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Abstract

In high-grade ovarian cancer cultures, it has been shown that epidermal growth factor (EGF) induces cell invasion by
activating an epithelial-mesenchymal transition (EMT). However, the effect of EGF on serous borderline ovarian tumors
(SBOT) and low-grade serous carcinomas (LGC) cell invasion remains unknown. Here, we show that EGF receptor (EGFR) was
expressed, that EGF treatment increased cell migration and invasion in two cultured SBOT cell lines, SBOT3.1 and SV40 large
T antigen-infected SBOT cells (SBOT4-LT), and in two cultured LGC cell lines, MPSC1 and SV40 LT/ST-immortalized LGC cells
(ILGC). However, EGF induced down-regulation of E-cadherin and concurrent up-regulation of N-cadherin in SBOT cells but
not in LGC cells. In SBOT cells, the expression of the transcriptional repressors of E-cadherin, Snail, Slug and ZEB1 were
increased by EGF treatment. Treatment with EGF led to the activation of the downstream ERK1/2 and PI3K/Akt. The MEK1
inhibitor PD98059 diminished the EGF-induced cadherin switch and the up-regulation of Snail, Slug and ZEB1 and the EGF-
mediated increase in SBOT cell migration and invasion. The PI3K inhibitor LY294002 had similar effects, but it could not
block the EGF-induced up-regulation of N-cadherin and ZEB1. This study demonstrates that EGF induces SBOT cell
migration and invasion by activating EMT, which involves the activation of the ERK1/2 and PI3K/Akt pathways and,
subsequently, Snail, Slug and ZEB1 expression. Moreover, our results suggest that there are EMT-independent mechanisms
that mediate the EGF-induced LGC cell migration and invasion.
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Introduction

The epithelial-mesenchymal transition (EMT) is a highly

conserved biological process during which there are multiple

biochemical changes. This process results in the conversion of

polarized, immotile epithelial cells into mesenchymal cells with a

motile phenotype. This important process was initially recognized

during critical phases of embryonic development, and recently, it

has been shown that EMT is involved in promoting cancer cell

invasion and metastasis [1].

A defining feature of EMT is a reduction in E-cadherin levels

and a concomitant induction of N-cadherin [2]. Loss of E-

cadherin expression is mainly due to an up-regulation of Snail,

Slug, Twist, ZEB1 and other transcription factors that repress E-

cadherin [3]. There is increasing evidence indicating that EMT is

stimulated by signals from the tumor microenvironment, including

a variety of growth factors and cytokines. In addition, EMT has

been shown to be regulated by a series of intracellular signaling

networks, including ERK1/2, PI3K/Akt, Smads, RhoB and b-

catenin [4].

Epithelial ovarian cancer is the fifth leading cause of cancer-

related deaths among women in developed countries. Most deaths

from ovarian cancer are due to metastases that are resistant to

conventional therapies. The epithelial growth factor receptor

(EGFR) family consists of four members, EGFR (HER1), ErbB2

(HER2), ErbB3 (HER3), and ErbB4 (HER4), and has been shown

to play an important role in metastasis and tumorigenesis in many

types of human cancers [5,6]. Amplifications and overexpression

of the EGFR family have been reported in high-grade ovarian

cancer and are associated with more aggressive clinical behavior

and a poor prognosis [7,8]. It has been shown that EGF can

induce EMT in ovarian surface epithelium (OSE) and ovarian

cancer cells, suggesting that EGF may be involved in ovarian

cancer pathogenesis and metastasis [9,10]. Ovarian cancer cells

with low E-cadherin expression are more invasive, and the

absence of E-cadherin expression in ovarian cancers is predictive

of poor survival [11,12]. Serous borderline ovarian tumors

(SBOT) are non-invasive and are considered to be distinct entities

that give rise to invasive low-grade serous carcinomas (LGC),

which have a relatively poor prognosis when compared to SBOT

and are unrelated to high-grade serous carcinomas [13]. Studies

using clinical samples have shown that EGFR is expressed in

borderline ovarian tumors [7,14]. Although the function of EGFR

signaling in cultured ovarian cancer cells has been studied, its

function in the borderline tumors and in LGC is still unknown due

to the lack of a suitable in vitro model. We recently established an in
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vitro culture system with human SBOT cells. Cultured SBOT cells

grow slowly, are essentially non-invasive and exhibit limited

motility. These characteristics resemble the cells’ behavior in vivo

[15]. Our recent study showed that p53 regulates the transition of

SBOT cells from non-invasive to invasive ovarian carcinomas by

activating the PI3K/Akt pathway and decreasing the expression of

E-cadherin, indicating that EMT is a critical process for the

regulation of SBOT cell invasion [16,17].

