
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2002-1

2002-03-12

Egocentric Context-Aware Programming in Ad Hoc Mobile Egocentric Context-Aware Programming in Ad Hoc Mobile

Environments Environments

Christine Julien and Gruia-Catalin Roman

Some of the most dynamic systems being built today consist of physically mobile hosts and

logically mobile agents. Such systems exhibit frequent configuration changes and a great deal

of resource variability. Applications executing under these circumstances need to react

continuously and rapidly to changes in operating conditions and must adapt their behavior

accordingly. The development of such applications demands a reexamination of the very notion

of context and of the mechanisms used to manage the application response to contextual

changes. This paper introduces EgoSpaces, a coordination model and middleware for ad hoc

mobile environments. EgoSpaces focuses on the needs... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Julien, Christine and Roman, Gruia-Catalin, "Egocentric Context-Aware Programming in Ad Hoc Mobile
Environments" Report Number: WUCSE-2002-1 (2002). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1129

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1129?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1129

Egocentric Context-Aware Programming in Ad Hoc Mobile Environments Egocentric Context-Aware Programming in Ad Hoc Mobile Environments

Christine Julien and Gruia-Catalin Roman

Complete Abstract: Complete Abstract:

Some of the most dynamic systems being built today consist of physically mobile hosts and logically
mobile agents. Such systems exhibit frequent configuration changes and a great deal of resource
variability. Applications executing under these circumstances need to react continuously and rapidly to
changes in operating conditions and must adapt their behavior accordingly. The development of such
applications demands a reexamination of the very notion of context and of the mechanisms used to
manage the application response to contextual changes. This paper introduces EgoSpaces, a
coordination model and middleware for ad hoc mobile environments. EgoSpaces focuses on the needs of
application development in ad hoc environments by proposing an agent-centered notion of context, called
a view, whose scope extends beyond the local host to data and resources associated with hosts and
agents within an entire subnet surrounding the agent of interest. An agent may operate over multiple
views whose definitions may change over time. An agent uses declarative specifications to constrain the
contents of each view by employing a rich set of constraints that take into consideration properties of the
individual data items, of the agents that own them, the hosts on which the agents reside, and of the
physical and logical topology of the ad hoc network. This paper formalizes the concept of view, explores
the notion of programming against views, and discusses possible implementation strategies for
transparent context maintenance. We include examples to illustrates the expressive power of the view
abstraction and to related it to other research on coordination models and middleware.

https://openscholarship.wustl.edu/cse_research/1129?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1129?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages

Egocentric Context-Aware Programming
in Ad Hoc Mobile Environments

Christine Julien and Gruia-Catalin Roman
Department of Computer Science and Engineering

Washington University
Saint Louis, MO 63130

{julien, roman}@cs.wustl.edu

ABSTRACT
Some of the most dynamic systems being built today consist
of physically mobile hosts and logically mobile agents. Such
systems exhibit frequent configuration changes and a great
deal of resource variability. Applications executing under
these circumstances need to react continuously and rapidly
to changes in operating conditions and must adapt their be-
havior accordingly. The development of such applications
demands a reexamination of the notion of context and the
mechanisms used to manage the application’s response to
contextual changes. This paper introduces EgoSpaces, a
coordination model and middleware for ad hoc mobile en-
vironments. EgoSpaces focuses on the needs of application
development in ad hoc environments by proposing an agent-
centered notion of context, called a view, whose scope ex-
tends beyond the local host to data and resources associated
with hosts and agents within a subnet surrounding the agent
of interest. An agent may operate over multiple views whose
definitions may change over time. An agent uses declara-
tive specifications to constrain the contents of each view by
employing a rich set of constraints that take into considera-
tion properties of the individual data items, the agents that
own them, the hosts on which the agents reside, and the
physical and logical topology of the ad hoc network. This
paper formalizes the concept of view, explores the notion
of programming against views, discusses possible implemen-
tation strategies for transparent context maintenance, and
describes our current prototype of the system. We include
examples to illustrate the expressive power of the view ab-
straction and to relate it to other research on coordination
models and middleware.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming ; D.2.1 [Software Engineer-
ing]: Requirements/Specifications; D.3.1 [Programming
Languages]: Formal Definitions and Theory—semantics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFFT 2002/FSE-10,November 18–22, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-514-9/02/0011 ...$5.00.

General Terms
Design, Reliability, Human Factors, Algorithms

Keywords
Mobility, Context-Aware, Ad Hoc Network, Coordination,
Scalability

1. INTRODUCTION
In the recent past, a number of researchers advocated the

ability for applications to adapt their behavior in response to
changes in their environments. Applications in which con-
text sensors capture changes in the environment and pass
them to the application are called context-aware. As user
mobility has increased, context-aware models of computa-
tion have gained popularity because they offer the ability to
include information about the current environment as part
of the computation, thereby enhancing the services available
to the users. Context-aware applications and development
frameworks existing today generally gain access to context
information through context sensors. Cyberguide [1] and
GUIDE [7], two tour guide applications, use events gener-
ated by location sensors to update the user’s screen accord-
ing to physical location. The Stick-e Document [4] frame-
work allows users to create notes that are triggered when
the user encounters the associated context. Events indicate
context changes, and they trigger the display of a stored
note. Both Active Badge [11] and PARCTab [20] provide a
framework on top of which developers build context-aware
applications. In both cases, small devices moving about the
research complex beacon location events to the architecture
via infrared communication links. In PARCTab, each de-
vice, called a tab, has an associated agent responsible for
mediating the context events. Each tab has a single cur-
rent application to which the tab’s agent forwards location
events generated by the tab. The Active Badge framework
allows applications to query the device’s current context.
Additionally, applications can register for notifications of
specific context changes by specifying a filter indicating the
contextual information that interests it and a callback to
invoke when the filter is satisfied. The FieldNotes [16] ap-
plication extends the types of context used to include time,
weather, and user information by allowing researchers in the
field to attach varied contextual information to their notes.
With the increase in the variety and complexity of context
information, frameworks and systems for generalizing its
treatment are being developed. The Context Toolkit [17]

generalizes interactions among components through context
widgets, while the Context Fabric [12] provides a service
infrastructure. By and large these systems limit the con-
text to what a component can immediately sense, ignoring
what other networked components sense. While discussions
of context-aware software [18] have hinted at the need for an
extended view of context, none of the better known systems
allows such access without requiring application developers
to code it explicitly.

