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Abstract
We introduce and study the class of egalitarian
variants of committee scoring rules, where instead
of summing up the scores that voters assign to
committees—as is done in the utilitarian variants—
the score of a committee is taken to be the low-
est score assigned to it by any voter. We focus on
five rules, which are egalitarian analogues of SNTV,
the k-Borda rule, the Chamberlin–Courant rule, the
Bloc rule, and the Pessimist rule. We establish their
computational complexity, provide their initial ax-
iomatic study, and perform experiments to represent
the action of these rules graphically.

1 Introduction
We study the problem of selecting a committee based on pref-
erences of a group of agents (the voters). We assume that there
is a set of candidates and each agent ranks them from the most
to the least desirable one. Given such preferences and a size k
of the committee to be selected, a multiwinner rule outputs a
set of k candidates (the winning committee) that is meant to
reflect the voters’ preferences in the best possible way.

Many multiwinner rules are utilitarian in the sense that
for each possible committee and each voter they provide
the utility that this voter is supposed to derive from hav-
ing this committee elected (typically this utility is referred
to as the committee’s score) and output the committee that
maximizes the sum of these utilities. Indeed, this is exactly
how committee scoring rules operate [Elkind et al., 2017b]
(see also the approval-based setting [Aziz et al., 2017; 2015;
Kilgour, 2010; Lackner and Skowron, 2018]). For exam-
ple, the score that a voter associates with a committee under
the k-Borda rule is the sum of the Borda scores of the com-
mittee members1; the rule outputs the committee with the

1The Borda score that a voter v assigns to candidate c is the
number of candidates that v ranks below c.

highest sum of such voter scores (which happens to be the
committee of k candidates with the highest individual Borda
scores). On the other hand, under the Chamberlin–Courant
rule (β-CC) the score that a voter associates with a committee
is the Borda score of the highest-ranked committee member
(referred to as the representative of the voter [Chamberlin
and Courant, 1983]). Again, the rule outputs the committee
with the highest sum of voter scores (it is, however, NP-hard
to compute [Procaccia et al., 2008; Lu and Boutilier, 2011;
Betzler et al., 2013]).

The two rules mentioned above are quite different in
spirit and thus applied in different situations. For exam-
ple, k-Borda and similar rules are often used to choose fi-
nalists of competitions, and β-CC seems to be well-suited
for choosing collective bodies, such as university senates
or advisory boards (in which case the committee’s diver-
sity is particularly important; to provide multifaceted opin-
ions, members of an advisory board should represent as
varied points of view as possible; see also recent works
on selecting diverse committees [Bredereck et al., 2018;
Aziz and Lee, 2018]). The differences between the rules are
presented graphically by Elkind et al. [2017a] (see also our
experimental section).

The utilitarian approach is well-justified for choosing indi-
vidually excellent candidates, but has some disadvantages for
diverse committees. Indeed, if the goal is to find a committee
representing a diverse set of opinions, then the level of support
of various candidates may be less important than the number
of truly different candidates included in the committee. For ex-
ample, consider the following election (with many candidates,
including a, b, and c): 60% voters have preferences : a � b �
· · · � c, 30% voters have preferences : b � a � · · · � c,
10% voters have preferences : c � · · · � a � b. If we were
to choose a committee of size k = 2, then β-CC would output
the committee {a, b}, but intuitively {a, c} would be closer to
covering the views of the society (indeed, a and b are clones,
in the sense that all voters rank them consecutively, whereas c
is different).
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To implement the idea of focusing on the number of dif-
ferent opinions present in the society, without regard to the
number of voters with each opinion, we consider egalitarian
variants of committee scoring rules. Egalitarian committee
scoring rules are defined in the same way as their utilitarian
counterparts, but instead of finding a committee that maxi-
mizes the sum of scores that a committee gets from individual
voters, they find one that maximizes the lowest score that the
‘worst-off’ voter gives to the committee (in technical terms, we
replace the summation operator with the minimum operator).

