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Abstract 

The two essential requirements for pathologic specimens in the era of personalized therapies for 
non-small cell lung carcinoma (NSCLC) are accurate subtyping as adenocarcinoma (ADC) versus 
squamous cell carcinoma (SqCC) and suitability for EGFR molecular testing, as well as for testing of 
other oncogenes such as EML4-ALK and KRAS. Actually, the value of EGFR expressed in patients 
with NSCLC in predicting a benefit in terms of survival from treatment with an epidermal growth 
factor receptor targeted therapy is still in debate, while there is a convincing evidence on the 
predictive role of the EGFR mutational status with regard to the response to tyrosine kinase in-
hibitors (TKIs). 
This is a literature overview on the state-of-the-art of EGFR oncogenic mutation in NSCLC. It is 
designed to highlight the preclinical rationale driving the molecular footprint assessment, the 
progressive development of a specific pharmacological treatment and the best method to identify 
those NSCLC who would most likely benefit from treatment with EGFR-targeted therapy. This is 
supported by the belief that a rationale for the prioritization of specific regimens based on pa-
tient-tailored therapy could be closer than commonly expected. 
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Introduction 
Alterations in receptor tyrosine kinases (RTKs) 

including over expression, amplification or mutation 
have shown to play a key role in the pathogenesis of 
lung cancer1. In recent years, attention has been paid 
to the role that “driver mutations” have in tumor-
igenesis, in order to use them as potential targets for 

therapy. Such “driver mutations” include those of the 
epidermal growth factor receptor (EGFR) and of the 
anaplastic lymphoma kinase (ALK) 2,3.  

The EGFR family of TKs, referred to as the HER 
or ErbB family, consists of four members – EGFR 
(HER1/ErbB1), HER2 (ErbB2), HER3 (ErbB3) and 
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HER4 (ErbB4). These members regulate many physi-
ological processes and are involved in the modulation 
of cell proliferation, apoptosis, cell motility and neo-
vascularisation, thus being able to induce important 
mechanisms related to cancerogenesis4,5. The EGFR 
tyrosine kinase works through the auto-activation of 
the receptor via its homo/heterodimerization and 
autophosphorylation on tyrosine-rich cytosolic do-
mains after the binding of the ligand. This leads to the 
beginning of two main downstream intermediate 
pathways: the PIK3CA/AKT1/MTOR pathway and 
the RAS/RAF1/MAP2K1/MAPK1 kinases6. There is 
evidence that the activated EGFR can also mediate 
signals through the STAT transcription factors7,8. Im-
proper activation and over-expression of EGFR-TK 
results in increased cell proliferation, survival, inva-
sion and metastasis. This has been implicated in the 
pathogenesis and progression of many malignancies 
as well as in the poor prognosis of patients 7,9-10. In 
malignant cells, including NSCLC cells, the activity of 
the receptor may become dysregulated and no longer 
under the control of inherent inhibitory mecha-
nisms11.  

Spontaneous EGFR mutations often are onco-
genic; that is, they activate the EGFR-signalling 
pathway in the absence of ligand and promote cell 
proliferation, survival and anti-apoptotic signals. 
These signalling networks make EGFR-mutated cells 
dependent on a functional EGFR for their survival, 
rendering them addicted to the receptor. Inhibition of 
EGFR leads to up-regulation of pro-apoptotic mole-
cules and finally results in cell death through the ac-
tivation of the intrinsic mitochondrial apoptotic 
pathway12,13. There are several described mutations in 
the EGFR gene. The two most common are: 1) short 
in-frame deletions around the LREA motif of exon 19 
(~45-50% of mutations); and 2) a point mutation (CTG 
to CGG) in exon 21 that results in substitution of leu-
cine by arginine at codon 858, L858R (~45-50% of 
mutations)14,15. These mutations are more frequently 
found in NSCLC with an adenocarcinoma histology, 
tumors in women, East Asians and never smokers14-16. 