In this paper, we consider systems that entail both phys-
ical and logical mobility. For presentation purposes, we as-
sume a system existing of mobile agents (representing units
of modularity and logical mobility) that execute over poten-
tially mobile hosts (units of physical mobility). The mobility
of hosts and software agents adds a new degree of complexity
to this changing environment. As hosts and agents become
more mobile and travel to completely new environments, the
resources they can access change and the manner of this ac-
cess evolves. The presence of other agents, the availability
of resources associated with them, the specific host provid-
ing the agent’s execution environment, and the connectivity
of other hosts and their particular location or movement
behavior all have the potential to affect the behavior of a
single agent. The initial impetus for this work came from
our attempt to apply other models for ad hoc mobile co-
ordination to vehicle to vehicle communication applications
on the highway. Such applications can vary from time and
safety critical ones like negotiating the safe passage of au-
tomobiles through intersections without traffic lights to en-
tertainment applications including file sharing between cars
or distributed video games. In each case, the application
constructs its view based on different criteria and requires
different guarantees for its operation over the view. For
example, in a safe intersection example, a single car will col-
lect information from other cars in close proximity and from
sensors in the intersection. As a second example, imagine
a building or construction site with a fixed infrastructure
of sensors and information appliances that provide contex-
tual information for applications running inside the build-
ing. Sensors can provide a multitude of information, includ-
ing data regarding the structural integrity of the building,
the frequency of sounds in the building, or the movement
of building occupants. Additionally, engineers or inspectors
carry PDAs or laptops that provide additional context and
assimilate context information to accomplish specific tasks.
Different people have different tasks and will therefore use
information from different sets of sensors.

Our research goal is to develop a formal abstract treat-
ment of context-awareness and offer middleware to the pro-
grammer to manage an extended notion of context. The
middleware should allow the programmer not only to define
a specific context but to influence that context’s definition.
It should further provide a flexible and general usage pat-
tern for the context. Our approach centers on the concept
of view as an abstraction of a particular agent’s operating
context with respect to a specific agent interest. An agent
can specify multiple views, each designed to meet the agent’s
needs for specific contextual data. The agent has full control
over the specification of each view and may change it at run-
time. Formally, a view could encompass all the data that the
agent can reach in the network. However, the key is to allow
the agent to control the scope of the individual views in a
manner that facilitates easy program development (in the

mobile setting) without excessive performance penalties. In
this manner, the agent defines exactly which pieces of data
belong in the set of data the view encompasses. Our middle-
ware will provide an agent with specification mechanisms (a
language) through which it can define views based on prop-
erties of the network topology, properties of the hosts in
the network, properties of other agents in the network, and
properties of individual data items owned by other agents.
As an agent moves through space and time, the content of
each view changes to reflect the currently available data.
In this paper, we start with the premise that the operating
context is all-encompassing, provide a precise definition of
a view as an agent-defined restriction of the operating con-
text, and develop a formal approach for view specification.
We move on to explain the dynamics of view maintenance
and usage in the presence of mobility and to demonstrate
its implementability and expressive power.

The remainder of this paper is organized as follows. In
Section 2, we explain our extended definition of context in
a mobile setting. Section 3 explains the view abstraction in
detail and discusses what it encompasses, how it is accessed,
and how it is maintained. Section 4 discusses how an agent
programs to a view. Section 5 reviews the current status
of our implementation and presents an example application.
Section 6 discusses the view’s expressive power. Finally,
conclusions appear in Section 7.

2. EXTENDED CONTEXT
Our extended notion of context potentially includes ev-

erything available in the network. The target applications
for our middleware, however, may operate in environments
where the network could grow unmanageably large. This
necessitates mechanisms for restricting this large context to
some smaller operating context, or view. This section pre-
cisely defines our computational model and gives an overview
of how and why applications provide view specifications.

Computational Model. We assume a computing model
in which hosts can move in physical space, and the applica-
tions they support are structured as a community of mobile
software agents that can migrate from one host to another.
Thus, in our computing model, an agent is the unit of mod-
ularity, execution, and mobility, while a host is a container
for agents characterized, among other things, by its location
in physical space. We use the term agent to refer to any
stand-alone piece of software code capable of moving be-
tween connected hosts. Communication among agents and
agent migration can take place whenever the hosts involved
can physically communicate with each other, i.e., they are
connected. A closed set of these connected hosts defines
what we will refer to as an ad hoc network.

Since the notion of context is always relative, we use the
term reference agent to denote the agent whose context we
are considering, and we will refer to the host on which the
agent is located as the reference host. In principle, the con-
text associated with a given agent in an ad hoc network
consists of all the information available in that network. Of
course, such broad access to information is generally costly
to implement. In addition, various parts of the same appli-
cation may need different resources at different times during
the execution of the program. For this reason, we believe
that it is important to structure the context in terms of fine-
grained units which we call views. A view is a projection of
everything available to the reference agent together with an

interpretation that defines the rules of engagement between
the agent and the particular view. An agent can be associ-
ated with one or more views (which can be redefined over
time) and can operate on each view in a manner compatible
with the view definition. The actual contents of the view
may be visible to the agent directly or indirectly, depend-
ing on the abstract interpretation associated with that view.
For the purposes of this paper, we assume that a view con-
tains discrete data items that the reference agent accesses
using various data access operations.

Declarative View Specification. The view concept is
egocentric in the sense that every view is defined relative to
a reference agent and with respect to its needs for resources
from and knowledge about its environment. Although we
will focus on the specification of and operation over a single
view, an agent sees the world through a set of views that
may be altered at will by defining, redefining, and discard-
ing views as processing requirements demand. An agent de-
scribes its contextual needs to the underlying context main-
tenance system by providing a declarative specification of
a projection of the maximal context. Through this speci-
fication, the programmer controls the scope of the view (a
larger or smaller neighborhood of the network) and the size
of the view (the range of entities included). The former
is accomplished by providing constraints over the proper-
ties of the network, hosts, and agents, while the latter is
achieved through the use of constraints over the data it-
self. For example, an agent mediating an automobile’s safe
passage through an intersection might declare the following
view:

All location data (reference to data) entered by
collision warning agents (reference to agents) on
cars within 100 meters (reference to hosts) of my
current location (property of the reference host).

Figure 1 shows an evaluation of the declarative view speci-
fication. The figure shows cars on a highway; the arrows in-
dicate their approximate movement patterns. In the figure,
the rectangle labeled “X” represents the reference agent’s
car. To simplify this picture, we assume only a single agent
per car. In the top picture, the reference agent provides a
restriction of the cars that participate in the view. The cen-
ter picture shows how hosts and data items (circles in the
picture) map to cars. Because the reference agent is inter-
ested only in location data (represented by blackened circles
in the bottom picture) the actual view contains only these
data items. As discussed in later sections, these restrictions
on the network, hosts, agents, and data and the evaluation
of these restrictions by the underlying context maintenance
system account not only for the needs of the reference agent
but also for security and network considerations.