Our goal is to explore the nature of such egalitarian scoring
rules, establish their computational and axiomatic properties,
and to evaluate them experimentally. More precisely:

• We study the computational complexity (classic and
parametrized) of five egalitarian rules (egalitarian vari-
ants of k-Borda, β-CC, SNTV, Bloc, and the Pessimist
rule; see Section 2 for definitions). We find that the in-
tuitions acquired for the utilitarian setting often do not
work for the egalitarian case (for example, k-Borda is
computationally easy, but its egalitarian variant is hard).
• We consider axiomatic properties of egalitarian rules. We

discuss the consequences of the fact that egalitarian rules
disregard the number of voters with any particular type of
preferences (and, thus, are incompatible with properties
such as the fixed majority property of Debord [1993]),
and we also study their monotonicity properties.
• Following Elkind et al. [2017a], we evaluate our rules on

the 2D Euclidean domain and present the results graphi-
cally. To our surprise, we find that sometimes egalitarian
rules behave very similarly to utilitarian ones, defined
using different scoring functions (in our experiments this
happens, e.g., for k-Borda and egalitarian-Pessimist).

Egalitarian rules suffer from several drawbacks. Perhaps
the most obvious ones are that they may not be as decisive as
the utilitarian ones, and that they may perform poorly in the
presence of outliers (or manipulators). Indeed, under egalitar-
ian rules, a single voter has as much power as a large group
of voters with the same preferences; this is both their strength
and a weakness: On the one hand, we argued that it is very
useful when looking for a diverse committee. On the other
hand, if the committee is genuinely too small to represent the
very different opinions of the society, egalitarian rules cannot
distinguish between opinions with larger and smaller support.

To some extent such issues can be addressed, e.g., by using
the leximin operator (instead of the minimum), or by follow-
ing the approach of Elkind and Ismail [2015], who showed a
continuum of options between fully utilitarian and fully egali-
tarian rules. We focus on the simple egalitarian setting, so that
we evaluate our rules under the most basic conditions. Rules
that turn out to be appealing should then be studied further.
Omitted proofs are available upon request.

2 Preliminaries
For an integer m, we write [m] to denote the set {1, . . . ,m}.
By R+ we mean the set of nonnegative real numbers.

An electionE = (C, V ) consists of a set of candidates C =
{c1, . . . , cm} and a collection of voters V = (v1, . . . , vn),

rule committee scoring function OWA operator

SNTV fSNTV(i1, . . . , ik) =
∑k
t=1 α1(it) (1, . . . , 1)

Bloc fBloc
m,k (i1, . . . , ik) =

∑k
t=1 αk(it) (1, . . . , 1)

k-Borda fk-Borda
m,k (i1, . . . , ik) =

∑k
t=1 βm(it) (1, . . . , 1)

β-CC fβ-CC
m,k (i1, . . . , ik) = βm(i1) (1, 0 . . . , 0)

Pessimist fPess
m,k (i1, . . . , ik) = βm(ik) (0, . . . , 0, 1)

Table 1: Some committee scoring rules and their scoring func-
tions. SNTV could equivalently be defined with function
fSNTV(i1, . . . , ik) = α1(i1), i.e., with OWA operator (1, 0, . . . , 0).

where each voter ranks the candidates from the most to the
least desirable one (the ranking provided by voter v is called
v’s preference order and is denoted as �v). A multiwinner
ruleR is a function that given an election E = (C, V ) and a
committee size k, outputs a family of size-k subsets of C, i.e.,
the size-k committees that tie as winners of this election.

Committee Positions. Let v be some voter with preference
order�v over candidates from the setC. For c ∈ C, we denote
c’s position in �v by posv(c) (the top-ranked candidate has
position 1, the next one has position 2, and so on). For an
integer t ∈ [|C|], by topv(t) we mean the set of t top-ranked
candidates according to voter v. For a committee S of size k,
S ⊆ C, we write posv(S) to denote the sequence (i1, . . . , ik)
obtained by sorting the set {posv(c) | c ∈ S} in the increasing
order; we say that posv(S) is the committee position of S in
the preference order of v. We write [m]k to denote the set of
all such increasing sequences of length k with elements from
the set [m]. Let I = (i1, . . . , ik) and J = (j1, . . . , jk) be
two committee positions. We say that I weakly dominates J ,
denoted I � J , if for each t ∈ [k] it holds that it ≤ jt.
Scoring Functions. A committee scoring function for elec-
tions with m candidates and committees of size k is a function
fm,k : [m]k → R+ such that for each I, J ∈ [m]k, if I � J
then fm,k(I) ≥ fm,k(J). In other words, a committee scor-
ing function associates score values with committee positions,
while respecting a basic monotonicity condition.