EGFR mutations in lung cancers constitute one 
of the major subsets among those molecular aberra-
tions occurring in lung cancers. The incidence of 
EGFR mutations in tumors with non-small-cell his-
tology ranges from ~15% in Caucasians to ~50% in 
East Asians17; 95% of such mutations have been found 
in adenocarcinomas18. Patients bearing EGFR muta-
tions have shown favourable clinical outcomes even 
with conventional chemotherapy suggesting that 
EGFR may serve as a predictive factor as well as a 
prognostic factor19. 

Over 50% of patients diagnosed with NSCLC 
present with stage IIIB or IV disease is not amenable 
to curative treatment20 and the only pathologic mate-
rial guiding systemic therapy may be small biopsy 
and cytology specimens. 

Until the recent use of TKIs, the standard 
first-line treatment for most patients with unresec-
table NSCLC and good performance status has in-
volved the use of a combination of chemotherapy 
regimens (usually cisplatin-based), which from the 
1970s and 1980s were shown to reproducibly achieve 
objective response in 20% to 30% of advanced NSCLC 
patients. The most common combination regimens in 
use at present are gemcitabine with either cisplatin or 
carboplatin, followed by paclitaxel-carboplatin, vi-
norelbine-platinum and docetaxel-platinum combi-
nations21,22. The addition of the recombinant human-
ized monoclonal antibody bevacizumab that binds to 
vascular endothelial growth factor (VEGF) to car-
boplatin and paclitaxel for the treatment of 
non-squamous advanced NSCLC has demonstrated 
to increase RR, PFS and OS when compared to chem-
otherapy alone23. Disease progression affects almost 
all patients after initial treatment and requires addi-
tional therapy. The agents approved for second-line 
therapy in advanced NSCLC are docetaxel24, 
pemetrexed25 and erlotinib26. When tested in ran-
domized trials24-26, these agents have demonstrated a 
PFS below 2-3 months with a median overall survival 
no longer than 9 months in very few unselected pa-
tients.  

Despite recent advances with approval of more 
active chemotherapeutic and anti-angiogenesis agents 
for stage IV NSCLC, standard therapy can provide 
only modest clinical benefits with significant toxicities 
when used in unselected patients. In 2004, the identi-
fication of somatic mutations in the EGFR gene pro-
vided the first glimpse of a possible target for a 
treatment27,28 which could maximize clinical outcome 
in those patients who could benefit from a personal-
ized therapy29. This implies the identification of cer-
tain characteristic molecular lesions meant to be 
causally responsible for maintenance of the malignant 
phenotype and also distinctive of the cancer cells. 
Therapies targeted to these molecular lesions offer the 
prospect for tumor control and selectivity with less 
toxicity than traditional chemotherapy.  

This review is designed to shed light on the ra-
tionale supporting the preclinical molecular footprint 
assessment, on the progressive development of spe-
cific pharmacological treatments and on the best 
method to identify those NSCLCs which would most 
likely benefit from treatment with EGFR-targeted 
therapy.  
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Rationale of EGFR assessment in Non 
Small Cell Lung Cancer 

Somatic mutations in the EGFR gene which ac-
count for oncogenesis in NSCLCs are activating mu-
tations that work through a “gain of function” 
mechanism (i.e. the ligand-independency of the tyro-
sine kinase’s signalling activity). These types of mu-
tations can be found in 10 to 20% of patients with a 
NSCLC at an advanced stage and in more than 50% of 
adenocarcinomas and tumours from East Asians, 
never smokers and women30. The described muta-
tions generally interest the exons of the EGFR gene 
between the 19th and the 21th, which correspond to the 
portion of the receptor with kinase activity, nearby the 
binding site of ATP (that is fundamental to the acti-
vation of the receptor by autophosphorylation). As a 
result, the receptor is blocked into a state of constitu-
tive activation, signalling to the cell to proliferate and 
to resist apoptosis. The two most frequent genic mu-
tations responsible for this anomaly in cell cycle are 
the substitution of arginine for leucine at codon 858 
(L858R), exon 21, and in-frame deletions at exon 19 
(del E746_A750 is the most common). L858R accounts 
for 45-50% of mutations while deletions at exon 19 
account for another 45-50%. Other rarer mutations 
(5%) associated with EGFR constitutive activation are 
insertions in exon 20 and substitutions at the glycine 
residue at codon 719 in exon 18 (as the G719S muta-
tion). Molecular studies on the receptors harbouring a 
known L858R mutation demonstrated a decreased 
affinity of the tyrosine kinase for ATP and an increase 
in the affinity for the tyrosine kinase inhibitors (TKI). 
These are drugs studied to specifically target the 
pathways of oncogenesis mediated by the EGFR hy-
per-activation and causing little harm to non-tumoral 
cells30. There is evidence supporting a different sensi-
tivity of NSCLCs to the TKI gefitinib depending on 
the presence of an exon 21 mutation or an exon 19 
deletion, having deletions at exon 19 been associated 
with a better response31. 

