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ABSTRACT

A key challenge of entity set expansion is that multifaceted input
seeds can lead to significant incoherence in the result set. In this pa-
per, we present a novel solution to handling multifaceted seeds by
combining existing user-generated ontologies with a novel word-
similarity metric based on skip-grams. By blending the two re-
sources we are able to produce sparse word ego-networks that are
centered on the seed terms and are able to capture semantic equiv-
alence among words. We demonstrate that the resulting networks
possess internally-coherent clusters, which can be exploited to pro-
vide non-overlapping expansions, in order to reflect different se-
mantic classes of the seeds. Empirical evaluation against state-of-
the-art baselines shows that our solution, EgoSet, is able to not only
capture multiple facets in the input query, but also generate expan-
sions for each facet with higher precision.
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1. INTRODUCTION
Entity set expansion is useful for a number of applications, in-

cluding question answering [27], query suggestion [6], consumer
vocabulary construction [29], and knowledge extraction [22]. For
example, given lincoln, nixon, and obama as seeds, one might ex-
pect a set expander to find all American presidents. Formally, entity
set expansion is defined as finding a set of “sibling” entities given
one or a few examples, such that the entities and the seeds belong
to the same semantic class [35].

The task of set expansion can be challenging if the input seeds
fall into multiple semantic classes. If the seeds are multifaceted,
the result set will often contain suggestions pulled from multiple
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senses. For example, given the term orange as the seed, a set ex-
pansion algorithm may produce a combination of colors (e.g., red,

green, blue) and fruits (e.g., peach, grape, lemon). Some senses
may also be significantly less popular than others. For example,
atlanta may most commonly be of the class cities in Georgia, US

but it also fits within Olympic host cities. Providing multiple input
seeds may help orient the algorithm (e.g., atlanta AND barcelona

would make the Olympic class more likely). Even if multiple seeds
are provided, the results can still be ambiguous, as different classes
can have a large number of overlapping members. Having multiple
seeds as input may help narrow down the semantics, but multi-seed
queries can still possess multifacetedness. For example, lemon,
lime, olive, and orange all belong to names of colors and names

of fruits, which makes disambiguation potentially challenging.
In reality, users or upstream applications cannot always provide

an accurate list of seeds that narrows the search space down to one
semantic class. Instead of relying on a univocal set of seeds, we
aim to provide an entity set expansion algorithm that automatically
organizes the expanded entities into multiple facets, which corre-
spond to the most common senses of the seeds.

User-generated ontologies, such as those found in Wikipedia,
represent one possible route forward. For example, a simple al-
gorithm would find all categories for input seeds and then return
grouped matches that are siblings within each category. However,
such user-generated ontologies, due to its nature of human catego-
rization, often have problems such as mixing multiple concepts in
one category, or containing noise in certain categories [10].

An alternative approach is to “learn” sibling relationships among
entities directly from a large corpus. Distributional similarity is one
way to do this. Distributional similarity measures word related-
ness with the assumption that similar words appear in similar con-
texts [18]. Such similarity metrics can facilitate set expansion by
finding relevant terms [33, 30] and optimizing the internal coher-
ence of the result entity set [12]. However, for multifaceted seeds,
distributional similarity may not naturally group the related terms
into distinct semantic classes, even if the coverage of sibling terms
increases with sufficient data.

In order to find desired groupings for multifaceted seeds, we uti-
lize a word-network representation. Specifically, we treat words
that are distributionally similar to the seed (the ego) as nodes and
use the pairwise similarity between those words to create weighted
edges, thereby forming an “ego-network.” This representation is
useful for our task because ego-networks for multifacted seeds of-
ten display modular community structure, where each community
contains possible set-expansions for a particular semantic facet of
the seed. Figure 1 shows an example ego-network of the term bei-

jing, where two distinct clusters exist and can be used for expan-
sions toward different semantic classes. To increase the accuracy of
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Figure 1: Ego-network of beijing with three communities: ma-

jor cities in China (upper left), provinces in China (lower left),

and Olympic host cities (right).

the extracted sibling terms, we use a set of skip-gram features that
impose strong positional constraints on the context, and we find that
appropriate filtering and sampling on such a feature set can more
precisely recover sibling relations and thus result in ego-networks
with even better modular structure. However, a limitation of such a
refined distributional similarity metric is that it favors popular terms
and under-performs for long-tail terms in certain domains, such as
musical records and movie titles.

To create a system that performs well in all domains, we fuse
the ego-network model with user-created ontologies into a new
system: EgoSet. EgoSet uses the ego-network to find the initial
clusters for a seed, and aligns those clusters with user-created on-
tologies. These clusters are “purified” by this process to generate
set-expansions that are not only structurally aligned with the seed’s
facets but also of high precision.

The most significant contributions of this work are: (1) address-
ing the problem of multifaceted set-expansion through the con-
struction of the ego-networks using novel skip-gram features and
(2) the unsupervised integration of the ego-networks and mined
ontologies to create comprehensive and internally coherent entity
sets. To evaluate the EgoSet system, we created a new evaluation
dataset of single- and multi-seed queries (all multifaceted). Empir-
ical evaluation shows that our system outperforms state-of-the-art
baselines in terms of the coverage on different semantic classes, as
well as the precision in each individual cluster.

2. USER-CREATED ONTOLOGIES
Ontologies are a natural resource for set expansion. Wikipedia,

for example, contains various curated lists suitable for ontology
construction, including category tags, lists and tables in the arti-
cles, and List-of pages. Qualitatively, we have found the List-of
pages to have the right combination of being prevalent and rela-
tively “clean”. To obtain this data, we crawled all English Wikipedia
pages titled “List of . . . ”, and obtained 187,017 pages (collected on
March 12, 2015). If the page contained tables, we treated each ta-
ble column as a sublist, and obtained 1,124,708 sublists. We kept
the 38,078 lists and sublists with at least 5 entities. The remainder
were considered as too short and thus discarded. The retained lists
became our working ontology.