We refer to committee scoring functions for k = 1 as single-
winner scoring functions and typically denote them using
Greek letters. By a slight abuse of notation, we use [m] instead
of [m]1 as their domain. Two best-known examples of single-
winner scoring functions include the Borda family of functions,
βm(i) = m− i, and the t-Approval functions, αt(i) = [i ≤ t]
(where [·] is the Iverson bracket, which evaluates to 1 if the
condition inside is true, and evaluates to 0 otherwise). The
1-Approval function is known as the Plurality scoring function.

Committee Scoring Rules. Let f = (fm,k)k≤m be a se-
quence of committee scoring functions, with one function
for each number m of candidates and each committee size k.
The committee scoring rule Rf is a multiwinner rule that,
given an election E = (C, V ) and committee size k, out-
puts all the size-k committees S that maximize the value
f -scoreE(S) =

∑
v∈V f|C|,k(posv(S)). Examples of com-

mittee scoring rules with their corresponding scoring functions
are in Table 1. SNTV, Bloc, and k-Borda, are polynomial-
time computable: It suffices to output a committee consisting
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of k candidates with the highest Plurality, k-Approval, or
Borda scores, respectively. The Chamberlin–Courant rule
and the Pessimist rule are NP-hard (formally, the problem of
deciding if there is a committee with at least a given score
is NP-complete for these rules; see the works of Procaccia
et al. [2008] and Lu and Boutilier [2011] for the case of
the Chamberlin–Courant rule, and the work of Skowron et
al. [2016] for the Pessimist rule). As opposed to all the other
rules from Table 1, the Pessimist rule has not received much
attention in the literature and is not a well-known rule (but the
pessimistic way of comparing committees has been considered
as the ‘worst set extension’ [Aziz et al., 2016]).
OWA-Based Rules. The committee scoring rules of Table 1
belong to the class of OWA-based rules. An OWA (ordered
weighted average) operator Λ of dimension k is a sequence
(λ1, . . . , λk) of numbers from R+. A committee scoring rule
is OWA-based if its scoring functions are of the form:

fm,k(i1, . . . , ik) = λm,k
1 γm,k(i1) + · · ·+ λm,k

k γm,k(ik),

where γm,k are single-winner scoring functions and
(λm,k

1 , . . . , λm,k
k ) are OWA operators. Table 1 provides the

families of OWA operators used by the respective rules.
Complexity Theory. We assume familiarity with basic con-
cepts of (parametrized) complexity theory. When we say that
a multiwinner rule is polynomial-time computable, we mean
that, given an election E = (C, V ) and committee size k,
it is possible to check in polynomial time if a given set S,
S ⊆ C and |S| ≤ k, can be extended to a winning committee
(if |S| = k then it means testing if S is a winning commit-
tee). Thus, if a committee scoring rule is polynomial-time
computable, then we can also compute the scores of winning
committees in polynomial time. When we say that a given
committee scoring rule is NP-hard, we mean that deciding if
there is a committee with at least a given score is NP-hard.
Analogously, we speak of multiwinner rules being computable
in FPT-time or being W[1]- or W[2]-hard.

3 Egalitarian Committee Scoring Rules
We present the class of egalitarian committee scoring rules
and our computational, axiomatic, and experimental results.

3.1 Definition and Examples
Committee scoring rules are utilitarian because they choose
committees that maximize the sum of scores provided by the
voters. Egalitarian rules aim at maximizing the welfare of the
worst-off voters.
Definition 1. Let f = (fm,k)k≤m be a sequence of commit-
tee scoring rules. The egalitarian variant of the committee
scoring rule Rf , denoted egalitarian-Rf , is a multiwinner
rule that, given an election E = (C, V ) and committee size
k, outputs all the size-k committees S that maximize the value
egal-f -scoreE(S) = minv∈V f|C|,k(posv(S)).

