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ABSTRACT 

A fundamental problem in optical, see-through augmented reality (AR) is characterizing how it 

affects the perception of spatial layout and depth.  This problem is important because AR system 

developers need to both place graphics in arbitrary spatial relationships with real-world objects, 

and to know that users will perceive them in the same relationships.  Furthermore, AR makes 

possible enhanced perceptual techniques that have no real-world equivalent, such as x-ray vision, 

where AR users are supposed to perceive graphics as being located behind opaque surfaces.   

This paper reviews and discusses protocols for measuring egocentric depth judgments in both 

virtual and augmented environments, and discusses the well-known problem of depth 

underestimation in virtual environments.  It then describes two experiments that measured 

egocentric depth judgments in AR.  Experiment I used a perceptual matching protocol to 

measure AR depth judgments at medium- and far-field distances of 5 to 45 meters.  The 

experiment studied the effects of upper versus lower visual field location, the x-ray vision 

condition, and practice on the task.  The experimental findings include evidence for a switch in 

bias, from underestimating to overestimating the distance of AR-presented graphics, at ~23 

meters, as well as a quantification of how much more difficult the x-ray vision condition makes 

the task.  Experiment II used blind walking and verbal report protocols to measure AR depth 

judgments at distances of 3 to 7 meters.  The experiment examined real-world objects, real-world 

objects seen through the AR display, virtual objects, and combined real and virtual objects.  The 

results give evidence that the egocentric depth of AR objects is underestimated at these 

distances, but to a lesser degree than has previously been found for most virtual reality 

environments.  The results are consistent with previous studies that have implicated a restricted 

field-of-view, combined with an inability for observers to scan the ground plane in a near-to-far 

direction, as explanations for the observed depth underestimation. 
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1. INTRODUCTION 

Optical, see-through augmented reality (AR) is the variant of AR where graphics are 

superimposed on a user’s view of the real world with optical, as opposed to video, combiners.  

Because optical, see-through AR (simply referred to as “AR” for the rest of this paper) provides 

direct, heads-up access to information that is correlated with a user’s view of the real world, it 

has the potential to revolutionize the way many tasks are performed.  In addition, AR makes 

possible enhanced perceptual techniques that have no real-world equivalent.  One such technique 

is x-ray vision, where the intent is for AR users accurately perceive objects which are located 

behind opaque surfaces. 
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The AR community is applying AR technology to a number of unique and useful applications 

[1].  The application that motivated the work described here is mobile, outdoor AR for 

situational awareness in urban settings (the Battlefield Augmented Reality System (BARS) [19]).  

This is a very difficult application domain for AR; the biggest challenges are outdoor tracking 

and registration, outdoor display hardware, and developing appropriate AR display and 

interaction techniques.   

In this paper we focus on AR display techniques, in particular, how to correctly display and 

accurately convey depth.  This is a hard problem for several reasons.  Current head-mounted 

displays are compromised in their ability to display depth, because they often dictate a fixed 

accommodative focal depth, and they restrict the field of view.  Furthermore, it is well known 

that distances are consistently underestimated in VR scenes depicted in head-mounted displays 

[5, 16, 21, 23, 34, 36], but the reasons for this phenomenon are not yet clear.  In addition, unlike 

virtual reality, with AR users see the real world, and therefore graphics need to appear to be at 

the same depth as co-located real-world objects, even though the graphics are physically drawn 

directly in front of the eyes.  Furthermore, there is no real-world equivalent to x-ray vision, and it 

is not yet understood how the human visual system reacts to information displayed with 

purposely conflicting depth cues, where the depth conflict itself communicates useful 

information.   

2. BACKGROUND AND RELATED WORK 

DEPTH CUES AND CUE THEORY: Human depth perception delivers a vivid three-dimensional 

perceptual world from flat, two-dimensional, ambiguous retinal images of the scene.  Current 

thinking on how the human visual system is able to achieve this performance emphasizes the use 

of multiple depth cues, available in the scene, that are able to resolve and disambiguate depth 

relationships into reliable, stable percepts.  Cue theory describes how and in which 

circumstances multiple depth cues interact and combine.  Generally, ten depth cues are 

recognized (Howard and Rogers [11]): (1) binocular disparity, (2) binocular convergence, (3) 

accommodative focus, (4) atmospheric haze, (5) motion parallax, (6) linear perspective and 

foreshortening, (7) occlusion, (8) height in the visual field, (9) shading, and (10) texture gradient.  

Real-world scenes combine some or all of these cues, with the structure and lighting of the scene 

determining the relative salience of each cue.  Although depth cue interaction models exist 
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(Landy et al. [18]), these were largely developed to account for how stable percepts could arise 

from a variety of cues with differing salience.  The central challenge in understanding human 

depth perception in AR is determining how stable percepts can arise from inconsistent, sparse, or 

purposely conflicting depth cues, which arise either from imperfect AR displays, or from novel 

AR perceptual situations such as x-ray vision.  Therefore, models of AR depth perception will 

likely inform both applied AR technology as well as basic depth cue interaction models. 

NEAR-, MEDIUM-, AND FAR-FIELD DISTANCES: Depth cues vary both in their salience across real-

world scenes, and in their effectiveness by distance.  Cutting [6] has provided a useful taxonomy 

and formulation of depth cue effectiveness by distances that relate to human action.  He divided 

perceptual space into three distinct regions, which we term near-field, medium-field, and far-

field.  The near field extends to about 1.5 meters: it extends slightly beyond arm’s reach, it is the 

distance within which the hands can easily manipulate objects, and within this distance, depth 

perception operates almost veridically.  The medium field extends from about 1.5 meters to about 

30 meters: it is the distance within which conversations can be held and objects thrown with 

reasonable accuracy; within this distance, depth perception for stationary observers becomes 

somewhat compressed (items appear closer than they really are).  The far field extends from 

about 30 meters to infinity, and as distance increases, depth perception becomes increasingly 

compressed.  Within each of these regions, depth cues vary in their availability, salience, and 

potency.     

EGOCENTRIC DISTANCE JUDGMENT TECHNIQUES: Researchers have long been interested in 

measuring the perception of distance, but, faced with the classic problem that perception is an 

invisible cognitive state, have had to find measurable quantities that can be related to the 

perception of distance.  Therefore, they have devised experiments where distance perception can 

be inferred from distance judgments.  The most general categorization of distance judgments is 

ego- or exocentric: egocentric distances are measured from an observer’s own view point, while 

exocentric distances are measured between different objects in a scene.  Loomis and Knapp [21] 

and Foley [10] review and discuss the methods that have been developed to measure judged 

egocentric distances. 

There have been three primary methods: verbal report, perceptual matching, and open-loop 

action-based tasks.  With verbal report [10, 16, 21, 23] observers verbally estimate the distance 

to an object, typically using whatever units they are most familiar with (e.g., feet, meters, or 
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multiples of some given referent distance).  Observers have also verbally estimated the size of 

familiar objects [21], which are then used to compute perceived distance.  Perceptual matching 

tasks [9, 10, 22, 30, 37] involve the observer adjusting the position of a target object until it 

perceptually matches the distance to a referent object.  Perceptual matching is an example of an 

action-based task; these tasks involve a physical action on the part of the observer that indicates 

perceived distance.  Action-based tasks can be further categorized into open- and closed-loop 

tasks.  In an open-loop task, observers do not receive any visual feedback as they perform the 

action, while in a closed-loop task they do receive feedback.  By definition, perceptual matching 

tasks are closed-loop action-based tasks. 