Table 1 shows the titles of several Wikipedia lists that cover the
entity apple. Despite their relative high quality, Wikipedia lists

List Title Size

List of English words of Anglo-Saxon origin 1046
List of record labels 627
List of defunct automobile manufacturers 513
List of multinational corporations 85
List of plants in the Bible 41
List of most valuable crops and live-stocks 29
List of the largest IT companies 9
List of loanwords in Malayalam 5
. . . . . .

Table 1: Eight example Wikipedia lists (of 99) containing apple.

may not be the “ultimate” results of set expansion due to: (1) some
groups of lists contain overlapping topics, such as List of laptop

brands and manufacturers and List of computer hardware manufac-

turers; (2) many lists mix two or more concepts together and thus
result in incoherent clusters, such as List of most valuable crops

and live-stocks, which mixes fruit with vegetables and animals; (3)
many lists cover topics that are too rare or obscure, such as List of

loanwords in Malayalam.
These issues motivate an interesting question: how do we gener-

ate internally-coherent clusters that provide a comprehensive cov-
erage of the “common senses” of the input seeds? While there
are existing studies that tackle this problem by using topic model-
ing [1, 38], their performance is usually not satisfactory. An impor-
tant reason is that the co-occurrence relationship between entities
learned from these list ontologies do not correlate well with their
similarity relations in real text. While user-created ontologies may
combine entities together in various interesting ways, text data most
truthfully reflect our common sense about entity relations. Our
preference is thus to first identify relevant clusters based on text,
and only then refine those with the user-generated ontologies.

3. EGOSET
In this section, we introduce our proposed EgoSet system. As

depicted in Figure 2, the system contains both indexing and query-
ing elements.

3.1 Feature Extraction
To extract sibling relations from text, distributional similarity is

frequently employed [23, 30, 37]. There are multiple possible fea-
ture definitions for distributional similarity. Given a term T0 in a
sentence, one can define a context window W around T0, and ex-
tract features from W . Common features include unigrams (e.g.,
T1), n-grams (e.g., T1T2), and skip-grams (e.g., “T−1 T1”,
where T0 is replaced with a placeholder). We use skip-grams in-
stead of unigrams or n-grams because skip-grams impose stronger
positional constraints on where contextual words may appear with
regard to the target term. Otherwise, we risk finding relevant con-
cepts (e.g., apple vs. ipad) rather than truly sibling entities (apple

vs. microsoft). In addition to distributional similarity, we could also
use patterns (e.g., “w1, such as w2, w3, and w4”) to find sibling en-
tities, but as Shi et al. [30] indicate, patterns tend to introduce more
noise than distributional similarity as the corpus scales up.

In practice, we find that using a combination of skip-grams of
varying lengths can lead to even better performance than a single
length setting. Figure 2(a) illustrates the skip-gram features we
extract from each context window. For target term T0, six different
features are extracted. For example, skip-gram S2 = “T−2 T−1

T1”.
Note that our skip-gram feature set should not be confused with
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Figure 2: The end-to-end system pipeline showing the indexing of ego-networks and serving of a single-seed query.

the skip-gram model in word2vec, which is a well known word em-
bedding toolkit [20]. In the skip-gram model of word2vec, given an
input word, the training objective function measures how well the
neural network model predicts every single token in the skip-gram
surrounding that input word. The sequential order of the tokens in
that skip-gram is ignored as the objective function takes the aver-
age of the prediction error for each token [28]. In contrast, we treat
each skip-gram Si as an integral unit, which leads to much sparser
feature space but much tighter semantic constraints.

After feature extraction, many existing approaches assign feature
weights using point-wise mutual information (PMI) [8] for each
skip-gram s and word w:

fw,s = log
Xw,s∑

w′ Xw′,s ·
∑

s′ Xw,s′
(1)

where Xw,s is the co-occurrence count between w and s. This
weighting strategy tends to promote rare skip-grams. Given our
large feature space, this strategy is not particularly helpful. We find
that many extracted features can be discarded and a sample of the
remaining features is sufficient for extracting sibling relations. This
can be better understood in the context of a bipartite network.
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Figure 3: Bipartite network of words and skip-grams in the

neighborhood of apple and the degree distribution of skip-

grams.

Figure 3 illustrates the neighborhood of apple in a bipartite net-
work of words and skip-grams. From left to right, the degree of
skip-grams increases, and so changes their importance in captur-
ing sibling terms. By inspecting example skip-grams connected to
the seed word, it can be seen that skip-grams on the left end of the

distribution are not particularly useful in connecting the seed word
to the others. For example, “the ’s mac os” only captures the
uniqueness of apple instead of the commonality it shares with its
peers. In practice, we find that most sibling relations are effectively
recovered by skip-grams with 5–50 neighbors. For example, “the

wireless keyboard” falls in this range, and is useful for linking
terms of electronic companies together. In comparison, a more fre-
quent skip-gram, “for ”, may be less precise in finding siblings,
as it mixes a lot of companies together. We have found that we
can discard skip-grams with fewer than 5 neighbors, or more than
2,500, without seriously impacting performance.

After this filtering process, we assign weight for each skip-gram
s and word w using:

fw,s = log(1 +Xw,s)[log |W | − log(
∑

w

Xw,s)] (2)

where Xw,s is the co-occurrence count between w and s, and |W |
is the total number of words in the vocabulary. This weight assign-
ment is equivalent to tf-idf if we consider each w as a “document”,
and each s as a “term.” In practice, we find this weight function to
work better than PMI.