In this study, we report for the first time that the EGFR is

expressed in two cultured SBOT cell lines, SBOT3.1 and SBOT4-

LT, and in two LGC-derived cell lines, MPSC1 and ILGC cells,

and that EGF treatment induces cell migration and invasion in all

cell lines. Interestingly, EGF only induces the cadherin switch in

SBOT cells, which leads to SBOT cell migration and invasion. We

also show that the underlying mechanisms involve the activation of

the ERK1/2 and PI3K/Akt pathways. The information derived

from this study provides critical insight into the role of EGFR

activation in the down-regulation of E-cadherin, which plays a key

role in increasing SBOT cell migration and invasion.

Materials and Methods

Cell culture
The SBOT3.1 [15], SV40 LT-infected SBOT (SBOT4-LT)

[16] and SV40 LT/ST immortalized LGC (ILGC) [18] cell lines

were established in our laboratory. SBOT and ILGC cells were

grown in a 1:1 (v/v) mixture of M199/MCDB105 medium

(Sigma, Oakville, ON) supplemented with 10% fetal bovine serum

(FBS, Hyclone Laboratories Inc., Logan, UT). The MPSC1 cell

line, which was established from a LGC (provided by Dr. Ie-Ming

Shih, Department of Pathology, Johns Hopkins Medical Institu-

tions, Baltimore, MD), was maintained in RPMI 1640 (Invitrogen,

Burlington, ON) supplemented with 10% FBS [19]. Cultures were

maintained at 37uC in a humidified atmosphere of 5% CO2 in air.

Antibodies and reagents
Polyclonal anti-EGFR and anti-b-actin antibodies were ob-

tained from Santa Cruz Biotechnology (Santa Cruz, CA). The

monoclonal anti-E-cadherin and anti-N-cadherin antibodies were

obtained from BD Biosciences (Mississauga, ON). Monoclonal

anti-phospho-EGFR (Tyr1173), anti-phospho-ERK1/2 (Thr202/

Tyr204) anti-ZEB1 and anti-HER2 antibodies and polyclonal

anti-ERK1/2, anti-phospho-p38 MAPK (Thr180/Tyr182), anti-

p38 MAPK, anti-phospho-Akt (Ser473) and anti-Akt antibodies

were obtained from Cell Signaling Technology (Danvers, MA).

Polyclonal anti-Snail and anti-Slug antibodies were obtained from

Abgent (San Diego, CA). Horseradish peroxidase-conjugated goat

anti-mouse IgG and goat anti-rabbit IgG were obtained from Bio-

Rad Laboratories (Hercules, CA). Horseradish peroxidase-conju-

gated donkey anti-goat IgG was obtained from Santa Cruz

Biotechnology. Human epidermal growth factor (EGF), AG1478,

SB203580 and LY294002 were obtained from Sigma. PD98059

was obtained from Calbiochem (San Diego, CA).

Treatment methods
In the migration and invasion assays, cells with 80% confluence

or cells treated with siRNA were treated with EGF for 24

(migration) and 48 (invasion) hr, respectively. After EGF

treatment, cells were trypsinized and seeded into transwell inserts.

For the general EGF treatment experiments, cells were cultured

until 80% confluent and treated with 50 ng/ml EGF. The effect of

EGF on the mRNA levels of E-cadherin, N-cadherin, Snail, Slug,

Twist and ZEB1 were examined after 24 hr EGF treatment. The

effect of EGF on the protein levels of those molecules were

examined after 48 hr EGF treatment. The levels of specific mRNA

and protein were examined by RT-qPCR and western blot,

respectively. To knockdown EGFR, the cells were cultured until

60% confluent and then transfected with ON-TARGETplus

SMARTpool EGFR (50 nM) siRNA (Dharmacon Research, Inc.,

Lafayette, CO) using Lipofectamine RNAiMAX (Invitrogen) for

48 hr. The siCONTROL NON-TARGETINGpool siRNA (Dhar-

macon) was used as the transfection control.

