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Abstract 
Recent research in  image sensors has produced cam- 

eras with very large fields of view. A n  area of computer 
vision research which will benefit f rom this technol- 
ogy is the computation of camera motion (ego-motion) 
from a sequence of images. Traditional cameras suffer 
from the problem that the direction of translation may 
lie outside of the field of view, making the computation 
of camera motion sensitive to  noise. In this paper, we 
present a method for the recovery of ego-motion using 
omnidirectional cameras. Noting the relationship be- 
tween spherical projection and wide-angle imaging de- 
vices, we propose mapping the image velocity vectors 
to a sphere, using the Jacobian of the transformation 
between the projection model of the camera and spheri- 
cal projection. Once the velocity vectors are mapped to  
a sphere, we show how existing ego-motion algorithms 
can be applied and present some experimental results. 
These results demonstrate the ability to  compute ego- 
motion with omnidirectional cameras. 

1 Introduction 
Recently, researchers have proposed and imple- 

mented wide-angle image sensors capable of imaging 
panoramic, hemispherical, and spherical fields of view 
[ll] [12] [17] [24]. Autonomous navigation, remote 
surveillance, and video conferencing are among the ap- 
plications which should benefit from this technology. 
Already, wide-angle imaging devices have begun to be 
incorporated into autonomous navigation systems [3] 
[15] [22]. In this paper, we discuss the use of omnidi- 
rectional cameras for the recovery of observer motion 
(ego-motion), an important problem in autonomous 
navigation. 

The ego-motion problem can be stated as the recov- 
ery of observer rotation and direction of translation at 
a given instant of time, as the observer moves through 
the environment. Although, in principle, information 
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Figure 1: (a) The projection of a translational mo- 
tion field onto a sphere and onto a plane parallel tu  
the direction of translation t. (b) The projection of a 
rotational motion field onto a sphere and onto a plane 
parallel to  the rotation vector r. Note that the planar 
flow fields are nearly the same for the two different 
types of motion, whereas the spherical flow fields are 
considerably different. In fact, over half the sphere the 
flow is in  the opposite directions. This simple exam- 
ple illustrates the advantage of having a large field of 
view. 

about observer motion is present in the motion field, in 
practice it has proven to  be difficult to  extract. Vision 
researchers have developed a multitude of algorithms 
for solving the ego-motion problem. Most methods 
comprise two steps. The first is motion-field estima- 
tion, or the computation of optic flow. The second is 
motion field analysis, which is the extraction of camera 
translatiofi and rotation from the optic flow. One of 
the problems associated with the comput&tion of ego- 
motion is the sensitivity of the second step to noisy 
estimates of optic flow. By using omnidirectional cam- 
era systems, we seek to overcome this problem. 

It is well known that a large field of view facilitates 
the computation of observer motion. The motion field 
contains global patterns which do not always manifest 
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themselves in a small field of view. In particular, the 
focus of expansion is likely to exist outside the field of 
view of traditional cameras, causing ego-motion algo- 
rithms to  be sensitive to the orientation of the cam- 
era. In contrast, for wide-angle imaging systems with 
a hemispherical field of view, either the focus of ex- 
pansion or the focus of contraction will always exist 
in the image. For a spherical field of view, both the 
focus of expansion and contraction will exist in the im- 
age. Another problem associated with the small field 
of view of traditional cameras is displayed in figure 1. 
Translation parallel to the image and rotation about 
the vertical axis produce similar motion fields when 
the field of view is small. In the presence of noise, 
these fields are difficult to disambiguate. However, for 
a very large field of view (180 degrees or greater) the 
motion fields are distinct even in the presence of large 
amounts of noise. 

Previously, Yagi et. al. used a hyperbolic omni- 
directional camera to  compute camera motion under 
the assumption that the camera moves in a horizon- 
tal p!ar,e [E]. In this paper, we present a general 
framework for computing ego-motion from image sen- 
sors, using no assumptions about the camera geome- 
try or the type of camera movement. By noting that 
the motion field equations for different camera models 
are related to one another through a transformation, 
we propose computing optic flow in the image and 
then mapping the flow to a spherical projection model 
using the Jacobian of the transformation. Alterna- 
tively, we could project the images onto a sphere and 
then compute optic  flow.^ However, projecting the im- 
ages introduces artifacts while projecting the flow field 
does not. We use the sphericd perspective projection 
model because it is convenient for representing fields 
of view greater than 180 degrees. In addition, exist- 
ing ego-motion algorithms can be adapted to  spherical 
projection. 