A wide variety of open-loop action-based tasks have been employed.  For all of these tasks, 

observers perceive the egocentric distance to an object, and then perform the task without visual 

feedback.  The most common open-loop action-based task has been blind walking [5, 16, 21, 23, 

36, 37], where observers perceive an object at a certain distance, and then cover their eyes and 

walk until they believe they are at the object’s location.  Blind walking has been found to be very 

accurate for distances up to 20 meters, and there is compelling evidence that blind walking 

accurately measures the percept of egocentric distance (Loomis and Knapp [21]).  Because of 

these benefits, blind walking has been widely used to study egocentric depth perception at 

medium- and far-field distances, in both real-world and VR settings.  A closely related technique 

is imagined blind walking [7, 26], where observers close their eyes and imagine walking to an 

object while starting and stopping a stopwatch; the distance is then computed by multiplying the 

time by the observers’ normal walking speed.  Yet another variant is triangulation by walking 

[21, 34, 36], where observers view an object, cover their eyes, walk a certain distance in a 

direction oblique to the original line of sight, and then indicate the direction of the remembered 

object location; their perception of the object’s distance can then be recovered by simple 

trigonometric calculations.  Near-field distances have been studied by open-loop pointing tasks 

[10, 25], where observers indicate distance with a finger or manipulated slider that is hidden 

from view.   

In addition, some researchers have used forced-choice tasks [20, 29, 30] to study egocentric 

depth perception.  In forced-choice tasks, observers make one of a small number of discrete 

depth judgment choices, such as whether one object is closer or farther than another; or at the 

same or a different depth; or at a near, medium, or far depth, etc.  These tasks tend to use a large 
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number of repetitions for a small number of observers, and can employ psychophysical 

techniques to measure and analyze the judged depth [29, 30]. 

Finally, although depth judgment tasks are considered the best method available for 

measuring the egocentric percept of distance and have been widely used, researchers have 

determined that they can be influenced by cognitive factors that are unrelated to actual egocentric 

distance.  For example, Decety et al. [7] and Proffitt [27] have argued that distance judgments 

are influenced by the amount of energy observers anticipate expending to traverse the distance.  

Proffitt [27] and collaborators have further observed that distance judgments are influenced by 

the possibility of injury, by the observer’s current emotional state, and even by social factors 

such as whether or not the observer owns the item to which distances are judged. 

THE VIRTUAL REALITY DEPTH UNDERESTIMATION PROBLEM: Over the past several years many 

studies have examined egocentric depth perception in VR environments.  A consistent finding 

has been that egocentric depth is underestimated when objects are viewed on the ground plane, 

at near- to medium-field distances, and the VR environment is presented in a head-mounted 

display (HMD) [5, 16, 21, 23, 28, 34, 36].  As discussed above, most of these studies have 

utilized open-loop action-based tasks, although the effect has been observed with perceptual 

matching tasks as well [37].  These studies have examined various theories as to why egocentric 

depth is underestimated, and have found evidence that underestimation is caused by an HMD’s 

limited field-of-view [37]; that underestimation is not caused by an HMD’s limited field-of-view 

[5, 16]; that the weight of the HMD itself might contribute to the phenomenon [36]; that 

monocular versus stereo viewing does not cause it [5]; that the quality of the rendered graphics 

does not cause it [34]; that the effect persists even when observers see live video of the real 

world in an HMD [23]; that the effect might exist when VR is displayed on a large-format 

display screen as well [26]; that the effect might disappear when observers know that the VR 

room is an accurate model of the physical room in which they are located [13]; that the amount 

of underestimation is significantly reduced by as little as 5 to 7 minutes of practice with feedback 

[24, 28]; and that the underestimation effect can be compensated by modifying the way the 

graphics are rendered [17].  In summary, the egocentric distance underestimation effect is real, 

and although its parameters are being explored, it is not yet fully understood.   

PREVIOUS AR DEPTH JUDGMENT STUDIES: There have been a small number of studies that have 

examined depth judgments with optical, see-through AR displays.  Ellis and Menges [9] 
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summarize a series of AR depth judgment experiments, which used a perceptual matching task to 

examine near-field distances of 0.4 to 1.0 meters, and studied the effects of an occluding surface 

(the x-ray vision condition), convergence, accommodation, observer age, and monocular, 

biocular, and stereo AR displays.  They found that monocular viewing degraded the depth 

judgment, and that the x-ray vision condition caused a change in vergence angle which resulted 

in depth judgments being biased towards the observer.  They also found that cutting a hole in the 

occluding surface, which made the depth of the virtual object physically plausible, reduced the 

depth judgment bias.  McCandless et al. [22] used the same experimental setup and task to 

additionally study motion parallax and AR system latency in monocular viewing conditions; they 

found that depth judgment errors increased systematically with increasing distance and latency.  

Rolland et al. [29], in addition to a substantial treatment of AR calibration issues, discuss a pilot 

study at near-field distances of 0.8 to 1.2 meters, which examined depth judgments of real and 

virtual objects using a forced-choice task.  They found that the depth of virtual objects was 

overestimated at the tested distances.  Rolland et al. [30] then ran additional experiments with an 

improved AR display, which further examined the 0.8 meter distance, and compared forced-

choice and perceptual matching tasks.  They found improved depth accuracy and no consistent 

depth judgment biases.  Jerome and Witmer [14] used a perceptual matching task as well as 

verbal report to examine distances from 1.5 to 25 meters.  They found that the depth of real-

world objects were judged more accurately than virtual objects, but their dependent measure 

does not allow the error to be categorized as under- or overestimation.  They also found a very 

interesting interaction between error and gender.  Kirkely [15] used verbal report to study the 

effect of the x-ray vision condition, the ground plane, and object type (real objects, realistic 

virtual objects (e.g., a chair), and abstract virtual objects (e.g., a sphere)), on monocularly-

viewed objects at distances from 3 to 33.5 meters.  He found that the x-ray vision condition 

reduced performance, placing objects on the ground plane improved performance, and that real 

objects resulted in the best performance, realistic virtual objects resulted in intermediate 

performance, and abstract virtual objects resulted in the worst performance.  Livingston et al. 

[20] used a forced-choice task to examine graphical parameters such as drawing style, intensity, 

and opacity on occluded AR objects at far-field distances of 60 to 500 meters.  They found that 

certain parameter settings were more effective for their task.   
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Taken together, these studies have just begun to explore how depth perception operates in AR 

displays.  In particular, only two previous studies have examined AR depth perception in the 

medium- to far-field, which is an important range of distances for many imagined outdoor AR 

applications.  In this paper, we describe two AR egocentric depth judgment experiments that 

have studied this range of distances.  Experiment I used a perceptual matching task, and 

Experiment II used verbal report and blind walking tasks.  Furthermore, Experiment II is the first 

reported AR depth study to use the open-loop action-based task of blind walking, and as 

discussed above, in VR open-loop action-based tasks have been the most wildly used task 

category. 

