughly take into account the con-

straint from the direct searches for top partners at the LHC [75, 76]. Depending on the
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dominant decay channel, the top partners mass has already been excluded up to around

1TeV to 1.3TeV. Therefore, in our parameter scan discussed below we set the minimum

value of the mass parameters of those vector-like top partners to be 1TeV, which corre-

sponds to larger value for the physical mass of the top partners.

Finally, we comment on the possible constraints from the flavor physics. The flavor

changing ∆F = 2 four fermion operators and the dipole operators that contributes to the

electric dipole moment of neutrons can be generated by integrated out the composite states

in models we discussed. The constraint on these operators can potentially be translated

into the bound on the global symmetry breaking scale f and the mass of composite states.

However, the estimation of this bound depends on the detail structure of the fermion

embedding of the light quarks, which is beyond the scope of our discussion. Nevertheless,

we refer the reader to ref. [77] which discusses the flavor constraints in the CTHM and the

references therein for more related information.

6 Numerical analysis

6.1 Parameter scan

To estimate the viable parameter space of each model under current experimental con-

straints we perform parameter scans with details explained as follows. With the scale f

being fixed as 1TeV, we scan the parameter yL uniformly ranged between −10 to 10. All

the other dimensional parameters are scanned uniformly in a range from 1TeV to 10TeV.

We afterward solve for the value of yR by requiring the mass of the top quark to be a value

randomly chosen in a range from 150GeV to 170GeV. Finally we calculate the value of

the effective couplings with the full expressions of the form factors in appendix C. We then

calculate the value of T parameter using the approximate formula in eq. (5.4), and only

preserve points that satisfy the T parameter constraint within 2σ level [78]. We also put

a rough requirement on the physical masses of top partners such that it is below the scale

4πf , which is implemented by the following cuts:

√
y2Lf

2 +m2
max < 4πf and

√
y2Rf

2 +m2
max < 4πf, (6.1)

where mmax represents the largest mass parameter for the vector-like fermion resonance.

6.2 Results

Now we are ready to see what information we can extract with parameter scans.

Firstly, we present the results of distribution of ct in each model and see the effect of

the value of f on these distributions. Figure 7 and figure 8 are the plots of the distribu-

tions for the models with low and high dimensional fermion representations respectively.

More specifically, the low dimensional representations refer to MCHM5+1,5+5,10+10 and

CTHM8+1,8+28. We put the distribution MCHM5+1 and CTHM8+1 in the same plot, since

the expressions of form factors are the same in these two models. We find following features

from these plots:
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Figure 7. The distribution of ct in the models with low dimensional representations. Different

colors denote different values of ξ, the width of each bin is chosen as 0.01, and A.U. denotes arbitrary

unit.

Figure 8. The distribution of ct in the models with low dimensional representations. Different

colors denote different values of ξ, the width of each bin is chosen as 0.01, and A.U. denotes arbitrary

unit.

• The peak of ct shifts downwards as the global symmetry breaking scale f decreases.

This can be understood by observing the expression for ct in eq. (4.14) and (4.20).

The value of ξ determine the overall magnitude of the deviation from one.

• In the low dimensional representations, the spans of the ct in the CTHMs are much

smaller than those in the MCHMs. The reason is that the form factor Π1tLtR depends

on two mass parameters in the MCHM, while it depends on only one mass parameter

in the CTHM (To be specific, m1 in CTHM8+1 and m7 in CTHM8+28 as shown in

appendix C). Therefore, less freedom in the parameter space is left for the CTHM-

type of models to tune the parameters to reproduce the top quark mass.