Even with strict filtering, each word may still have a large num-
ber of skip-grams. To further improve computational efficiency,
we reduce the dimensionality of the feature space by sampling 300
skip-grams per word using weighted minhash [14], which is an al-
gorithm that randomly samples elements from sets and still pre-
serve weighted Jaccard similarity between any pair of sets:

J(w1, w2) =

∑
k min(fw1,sk , fw2,sk )∑
k max(fw1,k, fw2,sk )

(3)

where fw,sk is the weight of the kth skip-gram for word w.

3.2 Ego-network Construction
After executing the above process each word has a skip-gram

vector. These can be used to construct an ego-network (e.g., Fig-
ure 1) which can then be utilized to perform clustering analysis
and find semantic classes. For each word w, we find 250 nearest
neighbors, which will become the nodes of the ego-network. For
each pair of terms we compute a similarity score using weighted
Jaccard similarity as defined in Eq. (3). If any pair of words, wi

and wj , have a similarity score higher than a threshold (e.g., 0.05),
then a link is created between them. The reasons for building ego-
networks, instead of a giant network of the entire vocabulary are



twofold: (1) ego-networks are more convenient for indexing and
serving in run-time; and (2) the filtering and sampling of features
in the previous step make the feature space sparse enough for effi-
ciently finding nearest neighbors and constructing ego-networks.

Note that if multiple seeds are given as input, we may still con-
struct an “ego-network” by finding the nearest neighbors that have
the closest mean distances to the seeds.

3.3 Ego-community Detection
Community detection is conducted by first removing the “ego”

(the seed) from the ego-network (see Figure 2 (c)). The seed, natu-
rally, belongs to every community and the edges from the ego may
confuse the algorithm. Experimenting with a number of commu-
nity detection algorithms [16], we find that Louvain [3] balances
efficiency with good performance across many networks. Louvain
is a hierarchical clustering algorithm that starts by assigning a dif-
ferent community to each node, followed by greedily aggregating
communities to optimize the modularity of the network partition
until the modularity cannot be further improved, and the “optimal”
number of communities is thus identified.

Figure 1 shows the ego-network of beijing and its nearest neigh-
bors. After removing beijing, the ego/seed, from the network, we
can obtain two distinct clusters (without even having to apply com-
munity detection; simply checking connected components suffices
for this case). By increasing the number of nearest neighbors, we
can identify other clusters, such as Chinese provinces, which bei-

jing should also belong to. Since our skip-gram extraction strategy
produces much sparser a feature set than existing methods, the re-
sulted ego-networks from our method tend to possess better com-
munity structure. We provide an empirical evaluation comparing
the quality of the ego-network clusters created using different meth-
ods in Section 4.

3.4 Fusing Ego-communities and Ontologies
As explained in Section 1, distributional similarity and ontolo-

gies should be used jointly to compensate each other’s disadvan-
tages. In order to achieve this, for each cluster in the ego-network,
we find Wikipedia lists that “match” the content of the cluster by
checking if the Jaccard index between the list and the cluster is
above a threshold (e.g., θ1 = 0.75). Then the elements of both the
matched lists and the cluster are all pooled together as candidates,
and an ensemble model is employed to decide which candidates
should remain (Figure 2(d)).

Assuming there are N candidates, then for each candidate w0,
the ensemble model takes into account the mean distance from
w0 to all other candidates, d̄w0

= 1
N

∑
wi

f(w0, wi), where f

is one of three different distance/similarity metrics: (1) Hamming
distance of Wikipedia list memberships; (2) weighted Jaccard sim-
ilarity of the skip-gram vectors; and (3) Cosine similarity of the
word embedding vectors learned by word2vec [20] on the same
corpus. For each metric f , a binary decision is made as to whether
w0 should be removed from the cluster, based on w0’s percentile in
the distribution of d̄w among all w’s (the threshold is empirically
determined). Then we take the “majority vote” of those three met-
rics to finally decide whether to remove w0. The reason of intro-
ducing word embedding vectors is to further improve the reliability
of the ensemble model. As evidenced in Section 4, using just Wiki
lists and skip-gram vectors can achieve comparable performance.

By employing the ensemble model, we aim to improve precision
by pulling outliers from the word cluster as well as to improve re-
call by adding missing elements from the lists. We call this process
“fusion” or cluster purification.

Figure 4 illustrates the distributions of d̄w under three similarity
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Figure 4: Distribution of d̄w for candidates in the “com-

pany” cluster of apple using similarity metrics based on: (a)

Wikipedia Lists, (b) skip-gram vectors, (c) word2vec

metrics for the candidate terms corresponding to the “company”
cluster of the seed word apple. Each dot in the figure corresponds
to a candidate term w. The y-axes are the values of d̄w, and the
x-axes are the percentiles of w in the distribution of d̄w. In each
distribution, from left to right, there can be seen multiple “drops”,
which separate “good” terms from relatively “worse” terms. The
right-most detectable drop in each distribution is marked with a
dashed line, which corresponds to empirically determined thresh-
old for distinguishing outliers. While different metrics generally
agree on what terms are ranked the highest, they usually differ as
to what terms get rejected. In this particular case, several non-IT
companies are identified as outliers and removed, including nes-

tle, boeing, and starbucks (mysql is also deleted as an outlier). On
the contrary, oracle is rejected under only one metric, and is thus
“saved.” Without this step of outlier removal, some of the spuri-
ous terms might get a high ranking because of one of the distance
metrics and thus may harm the precision of the final result.