(a) referents on ceiling,  
occluder absent 

(b) referents on ceiling,  
occluder present 

(c) referents on floor,  
occluder absent 

(d) referents on floor,  
occluder present 

Figure 1: The experimental setting and layout of the real-world 
referents and the virtual target rectangle.  Observers manipulated the 
depth of the target rectangle to match the depth of the real-world 
referent with the same color (red in this example).  Note that these 
images are not photographs taken through the actual AR display, but 
instead are accurate illustrations of what observers saw. 
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3. EXPERIMENT I: PERCEPTUAL MATCHING PROTOCOL 

3.1 Experimental Task and Setting 

In Experiment I1, we used a perceptual matching task to study depth judgments of medium- to 

far-field distances of 5.25 to 44.31 meters.  Figure 1 shows the experimental setting.  Observers 

sat on a stool at one end of a long hallway, and looked through an optical, see-through AR 

display mounted on a frame.  Observers saw a series of eight real-world referents, approximately 

positioned evenly down the hallway (Figure 1).  Each referent was a different color.  The AR 

display showed a virtual target, which we drew as a semi-transparent rectangle that horizontally 

filled the hallway, and vertically extended about half of the hallway’s height.  Our target and task 

was motivated by our initial problem domain, outdoor augmented reality in urban settings [19], 

which required users to visualize the spatial layout of rectangular building components, such as 

walls, floors, doors, etc., within a radius of one to several blocks.  The visualized rectangular 

building components typically abutted other parts of the building, such as the hallway in our 

experimental setting.  

Observers adjusted the target’s depth position in the hallway with a trackball.  For each trial, 

our software drew the target rectangle at a random initial depth position; it drew the target 

rectangle with a white border, and colored the target interior to match the color of one of the 

referents (Figure 1).  The observer’s task was to adjust the target’s depth position until it 

matched the depth of the referent with the same color.  When the observer believed the target 

depth matched the referent depth, they pressed a mouse button on the side of the trackball.  This 

made the target disappear; the display then remained blank for approximately one second, and 

then the next trial began.  For the display device we used a Sony Glasstron LDI–D100B stereo 

optical see-through display, displays 800 × 600 (horizontal by vertical) pixels in a transparent 

window which subtends 27° × 20°2, and thus each pixel subtends approximately .033° × .033°.   

                                                 
1 This experiment has been previously described by Swan et al. [32]; this section summarizes the experiment and its 

most interesting results. 
2 Angular measures in this paper are in degrees of visual arc.   
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3.2 Variables and Design 

INDEPENDENT VARIABLES: The independent variables are summarized in Table 1.  We recruited 

eight observers from a local population of scientists and engineers.  As shown in Figure 1, we 

placed the referents at two different heights in the visual field: we mounted the referents either on 

the ceiling or the floor.  Our experimental control program rendered the target in the opposite 

field of view as the referents.  As discussed above, we were interested in understanding AR 

depth perception in the x-ray vision condition, so we varied the presence of an occluding surface.  

When the occluder was absent (Figure 1, (a) and (c)), observers could see the hallway behind the 

target.  When the occluder was present (Figure 1, (b) and (d)), we mounted a heavy rectangle of 

foamcore posterboard across the observer’s field-of-view, which occluded the view of the 

hallway behind the target.  We placed the eight referents at the distances from the observer 

indicated in Table 1.  We built the referents out of triangular shipping boxes, which measured 

15.3 cm wide by 96.7 cm tall.  We covered the boxes with the colors listed in Table 1.  We 

created the colors by printing single-colored sheets of paper with a color printer.  To increase the 

contrast of the referents against the hallway background, we created a border around each color 

with white gaffer’s tape.  We affixed the referents to the ceiling and floor with velcro.  We 

presented each repetition of the other independent variables 10 times.   
Table 1: Independent variables and levels, and dependent 
variables, for Experiment I. 

INDEPENDENT VARIABLES 
observer 8 (random variable)
height in

 visual field 2 ceiling, floor 

occluder 2 present, absent
distance 8

DISTANCE 
(METERS) 

ANGULAR SIZE 
(° VISUAL  
ANGLE) COLOR 

5.25 1.75 orange
11.34 .808 red
17.42 .526 brown
22.26 .412 blue
27.69 .331 purple
33.34 .275 green
38.93 .235 pink
44.31 .206 yellow

repetition 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
DEPENDENT VARIABLES 

judged distance measured by perceptual matching, meters
absolute error | judged distance – distance |, meters

error judged distance – distance, meters
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DEPENDENT VARIABLES: For each trial, observers manipulated a trackball to place the target at 

their desired depth down the hallway, and pressed the trackball’s button when they were 

satisfied.  The trackball produced 2D cursor coordinates, and we converted the y-coordinate into 

a depth value with the perspective transform of our graphics pipeline; we used this depth value to 

render the target rectangle.  When an observer pressed the mouse button, we recorded this depth 

value as the observer’s judged distance.  As indicated in Table 1, we used the judged distance to 

calculate two dependent variables, absolute error and error.  An absolute error or error close to 

0 indicates an accurately judged distance.  An error > 0 indicates an overestimated judged 

distance, while an error < 0 indicates an underestimated judged distance.  

EXPERIMENTAL DESIGN AND PROCEDURE: We used a factorial nesting of independent variables 

for our experimental design, which varied in the order they are listed in Table 1, from slowest 

(observer) to fastest (repetition).  We collected a total of 2560 data points (8 observers × 2 fields 

of view × 2 occluder states × 8 distances × 10 repetitions).  We counterbalanced presentation 

order with a combination of Latin squares and random permutations.  Each observer saw all 

levels of each independent variable, so all variables were within-subject.   

3.3 Results and Discussion 

Actual Referent Distance (meters)

Er
ro

r 
(m

et
er

s)

44.3138.9333.3427.6922.2617.4211.345.25

6

5

4

3

2

1

0

-1

-2

-3

0

± 1 std error

    = 74.4%
all means
regression through 

    = 91.7%
11.34 m to 44.31 m means
regression through 

r 2

r 2

Figure 2: The effect of distance on error (N = 2560)1, which exhibits 
a strong linear regression beginning at 11.34 meters.  This reveals 
a switch in bias from underestimating to overestimating target 
distance at ~23 meters. 

Here we discuss the main results qualitatively; full statistical details are given in Swan et al. [32].  

Figure 2 shows that error increased linearly with increasing distance (r2 = 74.4%; black line in 

                                                 
1 In this and future graphs, N is the number of data points that the graph summarizes. 
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Figure 2).  However, the 5.25 meter referent weakens the linear relationship; it is likely close 

enough that near-field distance cues are still operating.  The linear relationship between error and 

distance increases when analyzed for referents 2–8 (r2 = 91.7%; red line in Figure 2).  Even more 

interesting is a shift in bias from underestimating (referents 2–4) to overestimating (referents 5–

8) distance.  The bias shift occurs at around 23 meters, which is where the red line in Figure 2 

crosses zero meters of error.  Foley [10] found a similar bias shift, from underestimating to 

overestimating distance, when studying binocular disparity in isolation from all other depth cues.  

He found that the shift occurred in a variety of perceptual matching tasks, and although its 

magnitude changed between observers, it was reliably found.  However, in Foley’s tasks the 

point of veridical performance was typically found at closer distances of 1–4 meters.  The 

similarity of this finding to Foley’s suggests that stereo disparity may be an important depth cue 

in this experimental setting, although the strength of stereo disparity weakens throughout the 

medium-field range.  It seems likely that linear perspective is also an important depth cue here. 