Secondly, we analyze the viable parameter region of each model under current exper-

imental constraints taking into account the results of the global fit on cg vs ct plane. In

the following analysis we focus on the benchmark value f = 1TeV. In figure 9 and 10, we
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Figure 9. The distribution of ct vs cg in models with low dimensional representations. The scale

f is set to 1TeV. The colored lines are 1σ, 2σ and 3σ bounds coming from the Higgs signal global

fit using Run2 data. In MCHM, the green points predict ct > cg thus the model has the problem of

triggerring EWSB [50], while the blue points satisfy cg > ct. In CTHMs, EWSB is automatically

triggered as shown in section 4.1.

overlap the 1σ, 2σ, and 3σ contours from our global fit to the parameter scan in ct vs cg
plane. The green dots in the MCHMs predict ct > cg, thus the model may suffer from the

problem of the non-existence of EWSB [50]. However, EWSB is automatically triggered in

CTHM-type of models as discussed in section 4.1, so we did not separate the points with

different colors. From these plots we can find the following facts:

• The new measurements of tth production impose a strong constraint on the value

of ct such that all the models are only moderately compatible with the global fit

result if f = 1TeV. At the worst, MCHM with 5 + 5 and 10 + 10 representations

are disfavored at the 2σ confidence level (CL) for f = 1TeV. CTHM with 8 + 1 and

8 + 28 representations can have most points within the 2σ region but outside the 1σ

region for f = 1TeV.

• The high dimensional representations can roughly be more consistent with the global

fit constraints than the low dimensional representations. Especially in the CTHM8+35,

the points within the 1σ region is still possible for f = 1TeV. Moreover, if the fu-

ture experimental result confirms that ct is preferred to be larger than 1, then the

parameter space in models with high dimensional representations is more available.
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Figure 10. The distribution of ct vs cg in models with high dimensional representations. The

scale f is set to 1TeV. The colored lines are 1σ, 2σ and 3σ bounds coming from the Higgs signal

global fit using Run2 data. In the MCHM, the green points predict ct > cg thus the model has

the problem of triggering EWSB [50], while the blue points satisfy cg > ct. In CTHMs, EWSB is

automatically triggered as shown in section 4.1.

• In the low dimensional representations, both values of cg and cW are fixed by the

value of ξ, i.e. the global symmetry breaking scale f . In the future, if ξ is obtained by

the measurements of cW for example from e+e− collider with Higgsstrahlung process,

then one can check whether the measured value of cg agrees with the correlation of cg
and cW . The significant deviation from the correlation will disfavor low representa-

tions, or it can shed light on the extra heavy particles that explicitly break the shift

symmetry of the PNGB Higgs [61].

Thirdly, we investigate the correlation between ctthh and ct in MCHMs and CTHMs,

and their interplay with the global fit. In figure 11 and 12, we plot the points predicted by

models on the ctthh vs ct plane. We use the black line in each plot to denote the relation

between ctthh and ct when expanding with respect to ξ to the linear order, i.e. eq. (4.19)

and (4.25). We reorganize it as the following:

ctthh =
3

2
ct −

3

2
+
ξ

4
. (6.2)

In the meantime, we also include the orange region based on the following formula obtained

from the framework of dimension-six SMEFT [79]:

ctthh =
3

2
ct −

1

2
cW − 1, (6.3)

with both cW and ct within the 2σ region from the Higgs signal global fit in the κ frame-

work [68]. We emphasis here that eq. (6.3) is valid whether Higgs is fundamental or

composite. The red dots that we highlighted in these plots are the points that satisfy

the 3σ global fit constraint taking into account the correlation between the Higgs effective

couplings, i.e. the points inside the 3σ region (marked in red) in figure 6.

Several comments are in order after combing the information from eq. (6.2), eq. (6.3)

and figure 11, figure 12:
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Figure 11. The distribution of ctthh vs ct in models with low dimensional representations. The

scale f is set to 1TeV. In the MCHM, the green points predict ct > cg thus the model has the

problem of triggering EWSB [50], while the blue points satisfy cg > ct. EWSB is automatically

triggered in CTHMs. The black line represents the relationship between ct and ctthh in eq. (6.2).

The orange block represents the relation of eq. (6.3) with cW and ct within 2σ uncertainties from

current Higgs signals [67]. The red dots are within the 3σ region of global fit as shown in figure 10.