After purification, all remaining members in the cluster are ranked
by a linear combination of d̄w’s under the three similarity metrics.
Therefore, for each cluster, we obtain a ranked list of entities. And
overall we obtain a list of ranked lists as result.

3.5 Post-processing
The result of the previous step needs to go through additional

post-processing, mainly because of three issues: (1) there may be
duplicate clusters, because different clusters may have been matched
against the same Wikipedia list and, after purification, there may be
pairs of clusters that contain highly similar members; (2) there may
exist off-topic clusters, because the matched Wikipedia lists may
not capture the topic implied in the seed entities; (3) there may be
some clusters that are too small due to data sparsity or the exis-
tence of noise in the source data. We adopt the following solutions
to solve these problems.

To address the first issue (duplicate clusters), we perform dedu-
plication as follows. For each pair of cluster (ci, cj) (note that the
elements in the cluster are already ranked by d̄w), define Vm(ci, cj)
as the number of overlapping elements between the top m elements
of ci and the top m elements of cj . Then, if any of the conditions



below is satisfied, we drop one of (ci, cj) that has a lower coher-
ence score Γ(c) than the other:
• V5(ci, cj) > 3;
• V10(ci, cj) > 5;
• V∞(ci, cj) > min(0.3×min(|ci|, |cj |), 10),

where |c| is the size of the cluster c, and the coherence score of a
cluster is defined as the average of pair distance,

Γ(c) =
1

|c|2

∑

wi,wj∈c

f(wi, wj). (4)

This deduplication strategy gives high-ranking elements in each
cluster higher priorities, which are most important to the perceived
quality of the expansion results.

To address the second issue (off-topic clusters), we examine if
all of the seed terms are present in the purified cluster.1 If any seed
term is missing, it is a good indication that the matched Wikipedia
lists may have led to a semantic drift away from the topics of the
seeds, and thus the cluster should be eliminated.

Finally, for the third issue (tiny clusters), we simply remove clus-
ters whose size is smaller than 5. After these post-processing steps,
the retained list of ranked lists are returned as the final result.

3.6 Summary
Algorithm 1 summarizes the entire process of serving a set ex-

pansion query. Note that the process of creating ego-networks is
not included. In the algorithm, θ1 and θ2 are parameters used for
determining cut-off thresholds. The tuning of these parameters will
be discussed in Section 4.4.

Data: Q = {q}: input seed(s)
W = {w}: collection of entities (the vocabulary)
E = {Ew}: collection of skip-gram-based ego-nets
Lwk = {l}: collection of Wikipedia lists
fwk, fego, fw2v: three similarity metrics (Section 3.4)
Result: C = {c}: output clusters
start

EQ ← ∪q∈QEq , obtain “ego-net” of all seeds
C ← community detection on network EQ

for every cluster c ∈ C do

Lc ← {l ∈ Lwk, Jaccard(l, c) > θ1}, match lists;
Wc ← {w ∈ EQ} ∪ {w ∈ l, l ∈ Lc}, all candidates;
for f ∈ {fwk, fego, fw2v} do

for w ∈Wc do

d̄w = 1
N

∑
w′∈Wc

f(w,w′);

end

Df ∼ N(µ, σ2)← distribution of d̄w for w ∈Wc;
ξf ← µ− σθ2, cut-off threshold;

τw,f ← ✶(d̄w > ξf ), cut-off decision for w ∈Wc;

end

c← {w ∈ c; if
∑

f∈{fwk,fego,fw2v}
τw,f > 2};

end

C ← Dedupe(C), see Section 3.5;
C ← Drop c ∈ C if q 6∈ c, ∀q ∈ Q;
C ← Drop c ∈ C if |c| 6 5.

Algorithm 1: Entire process of serving a set expansion query.

Multi-seed queries: According to Algorithm 1, it can be seen
that multi-seed queries are handled in a very similar fashion to
single-seed queries. The differences are: (1) instead of deriving

1Although the seed terms are removed prior to ego-community de-
tection, they can be added back during list matching.

an ego-net of a single seed, we merge the ego-nets of all seeds to-
gether into a larger "ego-net"; (2) wherever we need to evaluate the
similarity of a candidate entity to the “seed”, we replace the “seed”
with the centroid of all seeds in the corresponding distance space.

4. EXPERIMENTS AND RESULTS
We conducted three types of evaluations on EgoSet. First, we use

a data-driven approach to create a ground-truth dataset, which in-
cludes queries and the corresponding expected classes. This dataset
is good for testing how well the system captures the common senses
of a query and how precise the returned ranked lists are. Second, we
have humans to label all the classes and instances returned by the
system given selected queries in order to study its precision. Third,
we conduct case studies on selected multiseed multifaceted queries
to understand the quality of each individual similarity metric and
their interactions.

Data: We retrieved the English Wikipedia 2014 full text (56 mil-
lion articles, 1.2 billion words). We selected the top 50,000 most
frequent n-grams (n 6 5) as our core vocabulary (excluding the
top-50 as stop words). All text is lower-cased and tokenized using
the Stanford Tokenizer.2

4.1 Queries and Ground Truth
We created a query set by sampling multifaceted terms from the

core vocabulary. To determine the degree to which a term is mul-
tifaceted, we look up the term in Wikipedia and examine whether
there is a disambiguation page for it and, if so, how many different
senses the term possesses. We sampled 50 unigrams with varying
degree of multifacetedness. These queries cover a wide variety of
topics, such as locations, companies, celebrities, and food. Then
we attempted to follow a similar procedure as [38] to manually de-
termine the ground-truth categories for each query. However, we
found it to be infeasible to determine a really “comprehensive” or
“standard” list of categories per query. Instead, we looked at a min-
imum of 50 instances of usage in the Wikipedia corpus and Google
News3 search results for each query word, and created a list of mini-

mally required semantic classes (MRSC) based on its most popular
senses. For example, the MRSCs of apple include Fruit and Fa-

mous IT Companies. To avoid bias, we did not look at Wikipedia
lists during this process. We found 89 distinct MRSCs, with 5.1
MRSCs per query on average (the median is 4), while allowing dif-
ferent queries to share the same MRSCs.4

Note that we did not use existing ground-truth datasets because
no existing dataset specifically targets multifaceted entity set ex-
pansion, especially for multi-seed multifaceted queries.