Transparent Context Maintenance. The use of declar-
ative context specifications allows applications to shift the
burden of sensing and maintaining context information to
the underlying middleware. Upon specifying a view, an
application relies on the middleware to perform transpar-
ent updates of that view when other hosts or agents in the
network move or contextual information changes. Imagine
the previously introduced example of a building inspector
examining a building while carrying a PDA. As he moves
through the building, the inspector wishes to see informa-
tion not for the whole building, but for his quadrant on the
floors adjacent to the one he is currently inspecting. As he
changes floors, his view is automatically updated to reflect

the changing context. The transparent context maintenance
provided by the underlying middleware gives the applica-
tion programmer explicit control over the cost associated
with context maintenance. As discussed later, operations
of varying consistency allow a programmer to govern the
relative cost of executing a particular operation on a view.

3. DATA CONTEXT
An application agent’s success resides in its ability to eas-

ily but specifically define a restriction of the operating con-
text. Our extension of an agent’s context to include all data
belonging to agents on reachable hosts enlarges the agent’s
operating context to include more than it may ever need
to access. The previous section touched upon our use of
declarative view specifications for narrowing the set of data
an agent “sees” to exactly the data needed for operation.
Next, we turn our attention to the details of view specifica-
tions and the data over which they are defined.

3.1 Data Representation
The manner in which each agent perceives and accesses

data has ramifications for the ease of programming and the
efficiency of operations over data in the view. Different ap-
plication needs as well as a programmer’s expertise all con-
tribute to the choice of a mechanism for data representation.
Therefore, we separate the contents of the view from the pre-
sentation of the view to the application agents. That is, we
assume a single data representation as a basis for coordina-
tion. Other forms of interaction can be easily added to the
middleware through the use of thin veneers over our chosen
tuple space representation.

Underlying Database of Tuples. Tuple space repre-
sentations based on the Linda tuple space model [10] enjoy
a great deal of popularity due to the content-based man-
ner in which data is accessed. In mobile computing specifi-
cally, several systems have found success using shared tuple
spaces. MARS [5] focuses on logical mobility, or the move-
ment of agents over physically stationary hosts. This system
uses a tuple space to allow coordination among co-located

on Each Car

X

Highway Environment

Mobile Hosts and Data

One View of One Agent
on Car X

Figure 1: View used by a collision warning agent on car X

mobile agents, while Lime [14] combines support for logi-
cal mobility with support for physical mobility and relies
on transient sharing of tuple spaces among agents and hosts
within communication range. We reuse this notion of tran-
sient sharing of tuple spaces, combine it with a more flexible
tuple representation, and allow an agent to use a declarative
view specifications to indicate with which other components
it wants to share data.

A tuple is an unordered set of triples of the form:

〈(name, type, value), (name, type, value), . . .〉.

For each field, name is the name given to the field, and type
is the data type of value. In a given tuple, the names of each
field must be unique. The name field allows us to relax the
ordering restrictions seen in traditional uses of tuples, allow-
ing EgoSpaces more flexibility and openness.1 Fundamen-
tally, users access tuple spaces by matching patterns against
contents of tuples. While adhering to the content-based na-
ture of Linda pattern matching, we extend the traditional
semantics to allow the provision of more flexible constraints
over fields. A pattern takes the form:

〈(name, type, constraint), (name, type, constraint), . . .〉.

In patterns, name and type are identical to their counter-
parts in tuples. The constraints are functions that provide
requirements that the value in a field must match for the
field in the tuple to match the field in the pattern. More
specifically, the matching function M is defined over a tuple
θ and a pattern p as:

M(θ, p) ≡ 〈∀c : c ∈ p ::
〈∃f : f ∈ θ ∧ f .name = c.name

∧ f .type instanceof c.type
:: c.constraint(f .value)〉〉. 2

The matching function, M, requires that, for every con-
straint c in the pattern, there must be a field f in the tuple
with the same name, the same type or a derived type, and a
value that satisfies the constraint. While the function does
require that each constraint is satisfied, it does not require
that every field in the tuple is constrained, i.e., a tuple must
contain exactly the fields contained in the pattern, but the
tuple can contain additional fields. Because a field’s con-
straint is a function evaluated over the field’s value, it allows
both positive and negative constraints. We will discuss the
use of this pattern matching in more detail in Section 4.2.

Presentation. Many applications benefit from direct ac-
cess to the tuple space. Other applications, however, oper-
ate more naturally over a different structure, for example a
tree or a self-organizing list. Because different applications
benefit from different presentations of the underlying data,
individualized veneers can abstract the data representation.
Such veneers provide wrappers for the tuple space calls. The
application operates as if it sees, for example, a tree, and the

1Lime 2.0 adopts this type of tuple and tuple matching.
2The three-part notation 〈op quantified variable : range ::
expression〉 used throughout the text is defined as follows:
The variables from quantified variables take on all possible
values permitted by range. If range is missing, the first colon
is omitted and the domain of the variables is restricted by
context. Each such instantiation of the variables is substi-
tuted in expression, producing a multiset of values to which
op is applied, yielding the value of the three-part expres-
sion. If no instantiation of the variables satisfies range, the
value of the three-part expression is the identity element for
op, e.g., true when op is ∀ or zero if op is “+” .

veneer translates operations on the tree into operations on
the underlying tuple space. Because these veneers and their
target applications lie outside the scope of this paper, we
discuss only operations directly on the tuple space.

3.2 View Specification Mechanics
In our computational model, properties of hosts, agents,

and data all contribute to the definition of the operational
context. In providing a view specification, an agent indicates
the specific data that should comprise its view. This view,
therefore, consists of a subset of all the data available on
reachable hosts in the network. The data, the agents owning
the data, the hosts where the agents are located, and the
paths to those hosts must all satisfy the view specification.

Network Constraints. As indicated previously, we ex-
tend the availability of context information beyond a host’s
immediate scope, i.e., a host should be able to gather infor-
mation from a subnet of the entire ad hoc network. Doing
so requires an abstraction of the network topology and its
properties. After specifying some constraints including the
application’s specific definition of distance, an application
on the reference host would like a qualifying list of acquain-
tances. That is:

Given a host, α, in an ad hoc network, and a
positive bound value, D, find the set of all hosts,
Qα, such that the cost of the shortest path from
α to each host in Qα is less than D.