Western blot
Cells were lysed in lysis buffer (Cell Signaling Technology), and

protein concentrations were determined using a DC protein assay

kit with BSA as the standard (Bio-Rad Laboratories). Equal

amounts of protein were separated by SDS polyacrylamide gel

electrophoresis and transferred to PVDF membranes. Following

blocking with TBS containing 5% non-fat dry milk for 1 hr,

membranes were incubated overnight at 4uC with primary

antibodies, followed by incubation with HRP-conjugated second-

ary antibody. Immunoreactive bands were detected with enhanced

chemiluminescent substrate. Membranes were stripped with

stripping buffer and reprobed with anti-b-actin as a loading

control. Band intensities were quantified using the Scion Image

software and normalized to b-actin.

Reverse transcription quantitative real-time PCR
Total RNA was extracted using TRIzol reagent (Invitrogen)

according to the manufacturer’s instructions. Reverse transcription

was performed with 3 mg of RNA, random primers and M-MLV

reverse transcriptase (Promega, Madison, WI). The primers used

for SYBR Green reverse transcription-qPCR (RT-qPCR) were as

follows: E-cadherin, 59-ACA GCC CCG CCT TAT GAT T-39

(sense) and 59-TCG GAA CCG CTT CCT TCA-39 (antisense);

N-cadherin, 59-GGA CAG TTC CTG AGG GAT CA-39 (sense)

and 59-GGA TTG CCT TCC ATG TCT GT-39 (antisense);

Snail, 59-CCC CAA TCG GAA GCC TAA CT-39 (sense) and 59-

GCT GGA AGG TAA ACT CTG GAT TAG A-39 (antisense);

Slug, 59-TTC GGA CCC ACA CAT TAC CT-39 (sense) and 59-

GCA GTG AGG GCA AGA AAA AG-39 (antisense); Twist, 59-

GGA GTC CGC AGT CTT ACG AG-39 (sense) and 59-TCT

GGA GGA CCT GGT AGA GG-39 (antisense); ZEB1, 59- GCA

CCT GAA GAG GAC CAG AG-39 (sense) and 59-TGC ATC

TGG TGT TCC ATT TT-39 (antisense); and GAPDH, 59-GAG

TCA ACG GAT TTG GTC GT-39 (sense) and 59-GAC AAG

CTT CCC GTT CTC AG-39 (antisense). RT-qPCR was

performed on an Applied Biosystems 7300 Real-Time PCR

System (Perkin-Elmer, Wellesley, MA) equipped with a 96-well

optical reaction plate. All RT-qPCR experiments were run in

triplicate, and a mean value was used for the determination of

mRNA levels. Relative quantification of the mRNA levels was

performed using the comparative Ct method with GAPDH as the

reference gene and with the formula 22DDCt.

Transwell migration and invasion assay
Migration and invasion assays were performed in Boyden

chambers with minor modifications [20]. Cell culture inserts (24-

well, pore size 8 mm; BD Biosciences, Mississauga, ON) were

seeded with 16105 cells in 250 mL of medium with 0.1% FBS. Un-

coated inserts were used for migration assays, whereas inserts pre-

coated with growth-factor-reduced Matrigel (40 ml, 1 mg/ml, BD

Biosciences) were used for invasion assays. Medium with 10% FBS

(750 ml) was added to the lower chamber and served as a

chemotactic agent. After 24 hr (migration) or 48 hr (invasion)

incubation, non-migrating/invading cells were wiped from the

upper side of the membrane. Cells that penetrated the membrane
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were fixed with cold methanol, and cell nuclei were stained with

Hoechst 33258 and counted by epifluorescence microscopy with

Northern Eclipse 6.0 software (Empix Imaging, Mississauga, ON).

Triplicate inserts were used for each individual experiment, and

five microscopic fields were counted per insert.

Statistical analysis
Results are presented as the mean 6 SEM of at least three

independent experiments. Two-sample data were analyzed by

Excel with the two-sample t-test assuming unequal variances.

Multiple comparisons were analyzed by one-way ANOVA

followed by Tukey’s multiple comparison test using PRISM

software. Significant differences were defined as p,0.05.