So far, egalitarian rules have not received much attention in
the literature; e.g., Aleskerov et al. [2010] introduced the egal-
itarian variant of the single-winner Borda rule and Betzler et
al. [2013] introduced the egalitarian variant of the Chamberlin–
Courant rule (and of the Monroe rule [Monroe, 1995]; we

discuss the egalitarian Minimax Approval Voting rule later).
We focus on the egalitarian variants of the rules from Table 1.
Example 1. Let us consider election E = (C, V ) with candi-
date set C = {a, b, c, d, e, f, g} and with the following voters:

v1 : d�b�f�a�e�g�c, v5 : e�c�f�d�a�b�g,
v2 : d�b�a�c�e�g�f, v6 : e�c�f�d�a�b�g,
v3 : d�b�a�f�e�c�g, v7 : e�c�f�d�a�b�g,
v4 : f�b�e�c�a�g�d, v8 : f�c�e�d�a�b�g.

We consider committees of size two. Under SNTV, committee
{d, e} wins because these candidates are ranked first three
times each (so the committee has SNTV score 6). On the other
hand, egalitarian-SNTV elects all possible committees, each
with score 0 because for each committee there is some voter
that ranks both its members below the first place. Committee
{d, e} also wins under β-CC, but egalitarian-β-CC chooses
{b, c} (the former committee has higher sum of β-CC scores,
but voters v4 and v8 rank both its members on or below the
third position, whereas all voters rank either b or c on the
second position, so the egalitarian-β-CC score of {b, c} is
higher). More tedious calculations show that k-Borda chooses
committee {e, f}with score 63, whereas its egalitarian variant
selects {d, f} with score 6 (voter v4 assigns k-Borda score 6
to {d, f}; every other committee receives score at most 5
from some voter). Pessimist outputs {c, e} (with score 24)
while egalitarian-Pessimist gives {a, e} (these are the only two
candidates that are never ranked on the two bottom positions).
Finally, both Bloc and egalitarian-Bloc output {b, c}.

By αk-CC, we mean a variant of β-CC which uses k-
Approval scores instead of the Borda ones. If a size-k commit-
tee S has nonzero score under egalitarian-Bloc then every voter
ranks at least one member of S among top k positions and,
so, this committee also wins under egalitarian-αk-CC (and, in-
deed, under αk-CC). Somewhat surprisingly, egalitarian-Bloc
can also be seen as a special case of the Minimax Approval
Voting (MAV) rule of Brams et al. [2007]. Under MAV, each
voter v submits a set Av of candidates that he or she approves;
the MAV-score of a committee W in election E = (C, V ) is
maxv∈V d(W,Av), where d(W,Av) = |W \Av|+ |Av \W |;
and MAV returns the size-k committees with the lowest MAV-
scores. Given an election E = (C, V ), egalitarian-Bloc re-
turns the same committees as MAV would, if for each voter v
we would set Av = topv(k).

3.2 Computational Complexity
In this section we analyze the computational complexity of
our rules. The case of egalitarian-β-CC has already been
resolved by Betzler et al. [2013]. Utilitarian OWA-based
committee scoring rules which use OWA operators (1, . . . , 1)
are polynomial-time computable (provided that their scoring
functions are polynomial-time computable). In the egalitarian
setting this is not the case. While egalitarian-SNTV indeed
is polynomial-time computable (via a trivial algorithm), both
egalitarian Bloc and egalitarian-k-Borda are NP-hard.
Theorem 1. Egalitarian-SNTV is in P, but the problem of
deciding if there exists a committee with at least a given score
is NP-hard both for egalitarian-Bloc and egalitarian-k-Borda.
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NP-hardness for egalitarian-Bloc follows via a simple re-
duction from the SET COVER problem, but FPT algorithms
exist. For parametrization by the number of voters and the
number of candidates, we inherit the algorithms for the MAV
rule [Misra et al., 2015]. For parametrization by the committee
size, we use the ideas of Gramm et al. [2003] (interestingly,
MAV is W[2]-hard for the parametrization by the committee
size [Misra et al., 2015], so egalitarian-Bloc is indeed easier
than MAV); it is interesting if we can inherit approximation
properties of MAV [Byrka and Sornat, 2014].