2 Omnidirectional Image Sensors 
Traditional camera systems have a small field of 

view, typically a cone of about 45". In the literature, 
there have been several methods proposed for increas- 
ing the field of view of traditional camera systems. 
See [ll] and [12] for a more in-depth review of exist- 
ing techniques. 

As noted in [ll] [13] and 1241, a single center of 
projection is a desirable property for an imaging sys- 
tem to have. A single center implieb that all principle 
lights rays imaged, pass through a single point in 3-D 
space. It is this property that allows the generation 
of pure perspective images and the projection of the 
image velocity vectors onto a sphere [16]. 
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Figure 2: (a) The geometry of a hyperbola is such that 
all incoming rays pointed at the interior focal point will 
be reflected through the exterior focal point. If the pin- 
hole of a perspective camera coincides with the exterior 
focal point of the hyperbolic mirror, then the resulting 
system will have a single center of projection COP. 
(b) The geometric properties of a parabola cause all 
rays pointed at the focal point to  be reflected parallel 
to the axis of the parabola. i n  this case, using an or- 
thographic camera will result in  a system with a single 
center of projection. 

Two popular approaches to wide-angle imaging are 
the use of rotating imaging systems and fish-eye lenses. 
Rotating imaging systems revolve traditional cameras 
about the camera pinhole and then "stitch" together 
the images to  produce a panoramic view. Several sys- 
tems have been built to this effect [6] [8]. However, for 
our purposes rotating systems will not help because 
they require a static scene, while we are interested in 
capturing the scene motion induced by a moving cam- 
era. On the other hand, a fish-eye camera makes use 
of a complex set of lenses and a very short focal length, 
which allows the camera to capture a hemisphere of 
viewing directions in a single image [9]. However, the 
design of a fish eye lens with a single center of projec- 
tion has remained elusive. The best one can hope for 
is a viewpoint locus that is somewhat compact. 

A third approach to  wide-angle imaging is to in- 
corporate reflecting surfaces (mirrors). These systems 
have been termed catadioptric systems [la]. The chal- 
lenge in designing catadioptric systems is to ensure a 
single center of projection. Nalwa proposed aligning 
four planar mirrors in the shape of a pyramid [ll]. 
The design has a single center of projection but re- 
quires the use of four cameras, one for each face of 
the pyramid. Yagi et. al. [20] and [23] used coni- 
cal mirrors t o  produce omnidirectional images, but as 
shown by Nalwa [ll], the design fails to have a single 
center of projection. Rees [17] and later Yamazawa 
et. al. [24] used a single perspective camera to image 
a hyperbolic mirror. When the pinhole of the cam- 



era is placed at one of the foci of the hyperbola, a 
single center of projection is obtained (see figure 2). 
With careful calibration, Yamazawa et. al. were able 
to produce planar perspective images from the hyper- 
bolic image. 

In [13], Nayar and Baker investigated the class of 
all reflecting surfaces which have a single center of pro- 
jection when imaged with a single perspective camera. 
This analysis led to  two practical solutions, the hyper- 
bolic and elliptic mirrors. However, by using ortho- 
graphic projection, Nayar [12] showed that a parabolic 
mirror can also be used to  achieve a single viewpoint 
(see figure 2). Furthermore, two parabolas can be 
placed back to  back to  capture the entire viewing 
sphere. Orthographic projection results in a system 
that requires a minimal amount of calibration, and in 
[16] it was shown that planar perspective images can 
be produced at video-rate. 

Both the hyperbolic and parabolic catadioptric sys- 
tems are able to capture at least a hemisphere of view- 
ing directions about a single point of view. The single 
viewpoint allows us to map onto a sphere, images pro- 
duced by these two systems. Likewise, knowledge of 
the geometry of these systems will allow us to  map 
image velocity vectors onto a spherical representation 
using the Jacobian of the transformation. 