Results

Expression of E-cadherin, N-cadherin, EGFR and HER2 in
cultured SBOT and LGC cells

Our recent studies showed that EMT is a critical process that

contributes to the progression of non-invasive SBOT to invasive

LGC [16,17]. To confirm this result, we compared the basal

expression levels of E-cadherin and N-cadherin in two SBOT lines,

SBOT3.1 and SBOT4-LT, and two LGC-derived cell lines,

MPSC1 and ILGC. SBOT3.1 cells grew slowly, whereas SBOT4-

LT, MPSC1 and ILGC cells were grew faster. As shown in

Figure 1A, SBOT3.1 and MPSC1 exhibited an epithelial

morphology. With the introduction of SV40 LT or LT/ST,

SBOT4-LT and ILGC exhibited a more atypical and scattered

morphology. To compare the expression levels of E-cadherin and

N-cadherin, cells were grown until they were fully confluent, and

then the total proteins were collected. As shown in Figure 1B, the

expression levels of E-cadherin were high in SBOT3.1 cells and low

in MPSC1 cells, whereas the levels of E-cadherin were almost

absent in SV40 immortalized SBOT4-LT and ILGC cells, which is

consistent with our previous data showing that E-cadherin is down-

regulated by the inhibition of p53 [16,18]. These results indicate

that MPSC1 cells are a more mesenchymal-like cell type compared

to SBOT3.1 cells. To date, whether cultured SBOT and LGC cells

express EGFR or HER2 remains unclear. As shown in Figure 1C,

both SBOT and LGC cells expressed EGFR and HER2. The

expression level of EGFR was lower in SBOT3.1 cells than in

others, whereas all cell lines expressed similar levels of HER2.

EGF treatment increases cell migration and invasion in
SBOT and LGC cells

Transwell migration and invasion assays showed that SBOT3.1

cells were essentially non-motile and non-invasive, whereas

SBOT4-LT, MPSC1 and ILGC cells were highly motile and

invasive (Figure 2A). Interestingly, EGF treatment resulted in a

significant increase in cell migration (Figure 2B) and invasion

(Figure 2C) in a dose-dependent manner in all SBOT and LGC

cell lines. To confirm the involvement of EGFR in EGF-induced

cell invasion, EGFR-specific siRNA was used to knock down the

endogenous EGFR. Western blot analysis showed that EGFR

siRNA significantly knocked down the endogenous expression of

EGFR. Moreover, EGFR siRNA abolished EGF-induced cell

migration and invasion (Figure 2D). These results confirmed that

EGFR is required for EGF-induced cell migration and invasion.

EGF induces a down-regulation of E-cadherin and an up-
regulation of N-cadherin in SBOT cells

A characteristic of EMT is a switch from E-cadherin to N-

cadherin expression. In SBOT3.1 and SBOT4-LT cells, RT-

qPCR analysis showed that EGF treatment down-regulated E-

cadherin mRNA levels. Concurrently, N-cadherin mRNA levels

increased with EGF treatment. Unexpectedly, EGF treatment did

not alter the mRNA levels of E-cadherin or N-cadherin in MPSC1

and ILGC cells (Figure 3A). Similarly, western blot analysis

performed on total cell lysates collected from cells treated with

EGF for 48 hr showed that EGF down-regulated E-cadherin and

up-regulated N-cadherin total protein levels in SBOT3.1 cells, but

not in MPSC1 cells (Figure 3B). In addition, the effects of EGF on

the mRNA and protein levels of E- and N-cadherin in SBOT3.1

cells were eliminated by treatment with the EGFR inhibitor,

AG1478 (Figures 3C and D). Moreover, EGFR siRNA abolished

the EGF-induced switch from E-cadherin to N-cadherin

(Figure 3E). It has been shown that the binding of EGF to EGFR

rapidly induces clustering and internalization of the ligand-

receptor complexes, ultimately resulting in lysosomal degradation

of both EGF and its receptor [21]. This process was supported by

the data in Figure 3E, which shows that EGFR was down-

regulated in SBOT3.1 cells in response to EGF treatment.

EGF up-regulates Snail, Slug and ZEB1, but not Twist, in
SBOT cells

To investigate whether EGF down-regulates E-cadherin

expression by modulating the transcriptional regulation of E-

cadherin, we used RT-qPCR to examine the mRNA levels of the

E-cadherin transcriptional repressors Snail, Slug, Twist and ZEB1.