Furthermore, in about 30-75% of samples from 
NSCLCs, an EGFR over-expression30 due to epigenetic 
causes (transcriptional hyper-activation), gene ampli-
fication or oncogenic viruses can be detected7. EGFR 
over-expression and the consequent augmentation of 
cell survival and proliferation has also been observed 
in premalignant lesions, showing the importance of 
this membrane-associated receptor in tumor growth7. 
NSCLCs that over-express both EGFR and HER2 (an-
other member of the HER family) demonstrated an 
aggressive tumor cell growth. In effect, EGFR/HER2 
heterodimers display a greater activity than EGFR 
homodimers7. Some studies demonstrated that the 

EGFR gene amplification, and thus over-expression 
directly correlates with a better response to tyrosine 
kinase inhibitors, and NSCLCs that over-express both 
EGFR and HER2 are more sensitive to this class of 
drugs than a tumor with an increased expression of 
EGFR alone. In this perspective, pre-treatment as-
sessment of EGFR and HER2 gene copy number may 
have a prognostic and a predictive value of response 
to TKIs in NSCLCs7,32, but there are no univocal 
opinions with regard to this topic. However, data 
from the recent phase 3 FLEX study on patients with 
advanced NSCLC underpin pre-treatment assessment 
of EGFR expression by IHC, for EGFR 
over-expression on the surface of tumoral cells proved 
to be predictive of better overall survival with a com-
bined treatment of first-line chemotherapy (compris-
ing cisplatin and vinorelbine) plus cetuximab (an an-
ti-EGFR monoclonal antibody) relative to chemo-
therapy alone. Among patients with a high EGFR 
expression, those who were in the combined treat-
ment group had a median OS of 12 months versus the 
9.6 months of patients allocated to the chemotherapy 
alone arm33. Which strategy is better in the manage-
ment of advanced NSCLCs, if the inhibition of mu-
tated EGFR with TKIs or a combined approach with 
cetuximab plus first-line chemotherapy, is yet to be 
determined. The combination of cetuximab and a ty-
rosine kinase inhibitor in the treatment of those tu-
mors which are resistant to TKIs alone is intri-
guing34,35, but to date clinical data are still lacking.  

EGFR expression seen in advanced lung cancers 
made this an attractive target for molecular interven-
tion in this disease. Several studies (Table 1) have by 
now demonstrated dramatic improvement in re-
sponse rates, quality of life, symptoms, and median 
progression-free-survival (by 2-5 months) with 
first-line EGFR-TKI therapy compared with standard 
platinum-doublet chemotherapy in patients with 
EGFR mutation-positive NSCLC36,37. Gefitinib and 
erlotinib were the first two agents to target the tyro-
sine kinase domain of the EGFR. Both these agents 
showed encouraging activity in patients with NSCLC 
who had been previously treated with chemotherapy 
in the phase I series and then in phase II trials36,37. This 
has led to their approval of the treatment in advanced 
NSCLC. The first two large phase III trials comparing 
EGFR TKIs in patients previously treated with a dif-
ferent first line therapy were BR.2138 and INTEREST39 
trials. BR21 was an international phase III randomized 
trial comparing erlotinib with placebo in patients who 
had failed at least one line of cytotoxic chemotherapy. 
With the survival benefit shown in this trial, erlotinib 
has been approved for use as second or third-line 
therapy in NSCLC after failure with a cytotoxic 
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chemotherapy regimen by American and European 
regulatory agencies38. A randomised, open-label 
phase III trial (INTEREST)39 of gefitinib versus docet-
axel in previously treated patients established 
non-inferior survival in patients treated with TKIs 
compared with chemotherapy, thus suggesting that 
gefitinib is a valid treatment for pre-treated patients 
with non-small-cell lung cancer39.  