Actual Referent Distance (meters)

A
bs

ol
ut

e 
Er

ro
r 

(m
et

er
s)

44.3138.9333.3427.6922.2617.4211.345.25

12

10

8

6

4

2

0

    = 93.5%

    = 93.3%occluder = present

occluder = absent

r

r

2

2

Figure 3: Effect of occluder by distance on absolute error (N = 
2560).  Observers had more error in the occluded (x-ray vision) 
condition (red line and points) than in the non-occluded condition 
(black and points), and the difference between the occluded and 
non-occluded conditions increased with increasing distance. 

Figure 3 shows an occluder by distance interaction effect on absolute error.  When an occluder 

was present (the x-ray vision condition), observers had more error than when the occluder was 

absent, and the difference between the occluder present and occluder absent conditions increased 

with increasing distance.  Figure 3 shows a linear modeling of the occluder present condition 

(red line), which explains r2 = 93.5% of the observed variance, and a linear modeling of the 

occluder absent condition (black line), which explains r2 = 93.3% of the observed variance.  

These two linear models allow us to estimate the magnitude of the occluder effect according to 

distance:  
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 ypresent – yabsent = .08x – .33, 

where ypresent is the occluder present (red) line, yabsent is the occluder absent (black) line, and x is 

distance.  This equation says that for every additional meter of distance, observers made 8 cm of 

additional error in the occluder present versus the occluder absent condition.   

Figure 4 shows an interesting interaction between height in the visual field and repetition.  

The solid shapes (■,●) show the interaction for all of the data.  When the referents were mounted 

on the ceiling (■), observers overestimated their distance by about 1.5 meters, and when the 

referents were mounted on the floor (●), observers began with an underestimation (low 

repetitions), and with practice, by repetition 8 matched the overestimation of the ceiling-mounted 

referents.  The general bias towards overestimation can be explained by the overestimation of the 

last two referents, as seen in Figure 2.  In Figure 4 the hollow shapes (□,○) show the same 

interaction when the last two referents are removed.  When the referents were mounted on the 

ceiling (□), observers did not show a bias, and by repetition 7 were quite accurate.  For referents 

mounted on the floor (○), observers initially demonstrated the same underestimation as they did 

for the full data set, and with practice, by repetition 7 matched the veridical performance of the 

ceiling-mounted referents (□). 

Repetition

Er
ro

r 
(m

et
er

s)

10987654321

2

1

0

-1

-2

0

ceiling, all data
floor, all data
ceiling, referents 1-6
floor, referents 1-6

Height in Visual Field

Figure 4: Effect of height in the visual field by repetition on error (N 
= 2560).  Solid shapes (■,●) are means for all the data; hollow 
shapes (□,○) are means for the first six referents.  Squares (■,□) 
are referents mounted on the ceiling; circles (●,○) are referents 
mounted on the floor.  For clarity, standard error bars are not 
shown.   

This interaction is puzzling.  We hypothesize that the underestimation of the first 2 or 3 floor-

mounted referents (○) is similar to the underestimation that has been demonstrated in VR 

environments, and that the underestimation’s disappearance is a practice effect, which has not 

been seen in previous experiments because open-loop action-based tasks such as blind walking 
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typically only have 1–3 repetitions.  This hypothesis is consistent with the findings of Mohler et 

al. [24] and Richardson and Waller [28], who found that as little as three additional repetitions of 

blind walking (but with feedback) significantly reduced the amount of underestimation.  On the 

other hand, the ceiling-mounted referents (□), which are hanging at eye level, do not show 

underestimation.  Among the very few studies to examine the egocentric distance of ceiling-

mounted referents is Dilda, Creem-Regehr, and Thompson [8], who used a perceptual matching 

task that is very similar to the one we used, and found that the distance was overestimated by 

10%.  Interestingly, in Figure 4, for the first 3 repetitions the difference between the ceiling (□) 

and floor (○) referents is also roughly 10%.   

4. EXPERIMENT II: BLIND WALKING AND VERBAL ESTIMATION PROTOCOL 

(a) (b) (c) 

Figure 5: (a) Observer’s view of the real-world referent object, illuminated by the halogen lights, and the virtual referent object (the 
real + virtual + HMD environment).  Observers viewed the virtual object in red/blue anaglyphic stereo.  We rendered the backmost 
line of the virtual object with a dashed appearance, which further enhanced the sense that the virtual and real objects were merged.  
Note that we created this image using video see-through AR, while observers used optical see-through AR.  (b) Observer looking 
through the frame-mounted AR HMD during a blind walking trial.  An experimenter is prepared to swing the frame out of the way.  
(c) The experimenter has swung the frame out of the way, and the observer is now free to walk forwards. 

Our experiences conducting Experiment I motivated us to design and conduct an experiment 

which replicated the type of depth judgment task and medium-field setting that has been most 

often studied in VR.  Experiment II utilized the depth judgment protocols of (1) blind walking 

and (2) verbal report to measure egocentric distance perception of ground-based objects in an AR 

head-mounted display (HMD).  We again studied medium-field distances, this time from 3 to 7 

meters.  As discussed previously, the VR egocentric depth perception literature describes a 

number of studies utilizing blind walking [5, 16, 21, 23, 36] and verbal report [10, 16, 21, 23], at 

distances ranging from ~2 to ~25 meters.  Therefore, Experiment II is more directly comparable 

to the VR depth perception literature — the main difference being the use of a see-through AR 

display as opposed to an opaque VR display.  Our motivation was to further characterize the 
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depth underestimation phenomena in AR, as well as to study depth judgments of (1) virtual 

objects and (2) virtual objects that augment the appearance of real objects.  As a control 

condition, we also studied depth judgments of (3) real objects seen with an unencumbered view, 

and (4) real objects seen through the AR HMD display.   

4.1 Experimental Setup and Task 

Observers judged the distance to both a physical referent object (Figure 5a), as well as a virtual 

model of the referent object.  Our referent object was a wooden pyramid, 23.5cm tall, with a 

square base of 23.5cm.  Our display device was a Sony Glasstron LDI–100B monoscopic 

(biocular), optical see-through HMD.  Our HMD displays 800 × 600 (horizontal by vertical) 

pixels in a transparent window which subtends 27° × 20°, and thus each pixel subtends 

approximately .033° × .033°.  This window is approximately centered in a larger semi-

transparent frame, which is tinted like sunglasses and so attenuates the brightness of the real 

world.  The outer edge of this frame subtends 66° × 38°.  Because our HMD is monoscopic, we 

used an anaglyphic stereo technique to give observers a stereo disparity depth cue.  We presented 

the virtual referent in blue to the left eye and red to the right eye (Figure 5a), and we attached 

appropriately-colored red and blue plastic filters to the inside of the HMD.  We ordered the 

filters from a supplier of 3D anaglyphic stereo equipment; their colors matched the red and blue 

produced from common monitors.  For each eye, there was negligible ghosting through the other 

eye’s filter.  The resulting virtual object appeared neither red nor blue, but instead a shade of 

white.  There was also a subtle shimmering effect, which did not disrupt the sense that the virtual 

referent object was located in a definite position in space.  We rendered the back line of the 

virtual object with a dashed appearance, to graphically suggest that it was behind the front lines.   