Corollary 1. Egalitarian-Bloc is computable in FPT-time
for parametrizations by the number of candidates, the number
of voters, and the committee size.

For egalitarian-k-Borda we only have the trivial FPT algo-
rithm for the parametrization by the number of candidates.

Theorem 2. The problem of deciding if there is a committee
with a given score for egalitarian-k-Borda is W[1]-hard when
parametrized either by the number of voters or by the commit-
tee size. The rule is in FPT for the number of candidates.

Proof sketch. We reduce from MULTICOLORED CLIQUE
(MCC) which, given a positive integer k and a graph G =
(V (G), E(G)) where each vertex has one of k colors, asks if
there are k vertices of different colors, all connected to each
other; MCC parametrized by k is W[1]-hard. Let I = (G, k)
be an instance of MCC. For each i ∈ [k], by V (i) we mean
the set of vertices with color i, and for each i, j ∈ [k], by
E{i,j} we mean the set of edges connecting vertices of color i
with those of color j. Let N = |V (G)|+ |E(G)| be the total
number of vertices and edges. We form the set of candidates
C = V (G)∪E(G)∪A′∪A′′∪B, whereA′,A′′, andB are sets
of dummy candidates with |A′| = |A′′| = N10 and |B| = N7.
We set the desired committee size to be K = k+

(
k
2

)
, and ask

if there is a committee with egalitarian-k-Borda score at least
T = 2KN10. We introduce the following voters.
Voters ensuring that dummies are not selected. We form the
voters u1, u2, and u3 (when we put a set in a preference order,
we mean listing its members in some easy to compute order):

u1 : B � V (G) ∪ E(G) � A′ � A′′,
u2 : B � V (G) ∪ E(G) � A′′ � A′,
u3 : V (G) ∪ E(G) � A′ � A′′ � B.

Due to these voters, there is no size-K committee that includes
members of A′ ∪A′′ ∪B and has total score at least T .
Choice voters. For each color i ∈ [K], we have a voter ranking
the non-dummy candidates so that they have the following
individual Borda scores (the dummies are ranked arbitrarily):

1. Every non-dummy candidate not in V (i) has individual
Borda score 2N10 + 1

K−1N
7 + x, where x is between

0 and N , selected so that the score is an integer and is
different for every candidate in (V (G) ∪ E(G)) \ V (i).

2. Each candidate in V (i) has individual score 2N10−N7+
x, where x is an integer in [N ] chosen so that every
candidate in V (i) has distinct score.

These voters ensure that a size-K committee with total score
at least T does not contain more than one candidate from
V (i). We introduce analogous voters for each pair of colors
i, j ∈ [k], to ensure that no such committee contains two
candidates from E{i,j}. In consequence, if a committee has
score at least T , then it must include one vertex candidate for
each color and one edge candidate for each pair of colors.

Voters ensuring consistency. For each ordered pair of distinct
colors (i, j) we introduce two voters that jointly ensure that
the committee members from V (i) and E{i,j} correspond
to a vertex and an edge that are incident. We assume that
candidates in V (i) are ordered, so for ` ∈ [|V (i)|] we can
speak of the `-th vertex of color i. We create voter u(i,j)1
that ranks the non-dummy candidates so that they have the
following individual Borda scores:

1. Every non-dummy candidate that is neither in V (i) nor in
E{i,j} gets individual score 2N10 + x, where x ∈ [N ] is
chosen so that all such candidates have different scores.

2. For each ` ∈ [|V (i)|], the `-th vertex candidate from V (i)

has individual score 2N10 + `N4.

3. For each ` ∈ [|V (i)|], the candidates from E{i,j} that
correspond to the edges connected to the `-th vertex from
V (i) have scores of the form 2N10 − `N4 + x, where
x ∈ [N ] is such that these candidates have distinct scores.