3 
The motion field is the projection of the 3D ve- 

locity vector field onto a 2D surface. As pointed out 
by Nalwa, the motion field is an abstract geometri- 
cal concept independent of the geometry of the imag- 
ing device [lo]. Therefore, we can investigate prop- 
erties of the motion field using any convenient pro- 
jection model. We are most familiar with the mo- 
tion field equations based on the planar perspective 
model, because this is the most suitable model for 
conventional cameras. On the other hand, spherical 
perspective projection has the desirable property that 
it captures the entire motion field. This has led several 
researchers to  investigate motion under spherical pro- 
jection [4] [14] [21]. We now present the motion field 
equations for spherical projection and show how they 
can be solved using existing ego-motion algorithms. 

The rigid motion of a scene point P relative to  a 
moving camera can be described as a rotation about 
an axis R and a translation along an axis T .  The 
instantaneous velocity of P is 

The Motion Field on a Sphere 

P =  - T - R x  P. (1) 

A projection model defines a function which maps 
scene points onto a 2D surface. In the case of spherical 

perspective projection the function is 

I P  
P=- ,  

IlPll 
where P is the projection of scene point P onto a unit 
sphere. The motion field equation is derived by tak- 
ing the derivative of the projection function (2) 
respect to  time and substituting in equation (1). 
leads to the following motion field equation: 

1 
U ( P )  = - ( (T .  P)? - T )  - s1 x P 

IlPll 
This expression describes the velocitv vector 

with 
This 

(3) 

U =  
(k,G,.i)T at point P = ( z , ~ , z ) ~  on the unit sphere 
as a function of rotation a, translation T ,  and scene 
depth IlPll. The ego-motion problem is to  estimate St 
and T from a set of velocity vectors Ui measured at 
points Pi .  

Three well known algorithms for estimating motion 
are due to  Bruss and Horn [2], Zhuang e t .  al. [26], 
and Jepson and Heeger [5]. Although designed for 
a planar perspective projection, these algorithms are 
simple to  adapt to spherical perspective projection. 

Bruss and Horn: In [2], Bruss and Horn derive a 
depth independent constraint from the planar motion 
field equation and then provide a least squares solution 
to this constraint which is a non-linear function of T .  
We can remove depth from the spherical motion field 
equation, (3), by deriving the instantaneous epipolar 
constraint. Taking the cross product with P and the 
dot product with T ,  equation (3) becomes 

T . ( P  x (U + (R x P ) ) )  = 0. (4) 

The only difference between (4) and the epipolar con- 
straint for the planar case is that P lies on a sphere in 
the former and a plane in the latter. To estimate mo- 
tion from a set of vectors we use the method described 
in [19]. A least squares estimate of $2 as a function of 
T is obtained and substituted back into (4), resulting 
in a non-linear constraint on T .  An estimate of T can 
be found by non-linear minimization or search. 

Zhuang, Huang, Ahuja, and Haralick: Zhuang 
et. al. derived a linear solution by rewriting the 
epipolar constraint in the form 

aTh = 0, 

where 

a = (z ,y , z  ,zg,zz,yz,gt - z$,zk - zt,ze - 

and 

2 2 2  

h = (El , 121 /3,224,2k, 2/67 IC1 , k3)T. 
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The Zi terms are functions of rotation and transla- 
tion and ( k l ,  k2, k ~ ) ~  is collinear to T .  Therefore the 
ki provide an estimate of the direction of translation. 
Note that for the case of planar perspective projection 
z = 1 and i = 0. 

Jepson and Heeger: In [5]  and [19], Jepson and 
Heeger describe another linear algorithm for estimat- 
ing motion. They ask the question, can a linear com- 
bination of motion vectors be found which is indepen- 
dent of rotation and orthogonal to translation? For- 
mally, given a set of n motion vectors at points &, 
k = 1,. . . , n, find coefficients C k  such that 

n 

k = l  

One way to find the coefficients for the spherical case 
is to find the null space of the following 6 x n matrix, 

The null space of this matrix is an n - 6 dimension so- 
lution space for the coefficients. Thus, given n motion 
vectors, a set of n - 6 linear constraints on T can be 
found. 