Abstractly, one can view this list as a subnet around the
reference host.

To build this list, we first define a way to determine the
cost of a path. Costs derive from quantifiable aspects of the
reference host’s context. In any network, both hosts and
the links between them have attributes that affect the com-
munication in the network. We abstract these properties by
combining the quantified properties of two connected nodes
with the quantified properties of the link between them to
achieve a single weight for each link in the network. An ap-
plication has the freedom to specify which properties define
the weights of links. As a simple example, each link can
have a weight of one. This allows us to count the number of
hops between two nodes in the network.

Once a weight has been defined and calculated for each
link, a cost function specified by the application can be eval-
uated over these weights to determine the cost of a particular
path in the network. Continuing the network hop count ex-
ample, the cost function specified by the application would
be the sum of the weights of the links along a path. Because
the weight of each link is one, the number of hops from the
source of the path to that node determines the cost at that
node. The only restriction placed on the cost function is
that the cost of a given path must strictly increase as the
number of hops from the reference host grows. We will see
below how this allows us to apply a bound to the compu-
tation of the context. In a real network, however, multiple
paths may exist between two given nodes. Therefore, we
build a tree rooted at the reference host that includes only
the lowest cost path to each node in the network.

Because we aim to restrict the scope of an application’s
context, calculating the lowest cost to every node in the net-
work is not reasonable. To limit the context specification,
we require the application to specify a bound for its cost
function. Nodes to which the cost is less than the bound are
included in the context. Because cost functions must strictly

increase, once the computation reaches a node that lies out-
side the bound, all nodes farther on the same path must also
lie outside the bound. By combining the previous compo-
nents of the network abstraction, we see that in providing
this piece of the context specification, the application agent
must include three things: the mechanism for calculating
the weight of a link, the cost function used to determine the
cost of the path, and a bound on that cost function. For the
hop count example, an entire context specification might be
written as: all nodes which can be reached in fewer than five
hops. The evaluation of this context specification results in
a tree rooted at the reference node and spanning a subnet
of the entire ad hoc network. The path to every node in this
tree satisfies the restrictions imposed by the context specifi-
cation’s cost function and bound, and this tree is maintained
by the underlying system as long as necessary for support-
ing the application. That is, as hosts move in the network,
the properties defining this tree change, thus changing both
the contents and the topology of the tree.

Our previous work [15] on this abstraction has shown that
it is amenable to elegant formal treatment. We have also
developed a protocol that builds and maintains a network
abstraction individualized for the specifying reference host.

Host Constraints. While the network constraints deal
with physical properties of the host, the host constraints
handle logical properties. Examples of such properties in-
clude the host’s id, the identity of the owner of the computer,
or services provided by the computer. A host stores these
properties in a host profile, which can be viewed as a special
private tuple where the fields are host attributes:

〈(att name, type, value), (att name, type, value), ...〉

Host constraints can then be provided as a pattern over this
profile with the matching function and semantics outlined
previously. For example, a host wanting to print a docu-
ment could restrict contributing hosts to color printers of
a certain quality. In such a case, printers might have at-
tributes representing the service they provide, the type of
printer, whether or not the printer is color, and the dpi of
the printer. An example profile for a printer might be:

〈(service, enumeration, printer),
(printer type, enumeration, laser),
(color , boolean, true),
(quality , integer , 1200)〉.

A constraint that would match this profile and satisfy the
previous example host’s requirements would be:

〈(service, enumeration, printer),
(color , boolean, true),
(quality , integer , > 800)〉.

The example constraint does not restrict the type of the
printer because the printer type does not interest the spec-
ifying host. Because the host demands that the printer be
of at least a certain quality, the last constraint provides a
function over the printer’s dpi that must be satisfied.

Agent Constraints. Every EgoSpaces agent defines a
profile similar to a host profile, containing agent properties
instead of host properties. Providing constraints over agent
profiles allows application agents to restrict the set of agents
who contribute data to the view. Because agents are mo-
bile pieces of code, an obvious agent property is the host
on which the agent is located. Other, more application spe-
cific properties are also useful. For example, in the building

inspection domain discussed in the introduction, some appli-
cation agents may sense air quality throughout the building,
while other agents on the same devices monitor physical vi-
brations. Restricting operations to one type of agent or the
other increases the efficiency with which coordination can
occur by decreasing the number of parties involved.

Data Constraints. In the same way that agent con-
straints allow an application agent to restrict the agents con-
tributing to the view, the data constraints allow the same
application agent to restrict the individual data items in
the view. To accomplish such a restriction, the application
agent simply supplies a data pattern that all data in the view
must satisfy. The use of this constraint can be extended if
an application attaches “meta-data” to a piece of data by
inserting extra fields in the application’s tuples that can be
used in matching data constraints.

3.3 Formal View Definition.
Given these four types of constraints, a view specification

consists of three patterns (one over data items, one over
agent profiles, and one over host profiles) and the network
constraints (consisting of a metric for link weights, a net-
work cost function, and a bound on that function). With
this information, our middleware constructs a view for the
application. The view is defined by the set of tuples be-
longing to it. Given a reference host r, we first define η,
the subnet of the ad hoc network that satisfies the provided
network constraints (n) to be a subset of the closure of r’s
network. η must be a tree, r must belong to η, and η must
satisfy n.

Given the network constraints (n), the host constraints
(h), the agent constraints (a), and the data constraints (d),
a view specified by a reference agent r contains the tuples
defined by:

viewr(n, h, a, d) ,
〈set η, γ, α, θ : η ⊆ Closure(r) ∧ tree(η)

∧ r ∈ η ∧ η sat n
∧ γ ∈ η ∧M(γ.profile, h)
∧ α.loc = γ ∧M(α.profile, a)
∧ θ ∈ α.T ∧M(θ, d)

:: θ〉,

where γ is a host, α is an agent, and θ is a tuple. α.T refers
to the agent α’s local tuple space. This function assumes
that the host on which an agent is currently located is ac-
cessible through a variable at the agent, loc. Throughout
our discussion, we will refer to a view as ν.

As hosts and agents move and the available data changes,
the middleware updates the tuples available in the view.
From the application’s perspective, all of these changes are
transparent and manifest only in changes in the set of avail-
able data items. Therefore, the application agent can oper-
ate over a view without regard for the changes occurring in
that view. The application also has the freedom to change
the constraints associated with its view dynamically, and,
when it does, the middleware recalculates the view to re-
flect the application’s new needs.