• If one plugs in the expression of cW =
√
1− ξ in composite Higgs models into eq. (6.3)

and keep the linear term with the expansion of ξ, one can recover the relation of

eq. (6.2). This indicate that if the linear approximation of ξ is valid in the composite

Higgs models, then one cannot use the relation in eq. (6.2) to test the effect of Higgs

nonlinearity.

• The red dots, which are the parameters points within the 3σ global fit bound, are

aligned with the linear approximation (black line) in CTHMs, thus Higgs nonlinearity

cannot be tested through the relation in eq. (6.3) in this case. However, the Higgs

nonlinearity effect can be shown in various MCHMs, i.e. the red dots in MCHMs are

possible to have some deviation from the black line.
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Figure 12. The distribution of ctthh vs ct in models with high dimensional representations. The

scale f is set to 1TeV. In the MCHM, the green points predict ct > cg thus the model has the

problem of triggering EWSB [50], while the blue points satisfy cg > ct. EWSB is automatically

triggered in CTHMs. The black line represents the relationship between ct and ctthh in eq. (6.2).

The orange block represents the relation of eq. (6.3) with cW and ct within 2σ uncertainties from

current Higgs signals [67]. The red dots are within the 3σ region of global fit as shown in figure 10.

7 Conclusion

In this work, we focus on the top sector in several composite Higgs models (including

hidden sectors) that can realize the naturalness conditions. We find that the quadratic

divergence can be cancelled out by one of the following symmetries: collective symmetry,

left-right Z2 symmetry and the mirror Z2 symmetry. Instead of working in any specific

model, one can integrate out those composite top partners introduced for the naturalness

requirement and utilize the general form factors to describe strong dynamics at TeV scale.

We then systematically obtain the Higgs couplings with the top sector in the framework

of minimal composite Higgs models and composite twin Higgs models, composite minimal

neutral naturalness model, where the left-handed and right-handed top quark are embedded

in different representations of the global symmetry. Both the Higgs nonlinearity as well

as the compositeness from the top partners could induce the deviation of Higgs couplings

from the SM values.

Theoretically, pattern of the Higgs effective couplings is reflected by the Higgs de-

pendence in the form factors. The Higgs dependence of the form factor ΠLR, the two

point correlation function between the left-handed and right-handed top quarks, can be

completely determined by symmetries, without the need of tedious calculation. We find

in composite twin Higgs models ΠLR satisfy a universal expansion as in eq. (3.6) regard-

less of the specific fermion representations. This fact is dictated by the Higgs dependence

constrained by the Z2 symmetry of the twin Higgs setup. On the other hand, ΠLR can

satisfy different expansions of PNGB-Higgs dependence in minimal composite Higgs mod-

els depending on the choices of top-quark embeddings. These are new features presented

in this paper.
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Numerically, we perform global fits on Higgs couplings and parameter scan in various

models. We find the following conclusion in our study:

• We update the existing global fit of single Higgs measurements by including the latest

tth data, which starts to put constraint on ct, and thus exclude further parameter

space. Current global fit of single Higgs measurements favor high dimensional repre-

sentations in both minimal composite Higgs and composite twin Higgs models, which

predict ct could be larger than one. If future measurements confirm an enhanced ttH

coupling, then low dimensional representations will be disfavored in the both minimal

composite Higgs and composite twin Higgs models for f = 1TeV.

• The impact of Higgs nonlinearity effect on effective Higgs couplings is enhanced if

composite particles in the spectrum have significant mass splittings, caused by the

mass difference of full composite multiplets as well as the mixing between components

inside individual composite multiplet and the elementary fermions. As a result,

certain combination of the form factors can cause the terms proportional to ξ2, or

higher powers, being at the same of order of the ones proportional to ξ.