Attaching the red and blue filters to the HMD further attenuated the brightness of the real 

world.  Although we set the display opacity to its most transparent setting, it was difficult to see 

the real world, and the physical referent object, under normal indoor illumination conditions.  

Therefore, like other studies that have utilized Glasstron displays [14], we illuminated the 

referent object with six 600-watt halogen lamps (Figure 5), which provided enough illumination 

so that the object could be readily perceived through the display.  In addition, we painted the 

physical referent object white, both to match the virtual pyramid, and to better reflect the 

illumination of the halogen lamps.  We adjusted the HMD’s brightness setting so that the virtual 
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object matched the brightness of the real object.  We corrected the display for an optical barrel 

distortion effect using the 2D polygonal grid-based texture mapping technique initially described 

by Watson and Hodges [35] and refined by Bax [2]; we separately calibrated a 16 × 12 cell grid 

for the left and right display channels.  Our display had a non-adjustable inter-pupilary 

separation, so we measured observers’ inter-pupilary distance and eye height, and modeled these 

parameters in software.  Our display also had a non-adjustable accommodative demand of 1.2 

meters. 

As mentioned above, we wanted to study the condition where the virtual referent augmented 

the appearance of the physical referent.  This meant that we needed to achieve a very precise 

alignment between the virtual and physical referents — more precise than is possible with 

current 6 degree-of-freedom tracking technology.  Therefore, similar to Experiment I, we 

mounted the AR HMD on a rigid frame, supported by two tripods.  We adjusted the height of the 

tripods so that each observer could comfortably look through the HMD at their normal standing 

eye height.   

The blind walking protocol requires subjects to observe a referent object, close (or cover) their 

eyes, and walk forward.  This meant that it was necessary to engineer the HMD frame so that it 

could swing out of the way (Figure 5).  The frame was attached to one tripod with a caster wheel 

mount that allowed 360° of rotation, while the other side of the frame rested in an “L” shaped 

holder.  We engineered this apparatus to be stable enough so that, when the HMD was swung out 

of the way and then back into position, the alignment was preserved as much as possible.  During 

the experiment, we typically only had to make minor adjustments to restore the alignment.  We 

stereo calibrated the display by stereo-aligning a virtual wireframe model of the experimental 

room to the actual room, and as discussed below, we tested and recalibrated the alignment 

between the virtual and real referent objects as often as every trial.   

We conducted the experiment in two different buildings1 on the Mississippi State University 

campus.  Location 1 was a 2.28 × 30.4 meter hallway; observers stood 8.83 meters from one end, 

                                                 
1 Although it was not our desire to change locations during the experiment, we were forced to by two factors: (1) the 

halogen lights, a lack of air conditioning, and the onset of summer resulted in uncomfortable conditions in 

Location 1, and (2) the Institute for Neurocognitive Science and Technology, where we conducted this 

experiment, moved into a new building (Location 2), which meant we had to move our equipment as well.  In 

Section 4.2.3, we discuss where this location change fell in the experimental design.   
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and walked down the center of the hallway.  Location 2 was an 11.35 × 7.26 meter empty room 

in a different building; observers stood 1.7 meters from one wall and faced the long axis of the 

room.  Observers walked down a path that was approximately centered between one wall of the 

room and a folding wall that extends 2.77 meters into the room.  In both locations, we attached a 

long, flexible measuring tape down the center of the pathway; we used this tape to place the 

physical referent object at precise distances, and to measure the observer’s position during the 

blind walking trials.  The numbers on the tape were much too small to be legible to observers 

during experimental trials.   

We ran the experiment on a Pentium M 1.80 GHz laptop computer with an NVIDIA GeForce 

FX Go5200 graphics card, which outputs frame-sequential stereo.  We monitored the 

experiment’s progress on the laptop screen.  We implemented our experimental control code in 

C++, using the OpenGL library, and Perl.   

4.2 Variables and Design 
Table 2: Independent variables and levels, and dependent 
variables, for Experiment II. 

INDEPENDENT VARIABLES 
observer 16 (random variable)

environment 4 real world, 
real + HMD  
real + virtual + HMD 
virtual + HMD

protocol 2 blind walking
verbal report

distance 3 3, 5, 7 meters
repetition 4 1, 2, 3, 4

DEPENDENT VARIABLES 
judged distance measured from each protocol, meters

error judged distance – distance, meters
 

4.2.1 Independent Variables 

OBSERVERS: We recruited 16 observers from a population of university students (undergraduate 

and graduate), and staff.  9 of the observers were male, 7 were female; they ranged in age from 

20 to 33, with a mean age of 25.4.  We screened the observers, via self-reporting, for color 

blindness and visual acuity.  All observers volunteered, and were compensated $10 per hour for 

their time.  Observers spent an average of 2.25 hours completing the experiment. 

ENVIRONMENT: As shown in Table 2 and Figure 5, observers judged the depth of referents 

presented in four different environments.  In the real world environment, observers saw the real-
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world referent object, and did not look through the HMD.  We included this as a control 

condition, as it duplicates the setup of distance perception studies with real-world referents [21].  

In the real + HMD environment, observers saw the real-world referent object, but this time 

regarded the referent object through the HMD.  In the real + virtual + HMD environment, 

observers saw the real-world referent object and the virtual referent object at the same time.  As 

discussed below, we carefully calibrated the display so that the two aligned with a high degree of 

precision.  In the virtual + HMD environment, observers saw only the virtual referent object. 

PROTOCOL: Observers used two different protocols to judge the depth of referent objects.  When 

using the blind walking protocol, observers regarded the referent object for as long as they 

wished (typically a few seconds), closed their eyes, and then verbally notified the experimenter 

that they were ready to respond.  An experimenter swung the HMD out of the way and said 

“walk forward”; this operation typically took ~2 seconds.  After hearing “walk forward”, 

observers walked, with their eyes closed, to their remembered location of the referent object.  For 

environments where a physical referent object was present, a second experimenter removed the 

object before the observer reached the location.  After stopping, observers stood and looked 

ahead (not down), while the two experimenters silently recorded their distance from the floor-

mounted tape.  When this was recorded, observers walked to an isolation area, which was a room 

off of the hallway (Location 1), or an area separated by a folding wall (Location 2).  In the 

isolation area, observers could not see the experimental room.  While the observer was gone, the 

experimenters reset the HMD, set the physical referent to the next distance, and checked and 

adjusted the HMD calibration.  When all was ready, the experimenters asked the observer to 

return to the starting position without looking at the room, and begin the next trial.  During real 

world environment trials, observers did not look through the HMD.  Instead, after the observer 

closed their eyes, the experimenter waited ~2 seconds, and then said “walk forward”. 

When using the verbal report protocol, observers regarded the referent object for as long as 

they wished (typically a few seconds), and then reported the distance, in whatever units the 

observer desired.  Observers then moved to the isolation area while the experimenters readied 

everything for the next trial.  When all was ready, the experimenters asked the observer to return 

to the starting position without looking at the room, and begin the next trial.  Although the 

calibration was checked every trial, because the HMD was not swung out of the way, it was 

generally only necessary to adjust it at the beginning of each block of verbal report trials. 
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DISTANCE: For experimental trials, observers saw referent objects placed at distances of 3, 5, and 

7 meters.  Because observers may notice the repetition in such a small set of distances, and this 

can influence their distance judgments (especially verbal reports), 25% of the distance judgments 

were noise trials.  For these trials distances were randomly chosen from 0.25-meter increments 

in the 3 to 7 meter range; the experimenters recorded the data from the noise trials using the 

same procedures that were used for the experimental trials.  The noise trials are not analyzed in 

this paper.    