4 Mapping Image Motion to a Sphere 
In the previous section, we demonstrated how ex- 

isting methods can be used for computing ego-motion 
given a set of motion field vectors on a sphere. Al- 
though the image sensors discussed in section 2 are 
not modeled by spherical perspective projection, we 
can map the image motion vectors to a sphere, pro- 
vided the camera system has a single center of pro- 
jection. We could develop solutions to the ego-motion 
problem using the motion field equations for each im- 
age sensor. However, changing the representation to  
a sphere provides us with a general framework for de- 
veloping algorithms for the entire class of wide-angle 
sensors, rather than tailoring each algorithm to a par- 
ticular sensor. 

In order to  map motion in the image to motion on 
the sphere, we need a transformation between points 
in the image to points on the sphere. In addition, 
we need the Jacobian of this transformation in order 
to map the image velocities to a sphere. The trans- 
formation from image to sphere is dependent on the 
geometry of the irdging device. We can describe the 

geometry of a camera by a projection function which 
maps an image point to a scene ray. 

Consider a coordinate system with its origin at the 
center of projection of the camera system. The scene 
rays are described in spherical coordinates (8, $) about 
the center of projection, where 0 is the polar angle be- 
tween the incoming ray and the z-axis and q5 is the 
azimuth angle. The image points are described in 
rectangular coordinates ( ~ , y )  with the origin at the 
center of the image. Because the image plane is par- 
allel to the x-y plane, q5 in the scene will map to $ in 
the image. Therefore the relationship between 4 and 
the image coordinates will be the same for all of the 
sensors: 

$ = arctan -. 
The projection function for the parabolic omnidirec- 
tional system is 

Y 
X 

@-Tp 
h '  0 = 2 arctan 

where h is the radius of the parabola in the x-y plane. 
For the hyperbolic omnidirectional camera the pro- 

jection function is 

0 = - - arctan 
7r (c2 + a2) f - 2acJf2  + 2 2  + y2 ( b 2 d n  2 

where a,  b, and c are the parameters of the hyperbola 
and f is the focal length of the perspective camera. 

For a fish-eye imaging system the projection func- 
tion is dependent on the particular set of lenses used. 
The following are some of the projection functions ap- 
proximated by fish-eye lenses [9]: 

&%qF 
2f  ' 

8 = 2 arctan 

Jm 
2f  . 

8 = 2arcsin 

Note that fish-eye lenses do not have a single center of 
projection, therefore these functions are only approxi- 
mations and will introduce small errors dependent on 
how compact the center of projection is for the fish-eye 
lenses used in practice. This underscores the impor- 
tance of designing wide-angle imaging systems with a 
single center of projection. 

For spherical perspective projection the scene ray 
(0,q5) will map to the point ( O , q 5 )  on the sphere, there- 
fore the projection functions provide a mapping from 
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image space to  spherical projection. To map image ve- 
locity vectors to a sphere it will not suffice to project 
the endpoints of the vector using the projection func- 
tions. To properly transform velocity vectors we must 
use the Jacobian of the transformation. The Jacobian 
relates partial derivatives in one coordinate system 
to those in another. Each sensor has its own Jaco- 
bian which can be derived by taking the derivative of 
the projection function with respect to image coordi- 
nates. We do this only for the parabolic sensor but the 
method is the same for all of the projection functions. 

2 hx 2hy 
e ( h 2 + y 2 + x 2 )  * 

The velocity vector in image space is the rate of change 
of image coordinates with respect to  time, 

[ # ]  
Transforming the image velocity vector by the Jaco- 
bian produces, 

[ $ ] = J [  g ] ,  
which is a measure of angular velocity. Equation (3), 
the motion vector for a point on the sphere, is the 
velocity vector tangent to the motion on the sphere. 
Therefore, we need one more transformation S, 

cosesinc#J sinBcos4 , 
cos 0 cos c#J - sin 0 sin c#J 1 S = - [ ! j  # I = [  - sin0 0 

' ox ox - -  

m w  
which takes us from angular to  rectangular velocities 
and is independent of the sensor used. Now, velocity 
U on a sphere can be found by the following transfor- 
mation of image velocity: 

5 Experiments 
We use the following method for recovering ego- 

motion from a series of images taken by the parabolic 
omnidirectional sensor described in [12]. First a set of 
images is obtained while the camera is moving. From 
the image set, image velocity (optic flow) is computed. 