In contrast to the significant clinical and radio-
logical responses seen in patients harbouring EGFR 
activating mutations, gefitinib and erlotinib have 
shown only limited activity in non-EGFR genotyped, 
or unselected, NSCLCs when given as first, second or 
subsequent lines of therapy.37,40. This has been re-
ported by several prospective trials of gefitinib and 
erlotinib in EGFR-mutated NSCLC, which showed 
RRs exceeding 70% in tumors with exon 19 deletions 
or the L858R mutation, with PFS intervals of 6-14 
months and OS times beyond 20-24 months40-43.  

During the last three years, the predictive value 
of EGFR mutations for use of gefitinib has been 
strengthened by the results of three randomized 

phase III trials that specifically compared TKIs used as 
first-line therapy with traditional platinum-based 
chemotherapy in patients with advanced NSCLC. In 
2009 the results of IRESSA Pan-Asia Study36,44 were 
presented. This trial included 1217 patients of Asian 
ethnicity who were never smokers or former light 
smokers yet had histologic diagnosis of adenocarci-
noma. The trial demonstrated an improvement in PFS 
and RR (with no statistical difference in OS) with the 
use of gefitinib in EGFR-mutated tumors and, in con-
trast, better RR and PFS with standard chemotherapy 
in patients without mutations. The first phase III trial 
of gefitinib versus chemotherapy as initial treatment 
of recurrent or advanced NSCLC, based on selection 
of patients with known activating EGFR mutations 
was the WJTOG3405 trial, reported in 201045. This trial 
documented important achievements in terms of RR 
and PFS with the use of TKIs. During the same year, 
such results were confirmed by another similar Japa-
nese phase III trial, NEJ00237, with RR and PFS defi-
nitely favouring the use of gefitinib in the first-line 
setting of metastatic EGFR-mutated NSCLC.  

 

Table 1. Summary of first-line efficacy data of TKIs in patients with EGFR-mutated advanced NSCLC (results from ran-
domized phase III trials of gefitinib/erlotinib versus standard chemotherapy). 

Trial patient selection treatment/number of patients ORR (%) PFS (months) OS (months) 
IPASS  Asia Carboplatin-Paclitaxel 47 6.3 21.9 
(Mok et al. 2009) never- or light 

ex-smoker 
(n=608 total; n=129 EGFR M+) 
Gefitinib 

71 9.5 21.6 

 adenocarcinoma (n=609 total; n=132 EGFR M+) p < 0.001 HR 0.48; p<0.001 HR 1.00; p 0.99 
WJTOG 3405 Asia Cisplatin-Docetaxel 32 6.3 not reached 
(Mitsudomi et al. 2010) EGFR mutation (n=86 EGFR M+) Gefitinib 62 9.2 30.9 
  (n=86 EGFR M+) p< 0.001 HR 0.49; p<0.0001 HR 1.64; p 0.211 
NEJ 002 Asia Carboplatin-Paclitaxel 31 5.4 23.6 
(Maemondo et al. 2010) EGFR mutation (n=100 EGFR M+) Gefitinib 74 10.8 30.5 
  (n=98 EGFR M+) p< 0.001 HR 0.30; p<0.001 HR NR; p 0.31 
OPTIMAL Asia Carboplatin-Gemcitabine 36 4.6 NA 
(Zhou et al. 2011) EGFR mutation (n=72 EGFR M+) Erlotinib   