Treatment with EGF significantly increased Snail, Slug and ZEB1

mRNA levels in SBOT3.1 and SBOT4-LT cells. However, EGF

treatment did not alter the mRNA levels of Twist. In addition, the

effects of EGF on these transcription factors were not detected in

MPSC1 and ILGC cells, confirming that the E-cadherin is not

transcriptionally regulated by EGF in LGC cells (Figure 4A). In

addition, treatment with AG1478 abolished the effects of EGF on

Snail, Slug and ZEB1 mRNA levels in SBOT3.1 cells (Figure 4B).

Moreover, western blot analysis showed that EGFR siRNA

abolished EGF-induced Snail, Slug and ZEB1 expression in

SBOT3.1 cells (Figure 4C).

Activation of ERK1/2 and PI3K/Akt pathways are
mediated by EGF-induced EMT and cell migration and
invasion in SBOT cells

It has been shown that the ERK1/2, p38 MAPK and PI3K/

Akt pathways are involved in EGF-induced EMT [9,22].

However, it is unknown whether these signaling pathways are

also involved in EGF-induced EMT in SBOT cells. As shown in

Figure 5, treatment with EGF induced the activation of ERK1/2

and Akt with the maximal effect observed at 5 min followed by a

decrease after 180 min treatment. Interestingly, treatment with

EGF did not activate p38 MAPK in SBOT3.1 cells. In contrast,

EGF induced ERK1/2, p38 MAPK and Akt activation in MPSC1

cells. In SBOT3.1 cells, the EGF-induced down-regulation of E-

cadherin and the up-regulation of N-cadherin mRNA and protein

levels were diminished by treatment with the MEK1 inhibitor

PD98059. Interestingly, treatment with the PI3K inhibitor

LY294002 only diminished the EGF-induced down-regulation of

E-cadherin but did not affect the EGF-induced up-regulation of

N-cadherin (Figure 6A). In addition, treatment with PD98059 and

LY294002 diminished EGF-induced up-regulation of Snail and

Slug mRNA levels. However, the EGF-induced up-regulation of

ZEB1 mRNA levels was only blocked by treatment with PD98059

and not with LY294002 (Figure 6B). Furthermore, EGF-induced

cell migration and invasion were blocked by PD98059 and

LY294002 treatments, although the inhibitory effect of LY294002

EGF Induces SBOT Cell Invasion by Stimulating EMT
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was less than that of PD98059 (Figure 6C). In MPSC1 cell,

inhibition of ERK1/2, p38 MPAK and PI3K/Akt by PD98059,

SB203580 and LY294002 attenuated EGF-induced cell migration

and invasion (Figure 6D). Taken together, these results indicated

that the ERK1/2 and PI3K/Akt pathways are involved in EGF-

induced EMT and cell migration and invasion in SBOT cells. In

addition, although EGF did not induce EMT in MPSC1 cells, our

results indicate that ERK1/2, p38 MPAK and PI3K/Akt

signaling pathways are involved in EGF-induced MPSC1 cell

migration and invasion.

Discussion

There is increasing evidence indicating that the activation of

EGFR signaling contributes to cellular invasion in ovarian cancer

by a variety of mechanisms. EGF treatment is known to increase

cultured ovarian cancer cell migration, invasion, and proteolytic

activity [23,24]. Although the contributions of EGF and EGFR

signaling have been described in ovarian cancer, the majority of

studies have been performed only on high-grade ovarian cancer

cells. In borderline tumors, immunohistochemical studies have

shown that EGF and the EGFR are expressed, but there is no

difference in EGFR staining intensity between benign, borderline

and malignant ovarian tumors [25,26]. Despite reports of EGFR

expression in borderline tumors, the EGFR-mediated cell

functions remain largely unknown. In the present study, we show

that, consistent with previous immunohistochemical results, EGFR

is expressed in cultured SBOT and LGC cells. It is well known

that SV40 large T antigen (LT) inactivates p53 and retinoblastoma

protein (Rb), whereas SV40 small T antigen (ST) inhibits the

activity of the protein phosphatase 2A (PP2A) [27,28]. It has been

shown that the cell motility can be regulated by p53 and PP2A

[28,29]. In the present study, we used two SBOT cell lines which

one is infected with SV40 LT (SBOT4-LT) and the other one is

not (SBOT3.1). In addition, ILGC is the SV40 LT/ST

immortalized LGC cell line, whereas MPSC1 is the LGC-derived

cell line which does not carry SV40 LT/ST. Interestingly,

although the four cell lines used in this study have different

genetic backgrounds, our results show that treatment with EGF

induced cell migration and invasion in all SBOT and LGC cell

lines. These results suggest that p53/Rb and PP2A may not affect

the EGF-induced cell migration and invasion in SBOT and LGC

cells.