Figure 3: A n  image taken by the parabolic omnidi- 
rectional camera. This is the scene where the motion 
ezperiments were conducted. 

Then, the velocity vectors are mapped to a sphere us- 
ing the Jacobians described in the preceding section. 
Once the velocity vectors are projected onto a sphere, 
ego-motion is estimated using the three algorithms de- 
scribed in section 3. 

To compute optic flow in the omnidirectional im- 
ages we use the gradient based method of Lucas and 
Kanade [7] with the extensions of Simoncelli et. al. 
[18]. The code was obtained from the Barron et. al. 
optic flow survey [l]. Care must be taken when se- 
lecting an optic flow algorithm for computing image 
velocity in an omnidirectional image. Omnidirectional 
cameras introduce non-affine distortions into the im- 
age, a consequence of projecting a hemisphere of view- 
ing directions onto a planar image. Therefore, corre- 
lation based algorithms that do not account for the 
distortions are likely to fail. 

When performing motion experiments accurate 
ground truth is difficult to obtain. However, a cata- 
dioptric camera has an exterior center of projection, 
which allows the camera to be manually centered over 
a rotation stage. To obtain a measure of error for the 
estimated direction of translation, we use the following 
method. In each experiment, the camera undergoes a 
motion (translation and/or rotation)and a sequence 
of images is taken. From this sequence the direction 
of translation, TI, is estimated. Then the camera is 
rotated a' and the same motion is applied and the 
direction of translation, T2 is estimated. The error is 
measured using the following formula: 

error = lao - arccos(Tl . T2)l. (5) 

In the first experiment the camera undergoes a pure 
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Bruss-Horn 
Heeger-Jepson 
Zhuang 

Figure 4: Omnidirectional optic flow (mag. ~ 2 0 )  for  
translational motion. Because the camera is translat- 
ing parallel to the papabolic mirror, both the focus of 
expansion and contraction exist in the image. 

3.0. 3,.5 4.0 4.5 
I' 1" lo 1' 

3.14" 2.12" 0.9" 1.71" 
3.14" 2.12" 0:9' 1.71" 

translation of 0.5 cm. per frame. Then the camera is 
rotated 01 = 10" and the same translational motion is 
applied. Ideally, the distance between the two com- 
puted translational motions is 10". The results of this 
experiment are shown in figure 5. 

The optic flow algorithm only computes optic flow 
vectors, where the confidence measure is above the 
threshold, T. As T is increased the number of vectors 
decreases. Results are shown for several different T 

values. 

Figure 5: The error in estimating the direction of 
translation for purely translational motion. r is a 
threshold used by the optic pow algorithm [l]. The 
fluctuation of the error as T changes, provides a mea- 
sure of stability. 

In the second experiment the camera undergoes a 
translation of 0.5 cm. per frame and a rotation of 
0.5" per frame. Again the camera is rotated a = loo 
and the same translation and rotation is applied. The 
results are shown in figure 7. To solve the non-linear 
minimization problem (Bruss-Horn) a coarse to  fine 
search is used. The final search is performed at 1" 
increments. Therefore, 1" provides a bound on the 
accuracy of the non-linear algorithm. The data reflects 
the fact that the non-linear algorithm is both more 
accurate and more stable than the linear algorithms. 

' . Y  

Figure 6: Omnidirectional optic flow (mag. x 10) for 
general motion (translation and rotation). Note that 
the rotational motion has obscurred the direction of 
translation. 

Bruss-Horn 

Zhuane: 1.34" 4.45" 8.61' 7.16' 

Figure 7: The error in estimating the direction of 
translation for general motion (rotation and transla- 
tion). 

6 Conclusion 
Recent research in wide-angle imaging has pro- 

duced camera systems with fields of view greater than 
a hemisphere. In addition, research in motion estima- 
tion has provided a number of algorithms to compute 
ego-motion. Although designed for planar perspective 
cameras, these algcrithms can be adapted to omnidi- 
rectional cameras by mapping the optic flow field to 
a sphere, via the use of an appropriate, Jacobian. We 
have shown how this mapping can be performed for a 
variety of wide-angle cameras. 
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