REPETITION: Observers saw 4 repetitions of each combination of the other independent variables.   

4.2.2 Dependent Variables 

As shown in Table 2, the primary dependent variable was judged distance, which was either 

measured from the observer’s foot position (blind walking), or verbally reported by the observer.  

We also calculated error, which has the same meaning as it did in Experiment I: an error close 

to 0 indicates an accurately judged distance, an error > 0 indicates an overestimated judged 

distance, and an error < 0 indicates an underestimated judged distance. 

4.2.3 Experimental Design 
Table 3: Stimulus presentation loop and counterbalancing. 

PRESENTATION LOOP LEVELS ORDER CONTROL 
for each environment 
│ for each protocol 
│ │ for distance ⊗ repetition + noise 
│ │ │ present trial 
└ └ └ 

4
2 

(3 × 4) + 4 

4×4 Latin Square
2×2 Latin Square 
Restricted random permutation 

We used a factorial nesting of independent variables in our within-subjects experimental design.  

Table 3 shows the loop that our experimental control program used to present the independent 

variables to the observers.  Environment varied the slowest; within each environment observers 

saw each protocol.  The presentation order of environment was controlled by a 4×4 between-

subjects Latin Square, while the presentation order of protocol was controlled by a 2×2 between-

subjects Latin Square; when combined, these two Latin Squares resulted in a presentation order 

design that repeated modulo 8 subjects.  Within each environment ⊗ protocol block, our control 

program generated a list of 3 (distance) × 4 (repetition) = 12 experimental distances, and then 

added 4 random noise distances.  The program then randomly permuted the presentation order of 

the resulting 16 distances, with the restriction that the same distance could not show up twice in a 
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row.  We collected a total of 1536 data points (16 observers × 4 environments × 2 protocols × 3 

distances × 4 repetitions).  As discussed above, the 16 observers participated in two different 

locations.  Observers 1–8 participated in Location 1, while observers 9–16 participated in 

Location 2.  Therefore, the experiment was counterbalanced with respect to the presentation 

order of the data collected in each location. 

4.3 Results and Discussion 

4.3.1 Descriptive Results 
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Figure 6: The main results, plotted as judged distance versus 
actual referent distance (N = 1536).  The light grey line indicates 
veridical performance. 

Figure 6 shows the main results from the study, which by the convention established in much of 

the recent VR depth perception literature, is displayed as a correlation between the actual 

distance and the judged distance.  This shows that, like virtual environments presented in opaque 

HMDs, there is a general trend of egocentric distance underestimation for virtual objects 

presented in transparent, AR HMDs.  The judged distances fell into three main groups, which are 

listed here along with their mean percentages of actual distance (percentage = judged distance / 

actual distance): (1) blind walking in the real-world environment: 96%, (2) blind walking in the 

HMD environments, which includes the real-world seen through the HMD: 86%, and (3) verbal 

report: 77%.  These results can be compared to the percentages from six studies of virtual 
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environment distance perception that examined a similar range of distances with open-loop 

action-based protocols, as reported by Thompson et al. [34].  These studies reported real-world 

judgments that ranged from 92–100% of actual distances, and virtual environment judgments 

that ranged from 42–85% of actual distances.  Our control condition (blind walking in the real-

world) had results (96%) that are similar to what has been reported across these studies (92–

100%), and we interpret this as some assurance that our implementation of the blind walking 

protocol was essentially correct.  However, others have achieved results very close to 100% [33], 

and it seems likely that further improvements are possible.  More interestingly, we found that the 

degree of underestimation for the HMD environments (86%) is on the low end of what has been 

observed for virtual environments (42–85%). 

Figure 7: The main results, plotted as (a) mean error (N = 1536), 
and (b) standard error of the mean (SEM) error (N = 1536), for 
each referent distance.   

The rest of the graphs in this paper show results in terms of error (Table 2); this metric allows 

differences in judged distances to be more clearly plotted.  Figure 7a gives the main results in 

terms of mean error.  As discussed above, these indicate that all blind walking conditions had 

less underestimation than verbal report conditions, and that blind walking in the real world was 

the most accurate of all.  In Section 4.3.3 below, we analyze the blind walking results in more 
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detail.  Figure 7b gives the variability of the main results, expressed in terms of the standard 

error of error.  These results indicate that as the degree of underestimation increases, so does the 

variability, and thus the verbal report results are more variable than the blind walking results.  In 

addition, similar to Experiment I, variability increased with increasing distance, which we 

generally expect because observer responses are based on depth cues of linearly decreasing 

effectiveness (i.e., observers are following Weber’s law [31]).  Finally, there appears to be an 

increase in gain as well as a bias shift for verbal report, relative to blind walking.   

Observer

Er
ro

r 
(m

et
er

s)

s16s15s14s13s12s11s10s09s08s07s06s05s04s03s02s01

7.5

5.0

2.5

0.0

-2.5

-5.0

0

ft

ft
ft

ft
ft

ft
ft

ft

ft

yd ft

ft

m /yd/m
ft

ft

m

(b)

Verbal Report

Observer

Er
ro

r 
(m

et
er

s)

s16s15s14s13s12s11s10s09s08s07s06s05s04s03s02s01

7.5

5.0

2.5

0.0

-2.5

-5.0

0

(a)

Blind Walking

Figure 8: Boxplots showing the error results for each observer.  (a) The blind walking results (N = 768).  (b) The verbal report results 
(N = 768).  These are labeled with the units that the observers used: ft: feet, yd: yards, and m: meters.  Observer s13 began using 
meters, then switched to yards, and then back to meters.  Asterisks “*” indicate single outlying data points. 

Figure 8 shows the results for each observer, separated according to protocol.  Observers were 

consistent with blind walking (Figure 8a), as compared to verbal estimation (Figure 8b).  

Observer s07 gave extremely consistent blind walking results; this subject reported walking and 

running on a treadmill with their eyes closed on a regular basis.  Observer s11, who gave the 

most underestimated blind walking results, reported being quite fatigued.  As indicated in 

Figure 8b, observers displayed much more variability with verbal estimation.  This variability is 

also reflected in Figure 7b, but Figure 8b shows that most of the extra variability of verbal 

estimation comes from between-subject differences.  When drawing graphs in the style of 

Figure 7a, we found that dropping individual observers with high verbal estimation variability 

(such as s05, s16, etc.) substantially changed the verbal estimation lines (dotted orange), while 

the blind walking means (solid blue) were relatively stable.  Because of this variability, we do 

not have much faith in the verbal estimation results, and we do not inferentially analyze them 

below.   

Therefore, in this experiment, the verbal report protocol did not prove itself to be very useful.  