83 
 
13.1 

 
NA 

  (n=83 EGFR M+) p< 0.0001 HR 0.16; p<0.0001 NA 

EURTAC Europe Platinum-Gemcitabine/Docetaxel 15 5.2 19.5 
(Rossell et al. 2012) EGFR mutation (n=87 EGFR M+) Erlotinib 58 9.7 19.3 
  (n=86 EGFR M+) OR 7.5; p<0.0001 HR 0.37; p<0.0001 HR 1.047; p 0.87 
EGFR: epidermal growth factor receptor; ORR: objective response rate; PFS: progression-free survival; OS: overall survival; HR: hazard ratio; OR: odds ratio; 
NA: not available, NR: not reported. 

 
 
Numerous small studies (mainly conducted in 

East-Asia) on EGFR-TKI monotherapy with gefitinib 
rapidly confirmed high objective response rate with 
this agent used in first-line setting in patients with 
cancers harbouring a mutation42,43,46-49. Based on the 
results of the IPASS study, gefitinib was approved for 

use in Europe for the initial treatment of patients with 
NSCLC exhibiting EGFR mutations. Confirmatory 
randomized phase III trials of erlotinib versus stand-
ard chemotherapy have recently been concluded in 
Asia (OPTIMAL trial, NCT0087441950) and Europe 
(EURTAC trial, NCT0044622551). The positive results 
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of these studies suggested that responsiveness in 
mutation-positive patients was not a function of eth-
nicity. Furthermore, Caucasian patients demonstrated 
a spectrum of EGFR mutational subtypes similar to 
those seen in East Asian patients. Gefitinib and erlo-
tinib have shown a similar spectrum of activity, with 
little differences in pharmacokinetics determining a 
major bioavailability for erlotinib52. This is the only 
TKI which has been approved by FDA for the man-
agement of treatment-naive patients with advanced 
NSCLC showing EGFR activating mutations53. 

EGFR-TKIs as a class are generally well tolerat-
ed. The two most common toxicities include derma-
tologic and GI effects; both of which are mild to 
moderate, easily managed and reversible36,37,54. 

In order to determine whether an EGFR TKI or 
chemotherapy is the appropriate first-line therapy, the 
latest guidelines55 recommend mutation testing for all 
patients with advanced NSCLC tumor. 

All EGFR-mutated patients treated with gefitinib 
or erlotinib invariably develop acquired resistance to 
this kind of therapy56,57 (Figure 1). The most common 
and first identified mutation is the threonine-790 to 
methionine (T790M) point mutation in exon 20 which 
represents approximately 50% of all acquired re-
sistance in NSCLC58. The development of such genetic 
alteration restores the EGFR TK affinity to ATP, ren-
dering first-generation TKIs inactive59,60. Other sec-
ondary resistance mutations within the same gene 
have been reported infrequently (L747S, D761Y, 
T854A)12,61-62. All these mutations, together with 
T790M, have also been identified in pre-treatment 
tumors and, similarly, are responsible for both a lesser 
sensitivity and duration of response to the first gen-
eration TKIs61,63-65. Other mechanisms of acquired 
resistance include MET gene amplification (also ac-
counting for up to 20% of pre-treatment tumoral re-
sistances)66, increased signalling through parallel 
pathways such as the ones of VEGF67 and IGF1R68, 
mutations and activation of PIK3CA69,70 and trans-
formation into a small-cell lung cancer phenotype71. 

Concerns have been raised about resistance to 
TKIs due to mutations in the KRAS gene (which en-
codes for a protein downstream to the EGFR in the 
pathway initiated by the activation of the tyrosine 
kinase) or due to mutations that occur in other pro-
teins of the same cascade (e.g. BRAF72). Even if some 
studies have underlined that KRAS mutations are 
negative predictors of sensitivity to TKIs in NSCLCs73, 
more recent research demonstrates that they are not 
necessarily associated with a poor response to this 
receptor-targeted therapy; this is contrary to the ab-
sence of EGFR mutations, which accounts for the lack 
of effectiveness of treatment with tyrosine kinase in-