It has been shown that none of the EGF family of peptides can

bind HER2, and this is important because HER2 is the preferred

dimerization partner for all the other EGFR family members [5].

Overexpression of HER2 has been shown in high-grade ovarian

cancer [30,31]. However, other studies showed no relationship

between HER2 expression and survival among patients with high-

grade ovarian cancer [32,33]. In SBOT and LGC, similar to high-

grade ovarian cancer, HER2 expression and its association with

prognosis are controversial [34,35]. In the present study, we found

that the expression levels of HER2 were similar in two SBOT and

Figure 1. Expression of E-cadherin, N-cadherin, EGFR and HER2 in SBOT3.1, SBOT4-LT, MPSC1 and ILGC cells. A, The morphology of
SBOT3.1, SBOT4-LT, MPSC1 and ILGC cells. The scale bar represents 100 mm. B, Endogenous protein levels of E-cadherin and N-cadherin were
analyzed by western blot. C, Endogenous protein levels of EGFR and HER2 were analyzed by western blot.
doi:10.1371/journal.pone.0034071.g001
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two LGC cell lines. However, whether HER2 is involved in EGF-

induced SBOT and LGC cell motility remains unknown.

In ovarian cancer, based on molecular genetic and morpho-

logical studies, it has been suggested that there are two pathways of

tumorigenesis that correspond to the development of low-grade

and high-grade serous ovarian carcinoma [36]. In type I tumors,

invasive LGC develops from a non-invasive SBOT. Histopatho-

logic and molecular genetic studies suggest that SBOT may arise

from ovarian surface epithelium (OSE) or cystadenomas [37]. In

humans, OSE has either a flat or a cuboidal appearance. Flat OSE

does not express E-cadherin. In the ovary, E-cadherin expression

is limited to rare regions such as cuboidal and columnar OSE,

where cells resemble metaplastic epithelium [38,39]. Immunohis-

tochemical studies showed that membranous E-cadherin expres-

sion is detected in benign and serous borderline ovarian tumors.

Importantly, reduced expression of E-cadherin correlates with the

presence of microinvasion in serous borderline tumors [40]. Our

recent study in cultured SBOT cells also showed that down-

regulation of E-cadherin contributes to the progression of SBOT

to invasive LGC [16]. Taken together, these results suggest that

the expression of E-cadherin occurs intermittently during the

progression from OSE to SBOT to invasive LGC and may be

Figure 2. EGF induces cell migration and invasion in SBOT3.1, SBOT4-LT, MPSC1 and ILGC cells. A, The intrinsic migration and invasion
of cells. B and C, Cells were treated with increasing doses of EGF (20, 50 and 100 ng/ml). D, Cells were transfected with control siRNA (si-Ctrl) or EGFR
siRNA (si-EGFR) for 48 hr and then treated with 50 ng/ml EGF. After treatment cells were seeded into un-coated (migration) and Matrigel-coated
(invasion) transwell inserts. After 24 hr (migration) and 48 hr (invasion) incubation, non-invading cells were wiped from the upper side of the filter
and the nuclei of invading cells were stained with Hoechst 33258. Top panels show representative photos of the migration or invasion assay. Scale
bar represents 200 mm. Bottom panels show summarized quantitative results which are expressed as the mean 6 SEM of at least three independent
experiments. Western blots show the knockdown of EGFR by EGFR siRNA. *p,0.05 compared with Ctrl. #p,0.05 compared with EGF or EGF in si-Ctrl.
doi:10.1371/journal.pone.0034071.g002
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required for the initiation of tumorigenesis in type I tumors.

Therefore, we hypothesize that once normal OSE acquires the

expression of E-cadherin, which may play a role in early events

leading to the malignant phenotype, the subsequent EMT may be

required for the progression of a non-invasive tumor to an invasive

tumor.