3.4 Access Controls
As discussed previously, both agents and hosts constantly

move, and EgoSpaces provides flexible and efficient com-
munication in the face of such changes. However, in any
shared data space, access control becomes a real problem.
EgoSpaces addresses the access control issue by adding an

access control function. Each agent specifies an individual-
ized function that limits the ability of other agents to access
its local data. From the opposite direction, when an agent
specifies a view, it attaches to the view a set of credentials
that verify it to other agents. Additionally, the specifying
agent declares the operations it intends to perform over the
view. When determining the contents of a view, EgoSpaces
evaluates each contributing agent’s access control function
over the view’s credentials and potential operations. The
fact that the access control function is evaluated on an indi-
vidual basis for each tuple adhering to the view constraints
provides a very fine level of granularity. The definition of the
view becomes dependent on the evaluation of these access
control functions. The following definition shows the pre-
vious formal view definition augmented to account for the
credentials (κ) of the reference agent, the operations that
will be performed on the view (ops), and the access control
function for an agent α (α.acf):

viewr(n, h, a, d , κ, ops) ,
〈set η, γ, α, θ : η ⊆ Closure(r) ∧ tree(η)

∧ r ∈ η ∧ η sat n
∧ γ ∈ η ∧M(γ.profile, h)
∧ α.loc = γ ∧M(α.profile, a)
∧ θ ∈ α.T ∧M(θ, d)
∧ α.acf (κ, ops, θ)

:: θ〉.
The provision of ops is a contract between the specifying
agent and the EgoSpaces system. Any attempt by the spec-
ifying agent to perform operations not declared for a view
will result in an error. A tuple belongs to a view only if it
satisfies the view constraints and the reference agent meets
the requirements of the access control function of the agent
owning the tuple. The next section covers in more detail
how agents perform operations over views they specify.

4. VIEW PROGRAMMING
An agent interacts with the world by specifying views

that define projections of the set of all available tu-
ples. EgoSpaces then allows an agent access to its views
both through traditional tuple space access operations and
through active views, which attach additional functionality
to a specified view.

4.1 Multiple Views
An agent operates over the ad hoc network through a set

of views, with their own view specifications. These views
can overlap, i.e., two views can contain the same pieces of
data, but an agent operates over only a single view at a time.
Because the view concept is agent-centric, each agent defines
the views needed for its successful operation. Given the
specifications, EgoSpaces constructs and manages all these
views transparently from the application’s perspective.

4.2 Basic Operations
Basic tuple space operations can be divided into two

groups: tuple generation operations that place new tuples
in the agent’s local tuple space and on-demand tuple access
operations that allow a reference agent to read and remove
tuples in one of its views.

Tuple Generation. An agent creates a tuple by per-
forming an out operation on its local tuple space (T):

out(T, t)

T := T ∪ {(ID, tuple id ,newId()]⊕ t}.

We use this notation throughout the discussion to denote
the operational semantics of tuple space and view opera-
tions. The operation appears in the box, and its operational
semantics follow as an abstract program. The out operation
augments the data tuple t provided by the application with
a unique ID field and places the tuple in the local tuple
space. Tuple insertion into the local tuple space is atomic
with respect to all other operations on that local tuple space.

On-Demand Tuple Access. Application agents gain
access to tuples through pattern matching over the tuples’
contents. The scope of such access operations is restricted
to a single view. To operate on the tuple space, an agent
provides a pattern for the desired tuple. The detection of
a matching tuple in the view uses the previously defined
matching function, M, and can be formalized as:

matchExists(ν, p) , 〈∃ θ : θ ∈ ν :: M(θ, p)〉.

In this definition, p is a pattern used for matching tuples,
and ν refers to a specific view defined by the reference agent.
The content of ν changes to reflect the current data available
in the context. Additionally, ν reflects the evaluation of the
access control functions; tuples must pass the access control
restrictions of their owning agents before becoming available
in the view. We will reuse these variable names with the
same meaning throughout the view programming discussion.
The requested operation on the view is ultimately performed
only on the set of tuples belonging to the view that match
the pattern:

matchingSet(ν, p) , 〈set θ : θ ∈ ν ∧M(θ, p) :: θ〉.

The two basic types of operations allowed mirror the ac-
cess operations in Linda. As in Linda, these operations
are blocking, meaning that they return immediately upon
finding a matching tuple in the view; if a matching tuple
does not exist upon issuance of the operation, the operation
blocks until one does exist. The first type, a rd operation,
returns a copy of a tuple in the specified view that matches
the provided pattern. A rd copies a tuple by selecting one
nondeterministically from the matchingSet and returning a
duplicate of it. The nondeterministic selection of a tuple
from the matchingSet uses the nondeterministic assignment
statement [3]. A statement x := x′.Q, assigns to x a value x′

nondeterministically selected from among the values satis-
fying the predicate Q. If such an assignment is not possible,
the statement aborts:

t := rd(ν, p)

〈await matchExists(ν, p)
→ t := t′.(t′ ∈ matchingSet(ν, p))〉3.

The use of the matchExists guard guarantees that at least
one tuple exists in the matchingSet, and, therefore, the non-
deterministic assignment will succeed. If the guard evaluates
to false, the test is attempted later until the synchronization
condition evaluates to true. A discussion of a non-blocking
rd operation and how it differs follows below. Tuples re-
turned by a rd operation remain in the tuple space.

3The 〈awaitB → S〉 construct [2] allows a program to delay
execution until the condition B holds. When B is true, the
statements in S are executed in order. The angle brackets
enclosing the construct indicate that the statement is exe-
cuted atomically, i.e., when S executes, B is guaranteed to
still be true, and no state internal to S is visible outside the
execution of S.

The second type of operation, in, returns a tuple in the
specified view that matches the provided pattern. Unlike rd,
however, in removes the returned tuple from the tuple space.
Removal of a tuple is accomplished by nondeterministically
selecting a tuple from the pattern’s matchingSet, removing
the tuple from the tuple space, and returning it:

t := in(ν, p)

〈await matchExists(ν, p)
→ t := t′.(t′ ∈ matchingSet(ν, p))

||〈||α : t ∈ α.T :: α.T := α.T − {t}〉〉4,

where α is the agent owning the tuple t.
Several common extensions of the Linda primitives [14, 13,

9, 19] include probing operations. As alluded to above, these
operations differ from the blocking operations by returning
immediately, even if a matching tuple does not exist in the
view. As an example, rdp returns a copy of a matching tuple
if one exists; otherwise it returns ε:

t := rdp(ν, p)

〈if matchExists(ν, p) then
t := t′.(t′ ∈ matchingSet(ν, p))

else
t := ε

fi〉.