While some researchers have reached the same conclusion (Jerome and Witmer [14]), others 
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have found a high correlation between open-loop action-based tasks and verbal report (e.g., 

Loomis and Knapp [21]).  It is possible that we could modify the protocol to reduce the noise; 

for example, we could have used a modified magnitude estimation procedure where observers 

state their unit of preference (feet, yards, meters, etc.) ahead of time, and then present a 1-unit 

example stimulus in their field of view, such as a one-foot ruler, or yardstick, or meterstick.   

4.3.2 Analysis Techniques 

Table 4: ANOVA results for Experiment II.  N is the number of data points analyzed; ε is the Hyunh and Feldt correction; n, d are the 
numerator, denominator degrees of freedom; F is the value of the ANOVA F-test; p is the conditional probability of the ANOVA F-test; f 2  
is Cohen’s effect size; r is the averaged pair-wise correlation; λ is the non-centrality parameter, and power is post-hoc power. 

 Effect On  N ε n d F  p  f 2 r λ power
1 Environment *** all data 1536 0.98 3 45 5.89 0.002 0.39 0.65 49.4 1.00

2 Repetition *** all data 1536 0.89 3 45 18.75 < .000 1.25 0.74 192.8 1.00

3 Environment *** blind 768 1.00 3 45 12.54 < .000 0.84 0.38 61.1 1.00

4 Environment *** blind, not real world, 3 meters 192 1.00 2 30 9.38 0.001 0.63 0.51 38.5 1.00

5 Environment (null) blind, real+HMD and real+virtual+HMD, 3 meters 128 1.00 1 15 0.28 0.604 0.02 0.51 0.6 0.11

6   Null hypothesis confidence interval 1.00 1 15   0.30 0.50 9.0 0.80

7 Environment (null) blind, not real world, 5 meters 192 0.78 2 30 1.69 0.208 0.11 0.46 4.9 0.45

8 Environment (null) blind, not real world, 7 meters 192 1.00 2 30 0.69 0.510 0.05 0.59 3.4 0.33

9  Null hypothesis confidence interval 0.78 2 30  0.26 0.46 11.3 0.81

In this section we describe how we statistically analyzed our results.  In addition to the typical 

ANOVA analysis, we also subjected the results to a power analysis, and the techniques for doing 

this are described in some detail here.  Although some of this material is tutorial in nature, the 

power analysis discussion has two benefits: (1) it shows how to compute standardized effect 

sizes for most of the previously reported studies in the depth perception literature, and (2) it 

illustrates how to compute a null hypothesis confidence interval, which is the statistically proper 

technique for arguing the truth of a null hypothesis.  To date we have not encountered a 

discussion of these techniques in the depth perception literature.   

We analyzed our results with univariate analysis of variance (ANOVA); these results are 

given in Table 4.  With ANOVA we modeled our experiment as a repeated-measures design that 

considers observer a random variable and all other independent variables as fixed (Table 2).  The 

distributions on which ANOVA analysis is based assume that, for each tested effect, the data is 

normally distributed and the variance is homogenous.  For repeated-measures designs such as the 

ones we report here, these two assumptions are jointly referred to as sphericity of the 

variance/covariance matrix.  Sphericity is usually violated [3, 12], and Figure 7b indicates that it 

is likely violated in this study, at least across protocol and distance.  Therefore, following the 
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recommendations of Howell [12, page 486] and Buchner, Faul, and Erdfelder [3], for each tested 

effect we applied the Huynh and Feldt correction ε (Table 4).  Instead of the standard F-test on n, 

d degrees of freedom, where n is the numerator and d the denominator of the F ratio, under this 

correction we calculate the F-test on εn, εd degrees of freedom.  This results in a more 

conservative test, which corrects for the degree to which sphericity is violated.   

In addition to significance testing, in this analysis we also performed two types of power 

analysis (Cohen [4]): (1) post-hoc power analysis, and (2) establishing null hypothesis 

confidence intervals.  Standard significance testing is based on comparing the calculated p value 

to α, and rejecting the null hypothesis when p < α.  Typically, and in this study, α = 0.05.  α is the 

probability of committing a Type I error (finding an effect when no effect is present in the data 

[12]); minimizing this error is why α is set to a small number.  Power analysis calculates a 

number typically called power; 1 – power is the probability of committing a Type II error (failing 

to find an effect when one is actually present).  Cohen [4] recommends, and we adopt, a goal of 

achieving power ≥ 0.80. 

Post-hoc power analysis calculates the power of statistically significant findings.  Power is a 

function of three numbers: n, d, and λ, where n is the numerator and d the denominator of the F 

ratio, and λ is called the non-centrality parameter.  For a repeated-measures design such the one 

in this paper, 
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where ε is the Huynh and Feldt correction factor described above, S is the number of observers in 

the study, and r is the averaged pair-wise correlation between the levels of the independent 

variable of the statistically significant finding.  f 2 is a standardized measure of effect size for 

factorial ANOVA designs.  As discussed by Cohen [4],  
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and n, d, F are the numerator, denominator, and F value of the F-test. 
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The value of equations 2 and 3 is that they allow the standardized effect size f 2 to be 

calculated from the commonly-reported F-test parameters n, d, and F.  For example, the effect in 

Table 4 line 1 would typically be reported F(3, 45) = 5.89, p = .002; here n = 3, d = 45, F = 5.89 

and equations 2 and 3 give f 2 = 0.39.  This allows effect sizes to be computed and compared 

with previous studies that do not directly report f 2, and most of the studies reported in the depth 

perception literature give F-tests for important findings.  However, equation 1 shows that λ is a 

function of ε, S, n, f 2, and r, and while the number of observers S is typically reported, values for 

ε and r are typically not.  Therefore, it is generally not possible to directly compute the power of 

previously reported repeated-measures designs.  Most of the previous studies in the depth 

perception literature are repeated-measures designs, because the tested distances are usually 

measured multiple times for each observer, although other variables often vary between 

observers.  For Experiment II, Table 4 gives the values of all of these parameters, as well as the 

resulting post-hoc power, for each significant effect discussed in the next section.  We used 

G*Power [3] and SPSS to calculate power. 

When a finding is not statistically significant (e.g., when p ≥ 0.05), power analysis can be 

used to establish a null hypothesis confidence interval.  In general, a large p value cannot 

establish the truth of the null hypothesis, because the null hypothesis is a point result (Howell 

[12]).  However, power analysis can bound the possible effect size f 2 to lie within a confidence 

interval.  If the resulting interval is small enough, then the null hypothesis has effectively been 

argued.  Establishing such an interval requires assuming values for the parameters ε, n, d, f 2, and 

r.  In Table 4, lines 6 and 9 list the parameter values that we assumed to establish null hypothesis 

confidence intervals.  In all cases, we chose our parameters to be conservative population 

estimates, based on the parameter values in the rest of Table 4. 

4.3.3 Inferential Results 

In this section, when we discuss hypothesis tests, we also give the Table 4 line number that lists 

the additional parameters.  There was a main effect over all of the data (N = 1536 data points) of 

environment (F(3,45) = 5.89, p = .002, line 1), which is explored in more detail below.  There 

was also an effect of repetition (F(3,45) = 18.75, p < .000, line 2); observers increased their 

accuracy with repeated exposure to each condition.  This repetition effect also appeared in most 

of the ANOVAs of subsets of the data that are reported below, but we do not further consider it.   
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Figure 9 shows the blind walking error means and standard errors from Figures 7a and 7b.  