Although the key feature of EMT is the down-regulation of E-

cadherin and up-regulation of N-cadherin, there still are some

other molecular markers that are used for EMT, such as increased

expression of vimentin, fibronectin and nuclear localization of b-

catenin and decreased expression of the tight junction protein,

occluding [2]. However, the transition from epithelial to

mesenchymal cell characteristics encompasses a spectrum of inter-

and intracellular changes, not all of which are always seen during

EMT [41]. In the present study, we show that EGF treatment

induced a switch from E-cadherin to N-cadherin expression in

SBOT cells. However, the effect of EGF on other EMT markers

requires further investigation. Here, we show that EGF treatment

down-regulates E-cadherin expression in SBOT cells. In contrast,

no such changes were observed in LGC cells. The western blot

results show that the EGFR level was higher in SBOT3.1 cells

than in MPSC1 cells, indicating that the effects of EGF on

cadherin switch are not related to the levels of EGFR. A recent

study showed that different binding affinities between EGF and

EGFR activate different signaling pathways. High-affinity EGF

binding is sufficient for activation of most canonical signaling

pathways, whereas low-affinity EGF binding is required for the

activation of the STATs and PLCc1 [42]. Many signaling

pathways have been reported to be involved in the EMT in

ovarian cancer [43]. It will require further investigation to

examine whether the divergent effects of EGF on the cadherin

switch result from the different binding affinities between EGF and

EGFR in SBOT and LGC cells. In high-grade ovarian cancer

cells, we recently showed that H2O2 mediates the EGF-induced

down-regulation of E-cadherin expression in SKOV3 ovarian

cancer cells and suggested that the lack of an effect of EGF on E-

cadherin in OVCAR3 cells may reflect an uncoupling of EGFR

activation from H2O2 production [22]. However, because the

EGFR is functional, as shown by detection of activated EGF-

induced EGFR phosphorylation, ERK1/2, p38 MAPK and

PI3K/Akt, it is unclear whether the lack of an effect of EGF on

E-cadherin expression in MPSC1 cells is due to the lack of H2O2

production after EGF treatment.

Reduced expression of E-cadherin in human cancers is

associated with metastasis, whereas in high-grade ovarian cancer,

forced expression of E-cadherin inhibits tumor metastasis [44]. We

have shown that endogenous E-cadherin plays an important

regulatory role in cell invasion and that EGF-induced cell invasion

is mediated by the down-regulation of E-cadherin expression in

high-grade ovarian cancer cells [22]. In SBOT cells, our recent

Figure 3. EGF induces cadherin switch in SBOT3.1 and SBOT4-LT cells, but not in MPSC1 and ILGC cells. A, Cells were treated with
50 ng/ml EGF for 24 hr. E-cadherin and N-cadherin mRNA levels were analyzed by RT-qPCR. B, Cells were treated with 50 ng/ml EGF for 48 hr. E-
cadherin and N-cadherin protein levels were analyzed by western blot. C and D, SBOT3.1 cells were treated with the EGFR inhibitor, AG1478 (10 mM),
in the presence or absence of 50 ng/ml EGF, and the levels of E-cadherin and N-cadherin mRNA (24 hr EGF treatment) and protein (48 hr EGF
treatment) were analyzed. E, SBOT3.1 cells were transfected with control siRNA (si-Ctrl) or EGFR siRNA (si-EGFR) for 48 hr and then treated with 50 ng/
ml EGF for 48 hr. The protein levels of E-cadherin and N-cadherin were analyzed by western blot. The results are expressed as the mean 6 SEM of at
least three independent experiments. *p,0.05 compared with time-matched Ctrl. #p,0.05 compared with EGF or EGF in si-Ctrl.
doi:10.1371/journal.pone.0034071.g003
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study showed that the down-regulation of E-cadherin by the

PI3K/Akt pathway contributes to the progression to the invasive

phenotype [16]. In this study, we show that LGC-derived MPSC1

cells express lower levels of E-cadherin and higher levels of N-

cadherin than SBOT cells, suggesting that EMT may contribute to

the progression from SBOT to invasive LGC.