Type Count Examples

1-seed 50 apple, green, mercury, python, ...

2-seed 50 copper+gold, gnu+squirrel, beaver+elk, ...

3-seed 30
franklin+hamilton+newton,
artemis+poseidon+apollo, ...

4-seed 20
orange+lemon+lime+olive,
orchid+rose+violet+lavender, ...

Table 2: Summary of queries

Since we also want to test multi-seed multifaceted queries, we
looked at the overlap between some pairs or even groups of cat-
egories, which enables us to generate multi-seed queries as well.

2http://nlp.stanford.edu/software/tokenizer.shtml.
3https://news.google.com/
4Our dataset is available at http://bit.ly/egoset-data.

http://bit.ly/egoset-data


Such multi-seed queries are generated by randomly sampling from
the common members of all pairs of MRSCs that are overlapping,
such as Colors and Fruit, and then sampling from the overlapping
entities. We created 100 multi-seed queries, including 50 two-seed
queries, 30 three-seed queries, and 20 four-seed queries. Table 2
shows a summary of the query set with several examples.

4.2 Evaluation of Ego-communities
We compare the quality of the word clusters obtained from the

ego-networks based on skip-gram similarity metrics against a state-
of-the-art word embedding model, as well as clusters obtained us-
ing non-network methods. We use only single-seed queries for this
experiment in order to focus on the quality of the ego-communities
with the simplest setting. For each query, 150 nearest neighbors are
retrieved, and different clustering or community detection meth-
ods are used to obtain the clusters, which are then compared to the
ground-truth MRSCs. Although MRSCs cannot be considered as
having a comprehensive coverage on all possible clusters, they can
serve to judge the relative quality of different similarity metrics.

4.2.1 Metrics

For each cluster set C = c1, c2, . . . , cK and the corresponding
MRSC set R = r1, r2, . . . , rM , three metrics from [9] are adopted
in evaluating the quality of clusters, including
• Cluster Purity: measures the average accuracy of word assign-

ment in the clusters. With N defined as the total number of near-
est neighbors: purity(C,R) = 1

N

∑
k maxm |ck ∩ rm|

• Normalized Mutual Information (NMI): similar to purity, adding
penalization to C if it contains too many clusters.

NMI(C,R) = I(C,R)
[H(C)+H(R)]/2

, where

I(C,R) =
∑

k

∑
m

|ck∩rm|
N

, and H(C) = −
∑

k
|ck|
N

log |ck|
N

.
• Rand Index (RI): defined as the accuracy of predicting whether

a pair of words should belong to the same cluster for all of the
N(N−1)

2
pairs of words.

Note that some of the details are adjusted from [9] to accommo-
date our experiment setting.

4.2.2 Baselines

The following approaches are compared:
• word2vec: the embedding vectors learned using word2vec [20,

21].5 We used the “skip-gram” model6, set vector dimension to
be 500, window size 8, and used 5 negative samples per update
and 5 iterations through the entire Wikipedia corpus. For clus-
tering, k-means with k = 5 is used;
• word2vec-net: ego-networks built using the above vectors with

Cosine similarity;
• EgoSet-SG: our skip-gram vectors, used for both k-means and

ego-networks.
For both word representations, Louvain [3] is used for commu-

nity detection on ego-networks. The number of communities is
determined by finding the partition with maximum modularity.

4.2.3 Results

Table 3 shows the evaluation results. It can be seen that our
proposed similarity metrics consistently outperform word2vec un-
der three different metrics. In addition, for the same set of near-
est neighbors, network-based community detection tends to out-
perform k-means, especially under NMI, although it is not directly

5https://code.google.com/p/word2vec/.
6Not to be confused with our proposed skip-gram feature set. The
word2vec toolkit does not have positional contraints on individual
tokens within a skip-gram.

Representation Clustering Purity NMI RI

word2vec k-means 0.168 0.260 0.236

word2vec-net Louvain 0.166 0.394 0.220

EgoSet-SG
k-means 0.213 0.404 0.432
Louvain 0.210 0.460 0.484

Table 3: Evaluation of nearest neighbor clusters

comparable as the number of clusters for k-means is predetermined.
In short, this result indicates that while both metrics are applied to
the same corpus, skip-gram-based methods may better facilitate the
recovery of distinct clusters in ego-networks than word embeddings
learned by word2vec.

4.3 End-to-end Evaluation
Our second set of experiments evaluate the performance of the

end-to-end pipeline for multifaceted queries. We explain the in-
put/output, metrics, and baselines, before presenting the results.

4.3.1 Input and Output

The input for each test case is a query, which can be either a
single seed or multiple seeds (see Table 2). The output is a set of
clusters. Each cluster is a ranked list of entities. The entities in the
output are drawn from a vocabulary of 50,000 popular entities in
Wikipedia. See Section 4.6 for a discussion about long-tail entities.