We also create voter u(i,j)2 , defined in the same way, but for the
reversed order of vertices from V (i). If a committee includes
the `-th vertex from V (i) and a candidate from E{i,j} that
corresponds to an edge connected to the `′-th vertex from V (i),
with `′ > `, then voter u(i,j)1 gives such a committee score at
most (K−2)(2N10+N)+2N10+`N4+2N10−`′N4+N =
2KN10+(K−1)N+(`−`′)N4 < T . If it were the case that
`′ < `, then voter u(i,j)2 would assign score lower than T to the
committee. On the other hand, if a committee contains some
vertex from V (i) and an edge from E{i,j} that is connected to
this vertex, then both voter u(i,j)1 and voter u(i,j)2 assign score
at least T to this committee. Thus, there is a committee with
score at least T if and only if (G, k) is a yes-instance. This
completes the proof as the number of voters that we introduced
and the committee size are both functions of k only.

The next result is surprising as utilitarian rules with
OWA vector (0, . . . , 0, 1) are NP-hard even to approxi-
mate [Skowron et al., 2016]; however, see the results regarding
the Pessimist rule based on k-Approval scoring [2018].

Proposition 3. Egalitarian-Pessimist is in P.

3.3 Axiomatic Properties
We now consider axiomatic properties of egalitarian commit-
tee scoring rules, starting with their most characteristic feature.

Independence of Cloning Voters. Let E = (C, V ) be an
election. Let core(V ) be obtained from V by removing voters
so that if v is in V , then core(V ) contains exactly 1 voter with
v’s preference order. We define core(E) to be (C, core(V )).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

59



#candidates #voters committee size
rule

egal.-β-CC FPT FPT W[2]-hard
egal.-Bloc FPT FPT FPT

egal.-k-Borda FPT W[1]-hard W[1]-hard

egal.-SNTV polynomial-time computableegal.-Pessimist

Table 2: The complexity of our rules. The first three are NP-hard,
whereas egalitarian-Pessimist and egalitarian-SNTV are in P. Results
in bold are from this paper. Results regarding egalitarian-β-CC are
due to Betzler et al. [2013], and those regarding MAV are due to
Misra et al. [2015] and Gramm et al. [2003].

Definition 2. A multiwinner ruleR is independent of cloning
voters if for each election E = (C, V ) and each committee
size k it holds thatR(E, k) = R(core(E), k).
Proposition 4. Every egalitarian committee scoring rule is
independent of cloning voters.

This property motivated us to study egalitarian rules in the
first place, as it seems to be important for electing diverse
committees (however, it is certainly possible to define rules
that are not egalitarian in our sense and have the property
as well). Not surprisingly, independence of cloning voters
is incompatible with majoritarian notions, such as the fixed-
majority property of Debord [1993], which requires that if
more than half of the voters rank members of some committee
on the their top positions (possibly in different orders), then
this committee wins. As egalitarian rules are indifferent to
replacing a voter with copies of it, we get the following.
Proposition 5. There are no fixed-majority consistent egali-
tarian committee scoring rules.
(See the work of Faliszewski et al. [2018] for a discussion of
fixed-majority consistent committee scoring rules.)

The fixed-majority property is a consensus-type notion, in
the sense that it specifies which committee should “obviously”
win in certain situations (see also the works of Nitzan [1981]
and Elkind et al. [2015]). While egalitarian rules fail fixed-
majority, they satisfy other consensus-type properties. For
example, the narrow-top property [Faliszewski et al., 2017]
requires that if there is a committee such that every voter ranks
a member of it on top, then this committee shall win. The
narrow-top property is very useful in the context of select-
ing diverse committees as it describes a situation where each
voter’s opinion can be catered for. In particular, utilitarian
SNTV and β-CC have the property [Faliszewski et al., 2017].
Proposition 6. Both egalitarian-β-CC and egalitarian-SNTV
satisfy the narrow-top property, but neither of egalitarian-Bloc,
egalitarian-k-Borda, and egalitarian-Pessimist does.