• There are two interesting correlations: cW verses cg, and ctthh verses ct. The first

correlation can be very strong in low dimensional representations. Thus if such cor-

relation is not observed, then the top quark is favored to belong to high dimensional

fermion representation. If the second correlation is violated then MCHM is favored,

as one can see from the plots that the red dots are mostly aligned with the black line

in CTHMs in figures 11 and 12.

Overall, precise measurements of various Higgs couplings at future colliders will help us to

discriminate the nature of the Higgs boson, the fermion embeddings, and eventually the

origin of the electroweak symmetry breaking.
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A Form factors in the bosonic sector

Within the Landau gauge ∂µA
aµν = 0, the general Lagrangian describing the bosonic sector

of composite Higgs can be written as [33] (see e.g. ref. [35] for study in details.)

Lboson =
1

2
(PT )

µν
[
Π0(q

2)Tr(AµAν) + Π1(q
2)Σ†AµAνΣ

]
(A.1)

up to the quadratic level of gauge bosons in the momentum space. Here Aµ ≡ Aa
µT

a where

Aa
µ denote the gauge bosons associated with the corresponding generators of the broken
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global symmetry group G. Σ are goldstone bosons of the coset G/H. Pµν
T is the projection

operator

Pµν
T = ηµν − qµqν

q2
. (A.2)

The extra U(1)X gauge boson, which is usually necessary to reproduce correct fermion

hyper-charges, has been neglected in the above Lagrangian.

For cosets in which we are interested in this paper, Σ are explicitly

Σ = (0, 0, 0, sh, ch)
T SO(5)/SO(4)

Σ = (0, 0, 0, sh, 0, 0, 0, ch)
T SO(8)/SO(7)

(A.3)

in the unitary gauge. With the form factors at the limit Q2 → 0 as Π0(0) = 0 and

Π1(0) = f2, we read off the Higgs-dependent W± boson mass directly

m2
W (h) =

g2

4
v2 =

g2f2

4
sin2

(
h

f

)
, (A.4)

from which the Higgs coupling to electroweak gauge bosons cW is derived.

B More on Higgs effective couplings

The relevant dimension-six operators are

LD=6 =
CH

2f2
∂µ(H†H)∂µ(H

†H) +
CT

2f2

(
H†←→D µH

)2
− C6λ

f2
(H†H)3 (B.1)

+

(
Cyyf
f2

H†Hf̄LHfR + h.c.

)
+

Cgg
2
s

16π2f2
y2t
g2ρ
H†HGa

µνG
aµν+

Cγg
′2

16π2f2
g2

g2ρ
H†HBµνB

µν

where CH,T,6,y,g,γ are the unknown Wilson coefficients. The operator with coefficient CT

violates custodial symmetry at tree level and is tightly constrained by precision electroweak

data, so we can ignore it. The new physics scale and the typical coupling strength of the

UV theory are denoted as f and gρ respectively.

One can also match the Wilson coefficients in eq. (B.1) with the general form factors

of composite Higgs models. For minimal composite Higgs models, we have

CH =
2

ξ
(1− cW ) = 1 +O(ξ) ,

Cy =
1

ξ
(1− ct)−

cH
2

= 1 +

(
Π1tL(0)

Π0tL(0)
+

Π1tR(0)

Π0tR(0)

)
− 2

Π2tLtR

Π1tLtR

+O(ξ) ,

C6 = 0 +O(ξ) ,

Cg =
g2ρ
3y2t

1

ξ
(cg − ct) =

g2ρ
3y2t

(
Π1tL(0)

Π0tL(0)
+

Π1tR(0)

Π0tR(0)

)
+O(ξ) ; (B.2)
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for composite twin Higgs models, we have

CH =
2

ξ
(1− cW ) = 1 +O(ξ) ,

Cy =
1

ξ
(1− ct)−

cH
2

=

(
Π1tL(0)

Π0tL(0)
+

Π1tR(0)

Π0tR(0)

)
− 2

Π2tLtR

Π1tLtR

+O(ξ) ,

C6 = 0 +O(ξ) ,

Cg =
g2ρ
3y2t

1

ξ
(cg − ct) =

g2ρ
3y2t

(
Π1tL(0)

Π0tL(0)
+

Π1tR(0)

Π0tR(0)

)
+O(ξ) . (B.3)

C Form factors in specific composite models

In this part, we present the form factors in specific minimal composite Higgs models and

composite twin Higgs models. To avoid confusion, we explicitly present the Higgs depen-

dence in the chirality-flipped form factor for MCHM5+1, MCHM14+1 and CMNNM.