4.3.2 Metric

Because the output of multifaceted set expansion is a list of ranked
lists, we customize a common ranking metric, mean average preci-
sion (MAP), for our evaluations. For a set of queries Q, we define
mean-MAP (MMAP) as

MMAPk =
1

Q

Q∑

q=1

1

Mq

Mq∑

m=1

APk(Cqi∗ ;Rqm) (5)

where Mq is the number of MRSCs for q; Rqm is the m-th MRSC
for q; APk(c, r) is the conventional average precision at k given a
ranked list c and an unordered ground-truth set r; and Cqi∗ is the
output cluster that best matches Rqm among all clusters generated
for q (using Jaccard).

This metric not only captures the internal-coherence of the clus-
ters, but also possesses two important characteristics: (1) it captures
how comprehensively the result set covers MRSCs. If an output C
fails to capture one of the MRSCs, it will be penalized with a low
precision score, since for each MRSC a best matching Cqi∗ will be
selected regardless; (2) it allows the output set to include additional
topics, which is important because we cannot guarantee that our
MRSC sets cover all possible senses of the input seeds.

The precision values for each baseline is calculated as follows:
for each query, for each cluster in the ground truth, we find the
cluster among output clusters that have the biggest Jaccard sim-
ilarity. Then we calculate the precision@k values by comparing
this cluster against the ground truth cluster. The precision scores
are averaged across all ground-truth clusters of the query, then av-
eraged across all queries, resulting in mean average precision@k
(MAP@K). Given the event that the output cluster generates fewer
clusters than the ground truth (e.g. the baseline SEAL can only
generate one cluster), then the same output cluster will be matched
towards multiple ground-truth clusters, which inherently penalizes
its precision. Since we cannot guarantee that our ground-truth clus-
ters comprehensively cover all senses of a query, we do not penalize
any cluster outside the matched clusters.



1 seed 2 seeds 3 seeds 4 seeds

p@5 p@10 p@20 p@5 p@10 p@20 p@5 p@10 p@20 p@5 p@10 p@20

baseline
SEAL - - - 0.208 0.169 0.138 0.368 0.312 0.269 0.393 0.342 0.298
NeedleSeek 0.432 0.372 0.325 - - - - - - - - -

single
WikiList 0.369 0.331 0.292 0.313 0.295 0.250 0.401 0.340 0.284 0.379 0.366 0.325
word2vec 0.360 0.296 0.249 0.317 0.271 0.219 0.389 0.313 0.247 0.431 0.373 0.320

fusion

EgoSet-SG & WikiList 0.465 0.413 0.358 0.357 0.316 0.272 0.366 0.325 0.280 0.447 0.374 0.329
word2vec & WikiList 0.390 0.331 0.289 0.334 0.313 0.222 0.373 0.303 0.240 0.352 0.333 0.308
EgoSet-ALL 0.490 0.427 0.372 0.369 0.323 0.274 0.432 0.370 0.313 0.453 0.399 0.356

Table 4: End-to-end performance evaluation.

4.3.3 Baselines

We perform comparison across the following baselines.
• SEAL: Set Expander for Any Language [35, 36]. The pub-

lished implementation was used with default settings.7 We
only managed to execute multi-seed queries using SEAL,
and acquired a single ranked list per query.
• NeedleSeek: Web semantic mining prototype by Microsoft

Research [38, 30].8 Semantic maps were retrieved for each
single-seed query using an API provided by the authors.
• WikiList: Wikipedia lists only. For each input query q, we

find its 200 nearest neighbors using Hamming distance of list
memberships. Then an ego-network is built using pairwise
distance of its neighbors, and community detection (Lou-
vain) is performed to acquire clusters. Cluster members are
ranked towards each cluster centroid.
• word2vec: Same as word2vec-net in Section 4.2.
• fusion models: set expansion pipelines with two or three

sources. EgoSet-SG represents our skip-gram feature set.
EgoSet-ALL is the method that fuses all three sources (see
Section 3.4).

4.3.4 Results

Table 4 contains three separate groups of results, including queries
of single seeds, double seeds, and three or more seeds. Three ma-
jor observations can be made: (1) Between single-source methods,
WikiList consistently outperforms word2vec; (2) Fusion-based meth-
ods consistently outperform single-source methods; (3) The com-
plete EgoSet-ALL method outperforms two-source fusion meth-
ods (EgoSet-SG & WikiList and word2vec & WikiList).

These observations support that our ensemble solution can in-
deed effectively purify the clusters generated by skip-grams. Note
that although the precision numbers reported here may seem lower
than those in other state-of-the-art work (e.g., [34]), they may not
reflect the actual perceived quality of the results. This is because
our evaluation metric, MMAPk, takes into account the coverage
of semantic classes, and automatically penalizes situations where
there lacks sense coverage for a given query.

4.4 Parameter Analysis
The parameters in our proposed pipeline fall into two categories.

The first category is associated with corpus processing and ego-
network construction. Here we list a set of parameters that directly
influence the quality of ego-networks:
• range of skip-gram lengths (e.g., 3–5 tokens): longer skip-

grams may capture more semantics of the entity, but will lead
to a sparser feature space;
• maximum degree of a skip-gram in a word-feature bipartite

network (e.g., 2500): a larger value means more skip-grams

7https://github.com/TeamCohen/SEAL.
8http://needleseek.msra.cn/
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Figure 5: Parameter analysis for fusing ego-network commu-

nities with ontologies.

will be considered with the risk of creating more spurious
links between words and poorer efficiency;
• number of min-hash dimensions used for sampling skip-grams

(e.g, 300): a larger value means better preservation of the
“true” word similarity value, at the cost of computation effi-
ciency. This parameter is analogous to the vector dimension
in word2vec;
• number of nearest neighbors to index in an ego-network (e.g.,

250): a larger value improves the long-tail performance, at
the cost of computational efficiency.