hibitors74,75. 
Management of EGFR tumor resistance has be-

come the next challenge in order to lengthen these 
patients' overall survival; identification of the molec-
ular resistance mechanisms will allow for the treat-
ment of TKI-resistant tumors. A new class of drugs, 
the so-called second-generation TKIs, may be able to 
overcome the T790M mutation resistant cell. Com-
pared to first-generation TKIs, these molecules show 
higher affinity for the ATP-binding domain, form an 
irreversible covalent bond to the ATP-binding site 
and are able to stimulate other receptors (e.g. HER2). 
Neratinib (HKI-272), one of the three agents investi-
gated, hasn't shown good RR when tested on patients 
with known T790M mutation76, therefore further de-
velopment of this drug in lung cancer has been halted. 
Afatinib (BIBW2992) is being investigated as part of 
the LUX-Lung program which aims to evaluate the 
use of TKI in second- or third-line treatment in pa-
tients who have acquired resistance to gefitinib or 
erlotinib (LUX-Lung 1, 4 and 5) as well as the use of 
TKIs as a first-line treatment in patients with 
EGFR-activating mutations (LUX-Lung 2, 3 and 6). 
Therapy with afatinib has demonstrated to improve 
the disease control rate and to prolong PFS in both 
LUX-Lung 1 and 277,78. The G719S mutation renders 
the tumor less sensitive to gefitinib, while erlotinib 
and the second-generation TKI afatinib have proven 
to be effective in tumors characterized by this substi-
tution30. Dacomitinib (PF-00299804) is another irre-
versible TKI able to target the activity of all HER TKs 
and has shown activity in NSCLC cell lines harbour-
ing the T790M mutation79. This molecule has been 
evaluated in two phase II trials: the first one was after 
failure of one or two chemotherapy regimens and 
failure on erlotinib80; the second one compared it with 
erlotinib in the second- and third-line in patients with 
advanced NSCLC81. The results of these studies seem 
promising and further studies will evaluate 
dacomitinib in upfront therapy over first-generation 
TKIs and in resistant EGFR-mutated tumors82. 

Pre-treatment EGFR - genotypic assess-
ment 

As the EGFR mutational profile of NSCLCs is a 
strong predictor of response to therapy with the 
highly effective TKIs36,37, the most recent algorithms 
for the management of advanced NSCLCs underline 
the importance of EGFR molecular testing prior to the 
initiation of therapy30,83, adopting either a traditional 
Sanger’s sequencing-based analysis30,84 or PCR as-
says30. Recent advances in genome analysis technolo-
gies lead to the use of high-throughput next genera-
tion sequencing platforms, which may become more 
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available in routine clinical practice in a near fu-
ture85,86. In particular, EGFR mutations should be 
sought in those NSCLCs in which they occur most 
frequently: adenocarcinomas, NSCLCs in people who 
have never smoked, Asians and women30. A first-line 
treatment with TKIs should be initiated in those pa-
tients who have a positive result for EGFR mutations, 
otherwise a standard chemotherapy should be con-

sidered30,83. EGFR mutation-positive NSCLCs which 
also test positive for mutations associated with pri-
mary or, most frequently, secondary resistance to 
first-generation TKIs (first of all the T790M substitu-
tion) may respond better to newer agents like afatinib, 
and dacomitinib, which have demonstrated a greater 
effectiveness in these clinical situations, but more 
clinical data are required 30,56,87-89. 