• MCHM5+1:

L5+1 =yLf(q̄
5
L)

i
[
UiJΨ

J
4 + Ui5Ψ1

]
+ yRf t̄RΨ1L + h.c.−m4Ψ̄4Ψ4 −m1Ψ̄1Ψ1 (C.1)

Π0tL = 1− y2Lf
2

p2 −m2
4

Π1tL =
y2Lf

2

2

(
1

p2 −m2
4

− 1

p2 −m2
1

)

Π0tR = 1− y2Rf
2

p2 −m2
1

ΠtLtR = −m1√
2
· yLyRf

2

p2 −m2
1

sh

(C.2)

• MCHM5+5:

L5+5 = yLf(q̄
5
L)

i
[
UiJΨ

J
4 + Ui5Ψ1

]
+ yRf(t̄

5
R)

i
[
UiJΨ

J
4 + Ui5Ψ1

]
+ h.c.

−m4Ψ̄4Ψ4 −m1Ψ̄1Ψ1

(C.3)

Π0tL = 1− y2Lf
2

p2 −m2
4

Π1tL =
y2Lf

2

2

(
1

p2 −m2
4

− 1

p2 −m2
1

)

Π0tR = 1− y2Rf
2

p2 −m2
1

Π1tR = y2Rf
2

(
1

p2 −m2
1

− 1

p2 −m2
4

)

Π1tLtR =
1√
2
yLyRf

2

(
m4

p2 −m2
4

− m1

p2 −m2
1

)

(C.4)
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• MCHM10+10:

L10+10 = yLf(q̄
10
L )ij

[
UjJUiLΨ

JL
6 +

√
2 Ui5UjJΨ

J
4

]

+ yRf(t̄
10
R )ij

[
UjJUiLΨ

JL
6 +

√
2 Ui5UjJΨ

J
4

]
+ h.c.

−m6Ψ̄6Ψ6 −m4Ψ̄4Ψ4

(C.5)

Π0tL = 1− y2Lf
2

p2 −m2
4

Π1tL =
y2Lf

2

2

(
1

p2 −m2
4

− 1

p2 −m2
6

)

Π0tR = 1− y2Rf
2

p2 −m2
6

Π1tR =
y2Rf

2

2

(
1

p2 −m2
6

− 1

p2 −m2
4

)

Π1tLtR =
1

2
yLyRf

2

(
− m4

p2 −m2
4

+
m6

p2 −m2
6

)

(C.6)

• MCHM14+14:

L14+14 = yLf(q̄
14
L )ij

[
UjJUiLΨ

JL
9 +

√
2 Ui5UjJΨ

J
4 +

√
5

2
Ui5Uj5Ψ1

]

+ yRf(t̄
14
R )ij

[
UjJUiLΨ

JL
9 +

√
2 Ui5UjJΨ

J
4 +

√
5

2
Ui5Uj5Ψ1

]
+ h.c.

−m9Ψ̄9Ψ9 −m4Ψ̄4Ψ4 −m1Ψ̄1Ψ1

(C.7)

Π0tL = 1− f2y2L
p2 −m2

4

Π1tL =
5

4
f2y2L

(
− 1

p2 −m2
1

+
2

p2 −m2
4

− 1

p2 −m2
9

)

Π2tL =
1

4
y2Lf

2

(
5

p2 −m2
1

− 8

p2 −m2
4

+
3

p2 −m2
9

)

Π0tR = 1− f2y2R
p2 −m2

1

Π1tR =
5

2
y2Rf

2

(
1

p2 −m2
1

− 1

p2 −m2
4

)