The second category of parameters are associated with the pro-
cess of fusing ego-communities with ontologies (Section 3.4). As
can be seen in Algorithm 1, there are two important parameters (θ1
and θ2):
• θ1, minimum cut-off Jaccard similarity for matching ontol-

ogy lists (e.g., 0.75): a larger value means more strict selec-
tion of ontology lists;
• θ2, a factor for determining the cut-off threshold in purifica-

tion (see Algorithm 1): a larger value means more aggressive
cut-offs in the purification process.

Figure 5 shows the influence of the relevant parameters on the
system performance. According to Figure 5(a), the strictness of
matching ontology lists plays an important role, and requires proper
trade-off between two extremes. A proper value of θ1 should be set



Multi-seed Query Identified Ego-clusters Top Skip-gram

brown white

Cluster 1: brown white green williams roberts johnson jackson smith evans
jones ... (popular English last names)

kenneth ,

Cluster 2: white red blue black yellow brown green purple light_blue ... (colors) colors are and

beijing shanghai

Cluster 1: tianjin guangzhou shanghai shenzhen chongqing beijing wuhan
chengdu dalian shenyang ... (major Chinese cities)

in , china .

Cluster 2: liaoning heilongjiang hebei tianjin shanghai jilin inner_mongolia
shanxi beijing hunan ... (Chinese province-level administrative regions)

of , china .

beaver elk

Cluster 1: coyote moose elk cougar beaver bison opossum marten wolverine
fisher ... (animals)

deer , ,

Cluster 2: westmoreland schuylkill fayette crawford beaver elk greene
fulton chester ... (counties in Pennsylvania)

in county , pennsylvania

Table 5: Case study of multi-seed multifacted queries

between 0.5 and 0.75. According to Figure 5(b), the quality of
the result is not very sensitive to the selection of θ2. This is be-
cause in the actual implementation each type of similarity metrics
(i.e., fWikiList, fEgoSet, and fword2vec) also has a flat minimum cutoff
threshold, which is independent of θ2.

Note that word2vec also has a number of tunable parameters,
which will not be discussed here.

4.5 Case Study
Table 5 presents three case studies for multi-seed expansion. In

all cases, the algorithm succeeds in finding at least two facets of the
query. On the right column is a top weighted skip-gram identified
for each cluster. This gives us an idea how skip-grams capture the
commonality of words and coercing them into a cluster. Note that
all phrases (e.g., "light blue" or "inner mongolia") are converted
unigrams by concatenating their tokens during pre-processing.

4.6 Discussions
There are several details that are worth discussing:

Number of semantic classes: The number of semantic classes
returned by EgoSet is automatically determined. There are two
factors: (1) the community detection algorithm (Louvain) returns a
partition of the graph with the number of communities that yields
the best modularity; (2) in post-processing, if two clusters are too
similar (Jaccard index greater than a threshold), they will be merged,
which will reduce the number of classes (see Section 3.5).

Scalability: Our proposed pipeline is highly scalable. Although
the candidate entities are drawn from a large vocabulary, we only
need to keep in memory the ego-networks, i.e., the nodes and links
related to the nearest neighbors of the seed words (hence the name
"EgoSet"). We experimented with ego-network construction of
large n-gram vocabularies: by using Map-Reduce on a moderate
cluster (70 cores), the process of extracting features and indexing
nearest neighbors can be finished within 5 hours for a vocabulary
of 1 million n-grams. After this pre-processing step, during serv-
ing time, we only need to look up input seeds in a nearest-neighbor
index, without having to iterate through every word in the vocabu-
lary. In addition, similar to [11], most of the computation carried
out in the pipeline can be done using sparse matrices, which may
further improve the overall efficiency.

Interplay of three similarity metrics: We exploit three dif-
ferent similarity metrics in our system, including skip-gram-based
similarity, ontology-based similarity, and word-embedding-based
metric. While there is a great amount of commonality in terms of
what is captured by the three metrics, they all have their own dis-
tinct characteristics: our proposed skip-gram-based similarity met-
ric is great for producing networks with good community structure

and performs especially well on geolocation terms (e.g., Figure 1),
but it tends to under-perform in some domains, such as movie titles
and musical records. In contrast, Wikipedia lists, although quite
noisy, provide good coverage on almost every domain, and thus can
compensate the skip-gram-based metric to improve recall. More-
over, embedding vectors produced by word2vec has similar char-
acteristics to our skip-gram-based metric, but its performance on
multifaceted queries is not as satisfactory. Due to reasons explained
in Section 3.1, word2vec-generated embeddings tend to mix non-
sibling entities together (e.g., apple and ipad), which makes it dif-
ficult to generate high-quality clusters in word ego-networks. This
difference is also shown in Table 3. However, through proper fus-
ing techniques, such as our proposed ensemble model, these three
metrics can facilitate each other and lead to improvement of set
expansion performance.

Long-tail terms: We intentionally distinguish our work from
previous work that focuses on optimizing the performance of long-
tail expansion, and thus we do not particularly attempt to address
the coverage of long-tail terms in the expansion results (we do
care about supporting long-tail queries, which is why we develop
the ensemble model). Since there is already plenty of existing
work that optimizes the precision and recall given an unambiguous
set of seeds, some of which can achieve near-perfect performance
(e.g., [24]), we choose to instead focus our study on addressing
the ambiguity that exist among many entity set expansion queries.
We aim to make the top 5 to 20 ranked entities in each result clus-
ter good enough, so that one can potentially supply the result of
our system to downstream expansion algorithms that specialize in
long-tail expansions to achieve overall good performance.

Handling n-grams: We treat n-grams as unigrams by concate-
nating the tokens. This is done by using Mikolov’s word2phrase
tool published alongside word2vec [20].