Within the blind walking data (N = 768), there was an effect of environment (F(3,45) = 12.54, p 

< .000, line 3).  The standard error bars in Figure 9 indicate that this is due to a separation 

between the real world condition and the HMD conditions; unsurprisingly, it was easier to judge 

the distance of the real world referent.  Interestingly, for the non-real world conditions real + 

HMD, real + virtual + HMD, and virtual + HMD, the overlap in the error bars suggests that the 

HMD conditions were equally difficult at 5 and 7 meters.  We investigated this possibility by 

performing separate ANOVAs on the non-real world conditions at 3 meters, 5 meters, and 7 

meters (N = 192 for each test).  At 3 meters, as suggested by the separation between the virtual + 

HMD condition and the other two conditions (real + HMD, real + virtual + HMD), there was still 

an effect of environment (F(2,30) = 9.38, p = .001, line 4).  However, a test on the remaining two 

conditions (N = 128) indicated no effect of environment (F(1,15) = .28, p = .604, line 5).  

Furthermore, our experiment could detect effects as small as f 2 = .30 with power = .80 (line 6), 

and .30 is small compared to the f 2 sizes of the significant effects just discussed (lines 1–5).  At 

5 meters there was no effect of environment for the non-real world conditions (F(2,30) = 1.69, p 

= .208, line 7), nor was there an effect at 7 meters (F(2,30) = .69, p = .510, line 8).  For either of 

these distances our experiment could reliably detect effects as small as f 2 = .26 with power = .80 

(line 9).  
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Figure 9: The mean error results for blind walking (N = 768).   
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The relative accuracy of the real-world (control) condition is not surprising; this has been found 

by many researchers who have compared real-world referents to virtual environment referents 

(e.g., Thompson et al. [34]).  The interesting aspect of these findings, which is implied by the 

null confidence intervals just presented, is that the real + HMD environment exhibits the same 

degree of underestimation as both the real + virtual + HMD and virtual + HMD environments 

(with the exception of the virtual + HMD environment at 3 meters).  We hypothesize that the 

most likely explanation is a combination of the framing effect of our display’s narrow field-of-

view, as well as the fact that observers were not free to rotate their heads when looking through 

the HMD.  Although some researchers have hypothesized that a limited HMD field-of-view does 

not cause distance underestimation (Creem-Regehr et al. [5], Knapp and Loomis [16]), Wu et al. 

[37] found evidence that it does cause underestimation.  However, the field-of-view studied for 

the negative results was 42° × 32° (horizontal × vertical) (Creem-Regehr et al.) and 47° × 36° 

(Knapp and Loomis), while Wu et al. only found underestimation when the field of view was 

restricted to at least 21.2° × 21.2°.  Our field-of-view was 27° × 20°, which compares to Wu et 

al.’s vertical dimension.  Furthermore, Creem-Regehr et al. found that distances were 

underestimated when head rotations were prevented, and Wu et al. found that distances were not 

underestimated with a narrow field-of-view when observers were allowed to scan the ground 

plane in the near-to-far direction (from their feet to the object).  Given the size of our HMD’s 

field-of-view and the fact that our HMD’s mounting prevented head rotations, our results are 

consistent with the findings of both Creem-Regehr et al. and Wu et al.   

We noticed that when we looked through the display in the real + virtual + HMD 

environment, and the real object was pulled away; the virtual object seemed to float up from the 

ground and move closer to us.  We hypothesize that the floating upward effect is caused by a 

lack of cues suggesting that the virtual objects are attached to the ground, and the movement 

closer is caused by an inward change in vergence angle1, driven by accommodative / vergence 

mismatch.  When the accommodative demand (1.2 meters for our HMD) is closer than the 

fixation distance (3 to 7 meters in this experiment), the resting vergence angle of the eyes shifts 

inward, causing objects to be perceived as closer than their actual location (Mon-Williams and 
                                                 

1 Post-experiment, the first three authors used nonius lines to test for changes in vergence angle for this situation, 

using a technique similar to the one reported by Ellis and Menges [9].  For all three authors, the test indicated an 

inward change in vergence angle. 
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Tresilian [25]).  In the situation described here, when the real and the virtual object are seen 

together, the eyes accommodate to the real object, and there is no accommodative / vergence 

mismatch, but when the real object is pulled away, the mismatch occurs.  The greater 

underestimation of the virtual + HMD environment at 3 meters, relative to the real + virtual + 

HMD and real + HMD environments, is consistent with this hypothesis.  

5. CONCLUSIONS 

AR has many compelling applications, but many will not be realized until we understand how to 

place graphical objects in depth relative to real-world objects.  This is difficult because imperfect 

AR displays and novel AR perceptual situations such as x-ray vision result in conflicting depth 

cues.  Egocentric distance perception in the real world is not yet completely understood (Loomis 

and Knapp [21]), and its operation in VR is currently an active research area.  Even less is known 

about how egocentric distance perception operates in AR settings; the comprehensive survey in 

Section 2 found only seven previously published papers describing unique experiments.   

To our knowledge, along with Jerome and Witmer [14] and Kirkley [15], we have conducted 

the first experiments that have measured AR depth judgments at medium- and far-field distances, 

which are important distances for a number of compelling AR applications.  Experiment I used a 

perceptual matching protocol, and studied distances of 5 to 45 meters.  It provides evidence for a 

switch in bias, from underestimating to overestimating distance, at ~23 meters (Figure 2), and 

provides an initial quantification of how much more difficult the depth judgment task is in the 

x-ray vision condition (Figure 3).  It also found an effect of height in the visual field in the form 

of an interaction with repetition (Figure 4).  We suggest that part of this interaction replicates the 

VR depth underestimation problem, and further suggest that the effect of practice on VR depth 

underestimation should be explored.  Experiment II used blind walking and verbal report 

protocols, and studied distances of 3 to 7 meters.  Experiment II provides evidence that the 

egocentric depth of AR objects is underestimated at these distances, but to a lesser degree than 

has previously been found for most virtual reality environments.  Furthermore, the results are 

consistent with previous studies that have implicated a restricted field-of-view, combined with an 

inability for observers to scan the ground plane in a near-to-far direction, as explanations for the 

observed depth underestimation. 
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The perceptual matching protocol used in Experiment I is generally representative of the types 

of depth estimation tasks we can imagine users performing in an AR-based situational awareness 

system such as BARS [19]; such tasks might involve estimating or specifying the distance to 

urban objects such as buildings, personnel, or vehicles, even if the objects are hidden from sight.  

While we can also imagine users giving a verbal estimate of depth, we cannot imagine BARS 

users blind walking.  However, as Loomis and Knapp [21] discuss, there are compelling 

theoretical arguments and substantial empirical evidence that depth judgments from open-loop 

action-based protocols such as blind walking are driven by a relatively pure percept of egocentric 

distance.  However, to achieve this purity, the protocols must be carefully implemented, in order 

to counteract cognitive techniques such as footstep counting.  In contrast, the depth judgments 

from the perceptual matching protocol are likely primarily driven by minimizing the exocentric 

distance between the referent and the target objects, although some percept of egocentric depth 

of the referent may also be involved.  So while there is substantial theoretical value in the blind 

walking protocol, there is also practical value in studying protocols, such as perceptual matching, 

that are closer to the real-world tasks we imagine AR users actually performing.   
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