The definition of inp is the same but removes the tuple.
Access operations can return single tuples or groups of

tuples. We refer to operations returning only one tuple as
single operations and to those returning multiple tuples as
aggregate operations. All the operations we have discussed
thus far fall in the category of single operations. Because a
single operation returns only a single tuple, if the operation
finds more than one matching tuple, it nondeterministically
chooses which to return. Aggregate operations, on the other
hand, return the entire set of matching tuples. Aggregate
operations can be either blocking or probing. Blocking ag-
gregate operations (rdg and ing) block until at least one
tuple in the view matches the pattern. A rdg returns a copy
of all matching tuples. The ing operation builds on this by
additionally removing all of the matching tuples from their
respective tuple spaces:

tset := ing(ν, p)

〈await matchExists(ν, p)
→ tset := matchingSet(ν, p)

||〈||θ, α : θ ∈ matchingSet(ν, p) ∧ θ ∈ α.T
:: α.T := α.T − {tset}〉〉.

The probing versions of aggregate operations closely re-
semble the other probing operations—they return immedi-
ately and do not wait for a matching tuple to appear. In-
stead, they return all of the tuples available that match,
and, if none do, the operations return an empty set. A rdgp
simply returns the matchingSet, while an ingp returns the
matchingSet and removes all of the tuples in the set from
their respective tuple spaces. Their formal definitions are
identical for the definitions of rdg and ing, except for the
wrapping of the matchExists guards in the if/else clause.

4.3 Consistency Concerns
All operations discussed thus far act over the view atom-

ically. This requires a transaction over all participants in

4The || notation indicates that the quantified statements
execute simultaneously. That is, all of the statements satis-
fying the conditions are executed in a single atomic step.

the view. As the number of participants increases, this
can become costly. From a different perspective, the previ-
ously discussed operations come with strict guarantees—if a
matching tuple (or tuples) exists in the view, it (or they) will
be returned. To more efficiently accommodate applications
that do not require these strong guarantees, we introduce
scattered probes that provide a weaker consistency because
they are allowed to miss a matching tuple in the view. Scat-
tered probes provide a best-effort solution and return ε (or
an empty set) if they do not find a matching tuple. Sev-
eral different implementations of scattered probes might ap-
ply in different application situations. The general intuition
behind the operations, however, is a simple polling of the
agents contributing to the view one at a time. EgoSpaces
keeps track of which agents have been polled, and if it has
covered all contributing agents without finding a matching
tuple, the operation returns ε (or an empty set). To de-
fine these operations more formally, we first define a helper
macro that builds the set of agents contributing to the view:

contrib(ν) , 〈set α : 〈∃ θ : θ ∈ ν ∧ θ ∈ α.T 〉 :: α〉.

We must also provide matchExists and matchingSet functions
constrained to specific agents. For brevity, we omit the for-
mal definitions of these functions; they closely resemble their
counterparts that operate over the entire view.

We refer to the single scattered probe operations as rdsp
and insp. The following function shows the definition of
rdsp, in which the operation checks each contributing agent
for a match, and, if all agents have been checked without
finding a match, the operation returns ε:

t := rdsp(ν, p)

A := ∅
t := ε
while contrib(ν)−A 6= ∅ do

α := α′.(α′ ∈ (contrib(ν)−A))
〈if matchExists(α, ν, p) then

t := t′.(t′ ∈ matchingSet(α, ν, p))
break

fi〉
A := A ∪ {α}

od.

The definition of insp is identical to that of rdsp, but re-
moves the tuple that it returns.

The aggregate scattered probe operations, rdgsp and in-
gsp, build on the matchingSet function. They also poll the
contributing agents one at a time, copying or removing tu-
ples as they go, and building a set of tuples to return:

tset := rdgsp(ν, p)

A := ∅
tset := ∅
while contrib(ν)−A 6= ∅ do

α := α′.(α′ ∈ contrib(ν))
〈if matchExists(α, ν, p) then

tset := tset ∪ matchingSet(α, ν, p)
fi〉
A := A ∪ {α}

od.

The definition of ingsp is identical to that of rdgsp, but
removes the set of tuples it returns.

4.4 Reactive Programming
EgoSpaces provides reactive programming abstractions by

allowing agents to adapt their behavior in response to the
presence of tuples matching a provided pattern. Similar

notions of reactive programming for tuple space based mid-
dleware for mobility have proven useful in other systems in-
cluding Lime [14] and MARS [5]. In EgoSpaces, a reaction
associates a tuple in a view with a sequence of program state-
ments which can include both plain code and non-blocking
tuple space operations:

ρ = reaction(p) in mode sched modality
begin op1 , op2 , . . .end.

where op1 , op2 , . . . is the sequence of tuple space operations
and code fragments to execute when the reaction fires.

Agents can enable and disable reactions over views using:

enable ρ over ν
disable ρ over ν.

As indicated by the sched modality , behaviors can have a
high priority (a sched modality of “eager”) or a lower prior-
ity (a sched modality of “lazy”). An eager modality guaran-
tees that the execution of the reaction’s callback occurs im-
mediately upon the insertion (or removal) of a tuple match-
ing pattern p in the view. Only other eager operations can
preempt an eager reaction. A lazy modality brings a much
weaker guarantee—eventual firing of the reaction is guaran-
teed if the tuple remains in the view long enough. Other
operations are allowed in the meantime, and it is therefore
possible that the tuple is removed by one of these operations.

The execution of a reaction always removes the tuple that
triggered it. Therefore, if a single tuple can trigger multiple
reactions, only one will fire; the reaction that fires is chosen
nondeterministically. When a reaction fires, the reference
agent is notified, and the callback is scheduled for execution.

The execution of the statements in the reaction’s callback
occurs as a single atomic step. If the statements out tu-
ples, all the tuples are placed in the tuple space at the same
time at the completion of the callback execution. These tu-
ples can then trigger other reactions registered on the same
view or different views. However the execution of these re-
actions, even in the eager modality, does not force a dis-
tributed transaction, since they are independent atomic ac-
tions. Hosts locked for the execution of one reaction callback
do not remain locked after its completion. Instead, subse-
quent callbacks lock only hosts necessary for their execution,
and other hosts are free to continue processing.

As with all operations on views, registering reactions on a
view affects the evaluation of the contributing agents’ access
controls. When specifying a view, the reference agent must
indicate if it intends to register reactions on the view.