 
Figure 1. Ways to leave your EGFR inhibitor: Biochemical pathways leading to resistance to small molecule EGFR drugs such as 
gefitinib and erlotinib. (A) Structures of two approved EGFR TKIs, gefitinib and erlotinib, used in the treatment of NSCLC. (B) Ribbon diagram of 
wild-type human EGFR (PDB code 2ITY), illustrating binding of gefitinib to the active site of the kinase. The magenta ball-stick (located just above the 
gefitinib molecule in the active site) indicates the gatekeeper residue (threonine790) that is commonly mutated to methionine (T790M), resulting in 
reduced inhibitor binding and drug resistance. (C) Simplified pathway diagram of EGFR signaling through RAS/MEK/ERK and PI3K/PDK1/AKT indicating the 
points of mutation/amplification in EGFR TKI resistance as reported by Sequist and colleagues. The resistance mechanisms include the EGFR T790M 
gatekeeper mutation, amplification of EGFR T790M, MET amplification, and PI3KCA mutation (note that additional epithelial to mesenchymal transition 
changes and transformation from the NSCLC to the SCLC phenotype also lead to resistance but are not covered by this illustration). The illustration also 
shows the FAS/NF-kB signaling arm downstream of the FAS death receptor that was shown to be important in TKI resistance by Bivona and colleagues. 
Reprinted from Cancer Cell, 19, Paul Workman and Paul A. Clarke, “Resisting Targeted Therapy: Fifty Ways to Leave Your EGFR”, 437-440, 2011, with 
permission from Elsevier. 
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Furthermore, some studies have supported the 
validity of pre-treatment measurement of EGFR gene 
copy number by FISH in predicting response to 
TKIs7,90-92. NSCLCs which over-express both EGFR 
and HER2 (over-expression directly correlates with 
FISH measurement of gene copy number) seem to be 
more sensitive to TKIs, providing another criterion 
that can help the clinician in therapeutic decision 
making7,32. In any case, these findings on the role of 
tyrosine kinase receptors’ over-expression as a posi-
tive predictor of response to molecular-targeted drugs 
are controversial because of the conflicting evidence 
of different trials55,90-92. It is worth noting that the con-
flicting evidence may also be due to methodological 
differences among laboratories performing the FISH 
assay or to different interpretations of FISH results90. 

Accordingly, the only strong evidence on the ef-
fectiveness of predictors of success in the treatment of 
advanced NSCLCs with TKIs is in favor of EGFR 
mutation assessment 55,90-92. 

In future, when other classes of now develop-
mental targeted drugs are available in clinical prac-
tice, the assessment of mutations or overexpression of 
genes other than EGFR in EGFR negative NSCLCs 
(KRAS, HER2, ALK/EML4-ALK, PIK3CA, BRAF, 
FGFR1) may become routine30,83. 

Although genotypic assessment may be useful in 
determining which patients are likely to respond to 
EGFR TKI therapy, problems are associated with ob-
taining suitable DNA for pre-treatment analysis. 

The quality of the samples and the extracted 
DNA and the quantity of DNA available using cur-
rent methods may limit the routine use of genotypic 
assessment. As described above, cancer cells from 
various sources have been used for genotyping. These 
include archived surgically resected tissue from pa-
tients who subsequently develop recurrent or pro-
gressive disease, formaline-fixed paraffine-embedded 
biopsy tissue, frozen sections, cytology specimens 
from lavage, pleural effusion, FNA (CTCs), tumor 
DNA in serum and tumor DNA in plasma or blood. 
The mutation status of EGFR can be also determined 
in tumor specimens obtained during curative surgery 
or at biopsy. Surgery offers the best chance of 
high-quality and high-volume tumor tissue samples, 
however only 20-25% of lung cancers are suitable for 
curative surgery and EGFR TKI therapy is only li-
censed for use in patients with advanced disease. 

Generally, there is only a small amount of tumor 
in routine diagnostic biopsy samples from patients 
with advanced disease; that is why specimens should 
be optimized and handled properly so that the most 
accurate pathologic characterization is achieved by 
individualizing among NSCLC, especially in adeno-