Figure 4. EGF induces Snail, Slug and ZEB1 expression in SBOT3.1 and SBOT4-LT cells, but not in MPSC1 and ILGC cells. A, Cells were
treated with 50 ng/ml EGF for 24 hr, and the mRNA levels of Snail, Slug, Twist and ZEB1 were analyzed by RT-qPCR. B, SBOT3.1 cells were treated with
AG1478 (10 mM) in the presence or absence of 50 ng/ml EGF for 24 hr, and mRNA levels were analyzed by RT-qPCR. C, SBOT3.1 cells were transfected
with control siRNA (si-Ctrl) or EGFR siRNA (si-EGFR) for 48 hr and then treated with 50 ng/ml EGF for 48 hr. The protein levels of Snail, Slug and ZEB1
were analyzed by western blot. The results are expressed as the mean 6 SEM of at least three independent experiments. *p,0.05 compared with
Ctrl. #p,0.05 compared with EGF or EGF in si-Ctrl.
doi:10.1371/journal.pone.0034071.g004

Figure 5. EGF activates ERK1/2 and Akt pathways in SBOT3.1 cells. SBOT3.1 and MPSC1 cells were treated with 50 ng/ml EGF for the
indicated durations. Phosphorylation of ERK1/2, p38 MAPK and Akt were determined by western blot using antibodies specific for phosphorylated,
activated forms of ERK1/2 (p-ERK1/2), p38 MAPK (p-p38) and Akt (p-Akt). Membranes were stripped and reprobed with antibodies to total ERK1/2,
p38 MAPK and Akt.
doi:10.1371/journal.pone.0034071.g005
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In the present study, our data demonstrate that in SBOT

cells, ERK1/2 and Akt mediated the EGF-induced down-

regulation of E-cadherin expression, whereas only ERK1/2 was

involved in EGF-induced N-cadherin expression. Down-regu-

lation of E-cadherin is mainly due to the up-regulation of Snail,

Slug, Twist, ZEB1 and other transcription factors that repress

E-cadherin [3]. We show here that the expression of Snail, Slug

and ZEB1, but not Twist, was increased by EGF treatment in

SBOT cells. Recent studies have shown that Twist and ZEB1

not only repress E-cadherin expression but also induce the

expression of N-cadherin [45,46]. Treatment with LY294002

did not block the EGF-induced up-regulation of N-cadherin,

which may be due to the lack of an inhibitory effect of

LY294002 on ZEB1 expression. Nevertheless, both the ERK1/

2 and PI3K/Akt pathways were involved in EGF-induced

SBOT cell migration and invasion. These results are consistent

with our previous finding that E-cadherin, but not N-cadherin,

plays an important role in the regulation of SBOT cell invasion

[16,17,18].

In summary, this study demonstrates that EGFR is expressed in

cultured SBOT and LGC cells and that treatment with EGF

induces cell migration and invasion by activating EMT in SBOT

cells, which may play an important role in the progression from

SBOT to invasive LGC. In addition, this study suggests that there

may be E-cadherin-independent mechanisms that mediate the

EGF-induced cell migration and invasion in LGC cells.
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Figure 6. EGF induces cadherin switch through ERK1/2 and Akt activation in SBOT3.1 cells. A, SBOT3.1 cells were treated for 48 hr with
PD98059 (20 mM) or LY294002 (20 mM) in the presence or absence of 50 ng/ml EGF. E-cadherin and N-cadherin mRNA (left panel) and protein (right
panel) levels were analyzed by RT-qPCR and western blot, respectively. B, SBOT3.1 cells were treated for with PD98059 (20 mM) or LY294002 (20 mM)
in the presence or absence of 50 ng/ml EGF and Snail, and the Slug, Twist and ZEB1 mRNA levels were analyzed by RT-qPCR. C, SBOT3.1 cells were
treated with 50 ng/ml EGF in combination with PD98059 (20 mM) or LY294002 (20 mM). D, MPSC1 cells were treated with 50 ng/ml EGF in
combination with PD98059 (20 mM) SB203580 (10 mM) or LY294002 (20 mM). After treatment, cells were seeded into un-coated (migration) and
Matrigel-coated (invasion) transwell inserts. After 24 hr (migration) and 48 hr (invasion) incubation, non-invading cells were wiped from the upper
side of the filter and the nuclei of invading cells were stained with Hoechst 33258. Results are expressed as the mean 6 SEM of at least three
independent experiments. *p,0.05 compared with Ctrl. #p,0.05 compared with EGF.
doi:10.1371/journal.pone.0034071.g006
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