4.5 Active Views
In addition to regular tuple space operations and reactive

programming, our evaluation of current models led us to
develop active views. EgoSpaces allows applications to at-
tach a variety of behaviors to particular views, including the
ability to migrate tuples matching a certain pattern from a
remote tuple space to the agent’s local tuple space, the abil-
ity to duplicate tuples in the view, and the ability to react
to events generated by tuple space access operations. The
notion of active views is extensible in that EgoSpaces allows
application programmers to define individualized types of
behaviors in addition to those provided by the system.

In general, behaviors take the following form:
β = behavior act(p) in mode sched modality

begin tuple modifiers end,

where act can be a migrate, duplicate, capture, or a user-
defined behavior; p is the pattern that triggers the behavior;

and sched modality can be eager or lazy. The tuple modifiers
allow the reference agent to change local tuples resulting
from the behavior. These modifications can insert or remove
fields in the tuple. The necessity for the ability to perform
such modifications will become especially apparent in the
discussion of automatic data duplication.

An agent can enable and disable behaviors over views in
a manner identical to that for reactions. Again, behaviors
associated with a view affect the access controls of the view.
EgoSpaces treats behaviors in the same way as any other
operation—when specifying a view, the reference agent must
indicate what types of behaviors it might enable over the
view. The access control functions of the contributing agents
account for this information when determining which tuples
to contribute to the view.

4.5.1 Transparent Data Migration
Data migration allows a mobile agent to gather data on

which it wishes to operate. This type of behavior can prove
very useful in the ad hoc mobile environment because agents
come and go. By collecting certain tuples while it is con-
nected to other agents, an agent allows itself to operate on
that data after the previous owner moves outside the scope
of the view. Migration ensures that only a single instance
of the tuple exists in the tuple space.

EgoSpaces provides this data migration as a pull opera-
tion. More specifically, the agent to which the tuple moves
indicates (via a pattern) which tuples it wants migrated to
it. As new tuples appear in the view, whether by a tuple in-
sertion operation or because a new agent contributes to the
view, EgoSpaces evaluates each of the new tuples with the
migration pattern and moves those that match. The tuples
are removed from their current tuple space and placed in
the reference agent’s local tuple space without changing the
tuple id. After migration, the migrated tuples still appear
in the same view. Because the current owner’s access con-
trol function was evaluated before the tuple was allowed to
appear in the view, the current owner has implicitly granted
permission for the migration to occur.

4.5.2 Automatic Duplication
Automatic duplication allows a reference agent to cache

tuples from a view without affecting the originals in the
tuple space. The reference agent can then use these copies
after the original tuple disappears from the view, whether
because the owner agent moved outside the view’s reach or
because another operation removed the original. The key
difference between tuple duplication and tuple migration is
that, in duplication, the local copies of the tuple are only
copies, and removing the copy does not affect the original.

Tuple duplication occurs when a matching tuple is in-
serted in the view or when an agent with a matching tuple
moves into the view. A contributing agent moving out of
the view and then returning may cause reduplication of tu-
ples. Managing these reduplicates is the responsibility of
the application performing the duplication.

When a tuple matching the duplication pattern appears
in the view, EgoSpaces automatically creates a copy of it.
The duplicate tuple will likely match the specification of
the view to which the duplicate behavior is attached. The
programmer must prevent an infinite reduplication of these
tuples. The ability to associate tuple modifiers to a dupli-
cation behavior provides an easy way to accomplish this.

4.5.3 Event Capture
Capturing events allows an agent to adapt its behavior

in response to operations performed by other agents on
the view. EgoSpaces allows agents to receive events gen-
erated when agents insert tuples into the tuple space and
remove tuples from the tuple space. When an event occurs
in the view on a tuple matching the event behavior’s pat-
tern, EgoSpaces creates a special event tuple and places it
in the agent’s local tuple space.

5. IMPLEMENTATION
An initial prototype of the EgoSpaces middleware is com-

plete, and we have begun development of the applications
that spurred these investigations. The prototype is built
on top of another newly developed middleware for coordi-
nation among mobile components, LimeLite. Because this
system also utilizes tuple space based coordination, the data
access operations described in the previous section take ad-
vantage of the LimeLite primitives for their implementation.
LimeLite handles all network communication necessary for
data sharing. The prototype includes host, agent, and data
constraints, but due to the model of the underlying sys-
tem, implementation of network constraints is not possible
in the current prototype. However, protocols for support-
ing network constraints have been explored in [15], and an
implementation of the work described is complete. Future
work on the development of the EgoSpaces middleware will
use these protocols to fill in the provision of true asymmet-
ric behavior and allow for an empirical evaluation of the
performance of applications. Additionally, further develop-
ment of reactive and active views will add functionality to
the prototype.

On top of this prototype implementation, we have built
our first EgoSpaces application. This application is an adap-
tation of the RoamingJigsaw built for the Lime middle-
ware [14]. In this application, a group of players cooperate
to reconstruct a puzzle from its pieces. One player initializes
the puzzle by loading an image. In the game’s implemen-
tation, puzzle pieces are represented by tuples in the tuple
space. Initially, all of the puzzle piece tuples are located in
the local tuple space of the agent initializing the puzzle. The
agent can define views over the tuple space that determine
which puzzle pieces are displayed at a given time. In the
game’s implementation, the agent initially starts with the
maximal view, i.e., the view that contains all pieces owned
by any connected agents. As new agents connect, they too
define this view and can see the puzzle pieces available in
the system. An agent can select a piece by clicking on it.
When the agent does so, the tuple corresponding to the puz-
zle piece is removed from the tuple space and placed in the
selecting agent’s local tuple space. To all users, this change
appears as a change in the color of the border of the dis-
played puzzle piece. Players can assemble their pieces, and
these changes are also reflected in the displays of connected
agents. When puzzle piece tuples move outside of a given
agent’s view, they are no longer displayed on the screen. At
any given time, therefore, an agent can work only with the
pieces currently available in its view.

The puzzle application also allows users to define new
views. For example, a common way to assemble a puzzle
is to start with the edge pieces. Therefore, the puzzle player
can define a view that contains only edge pieces. As long as

Figure 2: Two puzzle participants with different views

this is the view currently displayed, the player will see only
available edge pieces, and all interior pieces are hidden. Fig-
ure 2 shows such an example. The player on top has defined
a view containing only edge pieces. The player on bottom is
working in the default view and sees all the pieces. Changes
made by the player on top are displayed to the player on
bottom, but the reverse is not true. This is because the
changes the player on bottom has made affect only interior
pieces, which are not included in the view defined by the
player on top.