carcinoma, those histotypes that are more frequently 
driven by EGFR mutation. Especially for poorly dif-
ferentiated neoplasms, a significant amount of speci-
men is often needed for diagnostic purposes and 
“consumed” for special immunohistochemical stains, 
as P63, P40 (markers of squamous differentiation), 
TTF-1 (positive in most of primitive lung adenocar-
cinoma), cromogranine and synaptophysine (marker 
of neuroendocrine differentiation), therefore reducing 
the material available for molecular testing. Lim and 
colleagues were able to obtain sufficient genomic 
DNA for genotypic assessment from more than 80% 
of their 24 low-volume samples (needle or forceps 
biopsy or fine-needle aspiration)93. Of the 139 patients 
studied by Shih and colleagues94 only two had insuf-
ficient DNA for analysis, whereas Savic and col-
leagues95 successfully sequenced the DNA from 93% 
of their 84 cytological NSCLC specimens. Nakajima 
and colleagues96 determined EGFR mutation status in 
all 43 patients in their study, and Yoshida and col-
leagues97 determined EGFR mutation status in all 35 
fine-needle aspiration/biopsy samples in their study.  

What is of crucial importance is that any tested 
sample is checked for adequacy in terms of the num-
ber and percentage of tumor cells. Two recently pub-
lished studies reporting successful EGFR mutation 
detection from FNA cytology samples found EGFR 
mutation rates significantly lower than those reported 
from the same laboratories using tissue biopsies98,99, 
while a recent review reported a sensitivity between 
92% and 100% for EGFR mutation detection in tissue 
samples, varying with different techniques, and 
comparable results with cytology samples100. 

Follow-up biopsy to determine the T790M mu-
tation status may be unnecessary if further research 
supports the initial finding that DNA sufficient for 
genotypic assessment can be isolated from blood 
samples101-103. A study reported a 92% sensitivity for 
detection of EGFR mutations in patients with meta-
static NSCLC with this method (11 of 12 patients)83. 

There seems to be homogeneity of EGFR muta-
tional state within the same tumoral lesion, even if 
histologically heterogeneous, and this provides a ra-
tionale for a sample-driven therapy104. However, it 
remains to be further elucidated if there are practical 
consequences in relation to the finding that NSCLCs’ 
metastases in extrapulmonary organs or multiple in-
trapulmonary nodules can either differ from the pri-
mary lesion or from each other in regards to the EGFR 
mutational state105-107 and expression107 as detected by 
the laboratory. It is in this context if multiple biopsies 
are necessary to correctly evaluate the EGFR profile. 
Moreover, the response of some EGFR mutation posi-
tive patients to TKIs treatment has proven to be 
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"mixed"105: this means that clinical responses which 
are not completely consistent with those expected 
from the EGFR mutation analysis, could be explained 
by the aforementioned differences in the EGFR muta-
tional state and expression among different tumoral 
sites. 

Furthermore, it seems that chemotherapy is able 
to modify the EGFR expression in NSCLCs107 by in-
creasing or decresing it. This should be taken into 
consideration when anti-EGFR monoclonal antibody 
cetuximab is used to treat patients whose tumoral 
EGFR expression was assessed before chemotherapy: 
in this case, EGFR expression should be reassessed 
after having performed chemotherapy.  

Conclusions 
It is reasonable to suggest that personalized 

therapy for NSCLC patients should include a genetic 
assessment of the EGFR mutational status for indi-
vidual patients. In this scenario, our overview aims to 
focus on the necessity of standardizing and improving 
pre-diagnostic and diagnostic tools and of optimizing 
the accuracy and sensitivity of EGFR mutational test-
ing so that it might be introduced into routine clinical 
practice. The appropriate role of an EGFR mutation 
routine analysis in the treatment of patients with 
NSCLC continues to evolve; this on the basis of new 
prospective clinical studies providing new standards 
of care such as adequate documentation of the EGFR 
mutational status in the preclinical setting, during the 
treatment and in related follow-up. 

There is reasonable basis to believe in the use of 
instrumental molecular reassessment of neoplastic 
biological characteristics for patients with advanced 
NSCLC throughout the clinical course in order to 
finely tune the treatment, particularly in the case of 
disease progression. In this way, TK inhibitors could 
be used for the best outcome in the patient, and the 
drug resistance that supervenes during treatment can 
thus be promptly identified. In addition, close coop-
eration between clinicians, surgeons, molecular biol-
ogists and pathologists is crucial for a continuous 
improvement in the field of NSCLC target therapy. 
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