Egalitarian-Bloc fails the narrow top property, but it does so
quite gracefully: If there is a size-k committee such that each
voter ranks one of its members on top, then either egalitarian-
Bloc outputs this committee, or it outputs one where each
voter ranks at least two of its members on top k positions.
(Strong) Candidate Monotonicity. Candidate monotonic-
ity requires that if a candidate belongs to some winning com-
mittee and we shift him or her forward by one position in

some vote, then this candidate still belongs to some winning
committee (but possibly to a different one). All committee
scoring rules have this property [Elkind et al., 2017b] and the
same holds for all egalitarian committee scoring rules. In fact,
our five egalitarian rules satisfy a stronger variant of candidate
monotonicity: If a committee with the shifted candidate ceases
to win, then no new committee comes in its place.
Proposition 7. Every egalitarian committee scoring rule is
candidate-monotone.

Noncrossing Monotonicity. Elkind et al. [2017b] intro-
duced the noncrossing monotonicity property, which requires
that if we shift forward a member of some winning commit-
tee W (without passing any other members of W ), then W
still wins. Faliszewski et al. [2016] characterized noncrossing-
monotone committee scoring rules as exactly those that are
OWA-based, with OWA-vectors of the form (1, . . . , 1). Un-
fortunately, neither of our rules is noncrossing-monotone.
Proposition 8. Neither of the egalitarian variants of SNTV,
Bloc, k-Borda, β-CC, and Pessimist is noncrossing monotone.

Faliszewski et al. [2016] also discuss top-member mono-
tonicity, which requires that shifting forward the top-ranked
member of a winning committee (in some vote) cannot prevent
the committee from winning, and argue that this is a desirable
property for rules that seek diverse committees. They show
that, e.g., β-CC is top-member monotone. Unfortunately, nei-
ther egalitarian-β-CC nor egalitarian-Bloc, two of our rules
that seem best suited for choosing diverse committees, has the
property. Yet, egalitarian-Pessimist is top-member monotone.
Proposition 9. Neither of the egalitarian variants of SNTV,
Bloc, k-Borda, and β-CC is top-member monotone, but
egalitarian-Pessimist is.

If we compare β-CC and its egalitarian variant in terms of
their (axiomatic) suitability for electing diverse committees,
we see that both rules satisfy narrow-top, and β-CC is top-
member monotone, whereas egalitarian-β-CC is independent
of cloning voters. Thus neither comes out as clearly preferable
(and in our experiments they give very similar results).
Committee-Enlargement Monotonicity. We conclude our
discussion of axiomatic properties by considering the notion
of committee-enlargement monotonicity [Barberà and Coelho,
2008; Elkind et al., 2017b]. Intuitively, it requires that if we
extend the size of the committee, then we obtain the larger
winning committees from the smaller ones, by adding new
members (without removing any of the old ones).
Definition 3 (Elkind et al. [2017b]). A multiwinner rule R
is committee-enlargement monotone if for each election E
with m candidates holds: (i) For each k ∈ [m − 1], if W ∈
R(E, k) then there is a committee W ′ ∈ R(E, k + 1) such
thatW ⊆W ′. (ii) For each k ∈ [m−1], ifW ′ ∈ R(E, k+1)
then there is a committee W ∈ R(E, k) such that W ⊆W ′.

Committee enlargement monotonicity is useful if one is
interested in committees of individually excellent candidates
(if a candidate is among the k best ones, this candidate should
still be among k + 1 best!). As egalitarian rules do not seem
fit for choosing individually excellent candidates, it is not
surprising that they fail committee-enlargement monotonicity.
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Proposition 10. The egalitarian variants of SNTV, Bloc, k-
Borda, β-CC, and Pessimist all fail the committee-enlargement
monotonicity property.

3.4 Experiments
To better understand our rules, we computed their histograms
for 2D Euclidean elections and three distributions of candi-
dates and voters (using the technique of Elkind et al. [2017a]).

In the 2D Euclidean model, each candidate and each voter
is represented as a point on a 2-dimensional plane (in our case,
on the [−3, 3] × [−3, 3] square). Each voter-point forms its
preference order by sorting the candidate-points in increasing
order of their Euclidean distance from the voter. We consid-
ered the following ways of generating the points:

1. In the uniform disc setting, the candidate and voter points
are selected uniformly at random from a disc with ra-
dius 3, centered at point (0, 0).