Puzzle players may find many different view definitions
useful. For example, if player agents have an idle status, a
player might define a view that contains only puzzle pieces
owned by idle players. If these players are not currently
working on assembling the puzzle, it will not interrupt them
for another player to take control of their pieces and assem-
ble them. As another example, if a player is facing a hole of
a certain shape, he might want to specify his view to contain
only the partially assembled piece he is working on and any
pieces that are the correct shape for the hole.

While serving as an interesting demonstration, the puzzle
application is a good example of an application that benefits
from the transparent sharing available in EgoSpaces. Other
applications that involve collaborative work by distributed
parties can be implemented in similar ways.

6. DISCUSSIONS
The development of this model was driven by our efforts

to build applications for vehicle to vehicle coordination on
the highway. Because a network of transitively connected
automobiles can grow very large, even to include an entire
interstate, the desirability for an application to restrict its
operating context to some reasonable subnet surrounding it-
self became quickly apparent. The asymmetric abstractions
of the EgoSpaces view concept allow exactly this.

The original Linda model is a special case in EgoSpaces
where both hosts and agents are stationary and their tran-
siently shared tuple spaces form a single globally persistent

tuple space. Every agent defines a single view encompassing
every tuple, and operates on this view using only the Linda
primitives that carry over into EgoSpaces. The reduction of
EgoSpaces to Linda is simplified by the fact that, with the
exception of the Linda eval primitive, all of the primitives
available in Linda are available in EgoSpaces.

In Lime agents define multiple named tuple spaces which
are transiently shared based on their names. To accomplish
this in EgoSpaces, an agent creates a view corresponding to
a named tuple space. When an agent places a tuple in the
tuple space, it tags the tuple with the view (tuple space)
name. The view specifications are formed such that a view
contains every tuple tagged with the corresponding name.

EgoSpaces can also express event based models like JEDI [8]
and Siena [6]. These models take advantage of asynchronous
communication through the exchange of event notifications.
Components receive event notifications by subscribing for
particular events. EgoSpaces can achieve this behavior by
attaching the event behavior to a view. Event notifications
can be wrapped in tuples and placed in the tuple space.
Event notification tuples matching the pattern of a registra-
tion will fire the corresponding callback.

7. CONCLUSIONS
EgoSpaces introduces a novel coordination model that fo-

cuses on the context of a particular component in a mobile
ad hoc network. The system allows the mobile agent to
structure its context at a very fine level of granularity. In
doing this, however, EgoSpaces achieves an unprecedented
level of flexibility, both in terms of the agent’s specification
of its operating context and in the provision of mechanisms
for operating on this context. EgoSpaces promises to sim-
plify programming by providing a flexible infrastructure on
which developers build applications for ad hoc mobile envi-
ronments. The model results directly from our reexamina-
tion the applicability of standard models in the high density
highway environment. EgoSpaces introduces an asymmetric
style of coordination that gives each individual agent direct
control over the size and scope of the data it accesses, an
approach that is essential to accommodating programming
for very large and dense ad hoc networks.

ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation under Grant No. CCR-9970939. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the National Science Foundation. The
authors wish to thank Amy Murphy and Gian Pietro Picco
for the lively intellectual discussions that led to the devel-
opment of this model and Tom Elgin for the prototype im-
plementation.

8. REFERENCES
[1] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper,

and M. Pinkerton. Cyberguide: A mobile
context-aware tour guide. ACM Wireless Networks,
3:421–433, 1997.

[2] G. Andrews. Concurrent Programming: Principles and
Practice. The Benjamin/Cummings Publishing
Company, 1991.

[3] R. J. R. Back and K. Sere. Stepwise refinement of
parallel algorithms. Science of Computer
Programming, 13(2–3):133–180, 1990.

[4] P. J. Brown. The stick-e document: A framework for
creating context-aware applications. In Proc. of
EP’96, pages 259–272, 1996.

[5] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A
programmable coordination architecture for mobile
agents. Internet Computing, 4(4):26–35, 2000.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area even notification
service. ACM Trans. on Computer Systems,
19(3):332–383, 2001.

[7] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
C. Efstratiou. Experiences of developing and deploying
a context-aware tourist guide: The GUIDE project. In
Proc. of MobiCom, pages 20–31. ACM Press, 2000.

[8] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Trans. on
Software Engineering, 27(9):827–850, 2001.

[9] N. Davies, A. Friday, S. Wade, and G. Blair. L2imbo:
A distributed systems platform for mobile computing.
ACM Mobile Networks and Applications (MONET),
Special Issue on Protocols and Software Paradigms of
Mobile Networks, 3(2):143–156, 1998.

[10] D. Gelernter. Generative communication in Linda.
ACM Trans. on Programming Languages and Systems,
7(1):80–112, 1985.

[11] A. Harter and A. Hopper. A distributed location
system for the active office. IEEE Networks,
8(1):62–70, 1994.

[12] J. Hong and J. Landay. An infrastructure approach to
context-aware computing. Human Computer
Interaction, 16, 2001.

[13] IBM. T Spaces.
http://www.almaden.ibm.com/cs/TSpaces/, 2001.

[14] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime:
A middleware for physical and logical mobility. In
Proc. of the 21st Int’l. Conf. on Distributed
Computing Systems, pages 524–533, 2001.

[15] G.-C. Roman, C. Julien, and Q. Huang. Network
abstractions for context-aware mobile computing. In
Proc. of the 24th Int’l. Conf. on Software Engineering,
pages 363–373, May 2002.

[16] N. Ryan, J. Pascoe, and D. Morse. Fieldnote: A
handhelod information system for the field. In 1st

Int’l. Workshop on TeloGeoProcessing, 1999.

[17] D. Salber, A. Dey, and G. Abowd. The Context
Toolkit: Aiding the development of context-enabled
applications. In Proc. of CHI’99, pages 434–441, 1999.

[18] B. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In IEEE Workshop on Mobile
Computing Systems and Applications, 1994.

[19] Sun. Javaspaces.
http://www.sun.com/jini/specs/jini1.1html/js-
title.html,
2001.

[20] R. Want et al. An overview of the PARCTab
ubiquitous computing environment. IEEE Personal
Communications, 2(6):28–33, 1995.

	Egocentric Context-Aware Programming in Ad Hoc Mobile Environments
	Recommended Citation
	Egocentric Context-Aware Programming in Ad Hoc Mobile Environments

	tmp.1472055847.pdf.mIG9B