Π2tR =
5

16
y2Rf

2

(
− 5

p2 −m2
1

+
8

p2 −m2
4

− 3

p2 −m2
9

)

Π1tLtR =

√
5

2
yLyRf

2

(
− m1

p2 −m2
1

+
m4

p2 −m2
4

)

Π2tLtR =

√
5

8
yLyRf

2

(
5m1

p2 −m2
1

− 8m4

p2 −m2
4

+
3m9

p2 −m2
9

)

(C.8)
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• MCHM14+1:

L14+1 = yLf(q̄
14
L )ij

[
UjJUiLΨ

JL
9 +

√
2 Ui5UjJΨ

J
4 +

√
5

2
Ui5Uj5Ψ1

]
+ yRf t̄RΨ1 + h.c.

−m9Ψ̄9Ψ9 −m4Ψ̄4Ψ4 −m1Ψ̄1Ψ1 (C.9)

Π0tL = 1− f2y2L
p2 −m2

4

Π1tL =
5

4
f2y2L

(
− 1

p2 −m2
1

+
2

p2 −m2
4

− 1

p2 −m2
9

)

Π2tL =
1

4
y2Lf

2

(
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• CTHM8+28:
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Π0tL = 1− y2Lf
2

p2 −m2
7

Π1tL =
y2Lf

2

2

(
1

p2 −m2
7

− 1

p2 −m2
1

)

Π0tR = 1− y2Rf
2

p2 −m2
21

(C.14)

– 30 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
0

Π1tR =
y2Rf

2

2

(
1

p2 −m2
21

− 1

p2 −m2
7

)

Π1tLtR = −m7

2
· yLyRf

2

p2 −m2
7

• CTHM8+35:
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(C.16)

• CMNNM:

L = yfQ̄LUΨR −MΨ̄LΨR −mΨ̄1LtR (C.17)

+ỹf
¯̃
QLUΨ̃R − M̃ ¯̃

ΨLΨ̃R − m̃ ¯̃
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2

1

p2 −M2
,
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,
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 . (C.18)

D Higgs couplings in concrete composite models

In this part, we collect the results of Higgs couplings in concrete composite Higgs models

up to the leading order of O(ξ).

Couplings Results
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Table 2. Higgs Couplings and top mass in MCHM of 5 + 1 Representation, which means tL is

embedded in the 5 of SO(5) while tR is a singlet.

Couplings Results
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Table 3. Higgs Couplings and top mass in MCHM of 5 + 5 Representation, which means tL and

tR are both embedded in the 5 of SO(5).
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Couplings Results
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Table 4. Higgs Couplings and top mass in MCHM of 10+10 Representation, which means tL and

tR are both embedded in the 10 of SO(5).

Couplings Results
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Table 5. Higgs Couplings and top mass in MCHM of 14+14 Representation, which means tL and

tR are both embedded in the 14 of SO(5).

Couplings Results
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Table 6. Higgs Couplings and top mass in MCHM of 14 + 1 Representation, which means tL is

embedded in the 14 of SO(5) while tR is a singlet.
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Couplings Results
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Table 7. Higgs Couplings and top mass in CTHM of 8 + 1 Representation, which means tL is

embedded in the 8 of SO(8) while tR is a singlet. MCHM of 5 + 1 representation is very similar to

this case.

Couplings Results
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Table 8. Higgs Couplings and top mass in CTHM of 8 + 28 Representation, which means tL is

embedded in the 8 of SO(8) while tR is embedded in the 28 of SO(8).
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Couplings Results
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Table 9. Higgs Couplings and top mass in CTHM of 8 + 35 Representation, which means tL is

embedded in the 8 of SO(8) while tR is embedded in the 35 of SO(8).

Couplings Results
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Table 10. Higgs Couplings and top mass in CMNNM. MCHM of 5+ 1 representation and CTHM

of 8 + 1 representation are very similar to this case.
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