Choice and availability of ontologies: The Wikipedia lists used
in our pipeline may be replaced with other similar ontologies. When
an existing ontology is not readily available, an automatically cre-
ated ontology (e.g., using techniques of [33]) may be used instead.
We do not yet know how well our proposed method works in such
scenarios. We leave these topics for future work.

Future work: It would be interesting to conduct a theoreti-
cal analysis in order to explain the characteristics of skip-gram-
based distributional similarity metric, and how it improves local
ego-community structure for multifaceted seeds. Another poten-
tial improvement is to integrate more sources of information into
the system, including co-occurrence between entities in the Web
corpus, Web tables and lists, as well as Wikipedia categories. In
addition, our reviewers raised several important points which we
could not address within the scope of this paper and would leave



as future work, including: (1) building a system pipeline that han-
dles a mixture of both “single-faceted” and multifaceted queries;
(2) evaluating the system against a collection of queries in which
multiple terms possess one single common sense but each of the
term itself is multifaceted; and (3) developing a simpler or more
elegant solution with fewer components or without having to rely
on a number of different data sources.

5. RELATED WORK
The problem of completing an entity set given a few seeds has

attracted a great amount of research effort. Google Sets was among
the earliest work that supported open-domain set expansion [32].
It used proprietary algorithms and is no longer publicly accessible.
Ghahramani and Heller [11] formulate the same task as a Bayesian
inference problem, where they develop a probabilistic model that
tests whether a candidate entity belongs to some unknown clus-
ter that contains the input seeds. Their model exploits the co-
occurrence relations between entities in documents, and is shown
to have achieved comparable performance to Google Sets. Wang
and Cohen [35, 36] propose the SEAL system, which submits input
seeds as queries to a search engine, and mines the top-ranked web-
pages using a graph-based ranking model to obtain a ranked list of
entities as result. The graphs constructed in SEAL contain hetero-
geneous sets of nodes, including documents, entities, and wrappers
(prefixes and suffixes close to named entities in HTML documents).
SEAL effectively leverages the analogous patterns observed around
sibling entities in HTML pages, and is shown to outperform Google
Sets. In more recent work, Pantel et al. [24] build a highly scalable
set expansion pipeline with MapReduce; He and Xin [12] design
an iterative similarity aggregation process; and Wang et al. [34]
achieves near-perfect precision for completing a set of named enti-
ties with not only a few input seeds, but also an explicitly specified
label (in natural language) for the intended entity set. Chen et al.
[7] improve performance on long-tail term expansions by leverag-
ing “page-specific” extractors built in a supervised fashion. While
these approaches perform well for expanding a well-defined seman-
tic class, they are not designed for handling multifaceted seeds. In
real usage, the user or upstream applications of an entity set ex-
pander may not always be able to provide a clear and unambigu-
ous set of seeds, and the capability of handling multifacetedness in
input seeds is important. In comparison to these studies, our work
has community detection algorithms embedded in the pipeline with
proper post-processing, and can thus correctly handle multifaceted
seeds by returning multiple semantic classes as results.

There are also existing techniques that can handle multifaceted
seeds for set expansion. These techniques usually involve a batch
process that mines the Web to automatically create semantic classes
and acquire their corresponding member instances [1, 9, 25, 26, 30,
31, 33, 37]. The core to these techniques include two aspects: (1)
mining hyponym (is-a) relations between an entity and a class la-
bel, for which contextual patterns (e.g., Hearst patterns [13]) are
often used; (2) mining sibling relations among entities, which can
be achieved by using contextual patterns and distributional simi-
larity on a text corpus [25, 30, 33], or leveraging structural clues
in Web tables and lists [9], or a combination of both unstructured
and structured data [26, 31]. Compared to these techniques, our
pipeline does not stop at the batch process: we introduce effective
post-processing techniques that are specially designed to accom-
modate individual sets of input seeds, especially multifaceted ones.

Perhaps the most relevant work to ours is by Zhang et al. [38].
The authors address multifaceted queries by using topic modeling
to refine raw semantic classes for a specific multifaceted query. We
show that our method outperforms theirs on multifaceted queries,

and can handle multi-seed queries whereas theirs cannot. In addi-
tion, Kong and Allan [15] also target multifacetedness of queries
but are aimed at finding relevant entities instead of strict siblings of
the query. To the best of knowledge, our work is the first to pro-
vide a rigorous evaluation against multi-seed multifaceted seeds for
entity set expansion.

Recent advances in neural embedding models provide alternative
solutions to finding semantic classes, such as [2, 17]. The neural
embedding model proposed in these studies are trained with syntac-
tic contexts rather than windows of words. They use a dependency
parser to parse the text and contextual words are taken from the
proximity of the target word on a parse tree. Syntactic relations be-
tween the words are also used to construct the context. As a result,
such models can have the effect of grouping words that share sim-
ilar semantic roles or even semantic classes. Our proposed method
may be benefited by the strict sibling entity relations recovered in
such dependency-based embedding models.

More generally, our work is also related to word sense disam-
biguation [5, 4], sense discovery [23], and clustering [18, 19].

6. CONCLUSIONS
We discovered that multifaceted terms possess highly modular

ego-community structure in their word ego-networks. To exploit
such a nice property for multifaceted set expansion, we designed
novel skip-gram features to enhance such modular structure, and
proposed the EgoSet pipeline to fuse ego-communities with user-
created ontologies, as well as word embeddings, through an en-
semble model. As result, we are able to provide accurate entity
set expansion for multifaceted seeds through a simple procedure
that outperforms state-of-the-art baselines. By only indexing and
serving with ego-networks, our proposed pipeline is also efficient
enough to support Web-scale set expansion tasks.
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