2. In the 2-Gaussians setting, candidate points are selected
uniformly at random from the [−3, 3] × [−3, 3] square,
while 90% (resp., 10%) of the voter points are selected
from a Gaussian centered at (0, 0) (resp., (2, 0)) with
standard deviation 0.25 (resp., 0.1).

3. In the overlapping squares setting, candidate points are
selected uniformly at random from the square [−3, 1]×
[−3, 1], and voter points are selected uniformly at random
from the square [−1, 3]× [−1, 3].

The uniform disc setting is provided for basic comparison,
as it was used by Elkind et al. [2017a]. The other two settings
model situations where there are various groups of voters,
with different sizes (in the 2-Gaussian case) and different
properties (in the overlapping squares case, for some voters
there are good representatives and for some there are none).

For each of the settings and for each of our rules (both
utilitarian and egalitarian), we drew 10,000 elections with
100 candidates and 100 voters each, and computed the win-
ning committees of size 10 (breaking ties uniformly at ran-
dom; for NP-hard rules we used the ILP formulations of
Skowron et al. [2016], adapted to the egalitarian setting, if
needed (we omitted utilitarian Pessimist as it was particular
difficult to compute). Then, for each scenario, we partitioned
our [−3, 3]× [−3, 3] square into 120× 120 equal-sized cells,
and computed how many winners end up in each cell. We
present the obtained histograms in Figure 1 (the darker a given
point is, the more winners landed there; see the work of Elkind
et al. [2017a] for details on drawing the histograms).

Our results are somewhat surprising. First, we note that
for the uniform disc setting, where candidate and voter points
are distributed in the same way, there is very little difference
between utilitarian and egalitarian rules (the only really vis-
ible one is between Bloc and egalitarian-Bloc, which can be
explained by that fact that egalitarian-Bloc is closer in spirit to
αk-CC than to Bloc). Another surprise is that the egalitarian-
Pessimist rule behaves quite similarly to the k-Borda rule (this
is striking in the uniform disc setting, and is somewhat vis-
ible in the other settings). It is also quite intriguing that the
histograms for β-CC and for its egalitarian variant are nearly
indistinguishable (the same holds for SNTV, but, as observed
by Elkind et al. [2017a], for SNTV this is a statistical artifact).
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Figure 1: Histograms for our rules. The first two rows are for the
uniform disc setting, the next two are for the 2-Gaussian setting, and
the last two for overlapping squares. Within each two rows, the top
one presents histograms for the utilitarian rules and the bottom one
for the egalitarian ones. Columns correspond to rules.

The results for egalitarian-Bloc are also very interesting. As
the rule is a variant of MAV and can be seen as a refinement
of αk-CC, it is very appealing that it seems to be very good at
choosing diverse committees (in particular, for the 2-Gaussians
setting, the sizes of the peaks near the centers of the Gaussians
are much more similar to each other than in the β-CC case).

An important observation is that the egalitarian rules (except
for egalitarian-SNTV) gave meaningful results and ties were a
smaller problem than one might expect (to some extent this is
because our elections did not contain true outliers).

4 Conclusions
Egalitarian voting rules are based on the Rawlsian idea of
justice, saying that the election result is ‘behind a veil of ig-
norance’ and nobody knows how good or bad the result will
be for any voter; hence a social contract should be concluded
to maximise the welfare of the worst off voter. For single-
winner elections this approach has limited applicability due to
non-decisiveness of egalitarian rules but it can be useful for
multiwinner ones. We attempted to combine egalitarian idea
with committee scoring rules. The results obtained, especially
through modelling, are encouraging: The complexity of egali-
tarian version of some rules may be very different from that of
their utilitarian versions. We also looked at axiomatic proper-
ties of egalitarian rules. It will be interesting to consider other
approaches to egalitarian committees that do not fall under
the framework of egalitarian committee scoring rules, and to
provide mathematical motivation for the egalitarian approach
(as inspired, e.g., by the work of Feld and Grofman [1988]).
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