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EgoSpaces: Facilitating Rapid Development of

Context-Aware Mobile Applications
Christine Julien and Gruia-Catalin Roman

Abstract— Today’s mobile applications require constant adap-
tation to their changing environments, or contexts. Technolog-
ical advancements have increased the pervasiveness of mobile
computing devices such as laptops, handhelds, and embedded
sensors. The sheer amount of context information available for
adaptation places a heightened burden on application devel-
opers as they must manage and utilize vast amounts of data
from diverse sources. Facilitating programming in this data-
rich environment requires a middleware that provides context
information to applications in an abstract form. In this paper,
we demonstrate the feasibility of such a middleware that allows
programmers to focus on high-level interactions among programs
and to employ declarative abstract specifications of context in
settings that exhibit transient interactions with opportunistically
encountered components. We also discuss the novel context-aware
abstractions the middleware provides and the programming
knowledge necessary to write applications using our middleware.
Finally, we provide examples demonstrating the flexibility of the
infrastructure and its ability to support differing tasks from a
wide variety of application domains.

I. INTRODUCTION

With the increasing popularity of mobile computing de-

vices, users find themselves living and interacting in envi-

ronments characterized by the ability to coordinate with a

variety of wirelessly networked resources. As one example,

imagine a network that forms on a highway among vehicles

communicating directly with one another. Such ad hoc net-

works form opportunistically and change rapidly in response

to the movement of the devices, or mobile hosts, resulting in

a network topology that is both dynamic and unpredictable.

Because communicating parties may be constantly moving,

their interactions are inherently transient. Routing protocols

have been devised to create and maintain communication

pathways among mobile hosts even as the network topology

changes but do not sufficiently abstract communication to the

level of applications’ operations.

Consider an automobile network. An individual driver might

first want to keep track of all cars likely to collide with

him. If another car comes too close, a light warns the driver,

and he can attempt to avoid the collision. The driver might

also monitor traffic conditions for his specified route. As a

second application example, imagine a building with a fixed

infrastructure of sensors that provide information about the

building’s structural integrity, movements of occupants, etc.

Engineers and inspectors carry PDAs that interact with the
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sensors. As an engineer moves, he wishes to see structural

information determined by his task or location. He may also

want to respond to events, e.g., the arrival of an inspector. As

support for pervasive computing devices builds, the possibility

for such applications in various domains abounds.

In this paper, we apply lessons learned within context-

aware computing to the unique challenges of mobile ad hoc

networks. With this approach, applications need not have

explicit knowledge of other mobile hosts, and the application

developer’s level of awareness rises to an environment with

which his application interacts. This abstraction of networked

components as a context encompasses information that can be

collected from hosts throughout the network and facilitates the

provision of intuitive programming constructs.

The difficulty of mobile application programming can be

generalized to the need to manage large amounts of dis-

tributed and transiently available context data. This challenge

motivated us to hide the details of mobility, distribution, and

transient connectivity. The resulting middleware, EgoSpaces,

builds on our context abstraction to allow an individual appli-

cation to limit the portion of the context it interacts with. An

application may define different contexts that reflect diverse

concurrent and changing needs and which encompass data

from multiple sources. EgoSpaces manages this information

for the application, relieving the developer from having to

handle network connections and disconnections common in

mobile environments.

This work represents a significant step in creating a context-

aware computing infrastructure for simplifying adaptive mo-

bile application development. Specifically, our contributions

include: 1) a redefinition of context-awareness in mobile envi-

ronments, 2) the elucidation of a conceptual model amenable

to dynamic applications and tailored to a novice programmer’s

capabilities, and 3) the implementation of a middleware that

enables simplified context-aware application development.

In this paper, we first examine the state of the art in context-

aware computing. Section III uses this foundation to develop

a novel model of emerging context-aware mobile applications.

The following section demonstrates how applications operate

within that model to exchange and interact with dynamic

data. In Section V, we apply this conceptual model to the

development of a middleware specifically designed to reduce

the software engineering burden in mobile ad hoc networks.

Section VI provides examples from varying application do-

mains showing the benefits associated with the middleware,

while Section VII experimentally evaluates the middleware’s

performance through simulation. Related work and conclu-

sions appear in Sections VIII and IX, respectively.
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II. CONTEXT-AWARE COMPUTING

In context-aware computing, the behavior of individual

components is determined by the circumstances in which they

find themselves. The environment has a powerful impact on

an application component either because the latter needs to

adapt to changing external conditions or because it relies on

resources whose availability continuously changes.

A. Collecting and Adapting to Context

Context-aware computing became prevalent with the emer-

gence of mobile devices. Active Badge [46] uses infrared

communication between users’ badges and sensors placed in

a building to forward telephone calls. PARCTab [47] also

enables adaptive applications which, for example, can attach a

file directory to a room for use as a blackboard. More recent

work [20] in ubiquitous computing uses CORBA and operates

over a wired network that supports localization and commu-

nication. These systems require constant maintenance and do

not address issues inherent in ad hoc networks, including the

need to scale to large and unpredictable networks.

Context-aware tour guides [1], [11] present information

about the user’s current environment. Fieldwork tools [35]

automatically attach context information (e.g., time) to re-

searchers’ field notes. Memory aids [38] record notes about

the current context that might later be useful to the user. These

applications collect their own context information and focus

on a specific type of context, while applications demanded

in ad hoc networks share characteristics that set them apart.

Specifically, mobile hosts do not have a priori knowledge of

the parties with which they interact. This new breed of applica-

tions instead relies on opportunistic interactions. For example,

an application for vehicles on a highway interacts with other

cars locally to collect traffic information. A particular driver

has no advance knowledge about which cars will provide the

traffic information.

Generalized software built to support context-aware com-

puting in mobile environments has also become a focus of

much research [18], [21], [43]. Among the best known systems

is the Context Toolkit [43], which provides abstractions for

representing context information through widgets that collect

low-level sensor information and aggregate it into higher-level

information more easily handled by application developers.

While these approaches offer much needed building blocks for

constructing applications, they do not address an application’s

need to dynamically discover and operate over a constantly

changing context.

B. A Novel Notion of Context-Awareness

While the above approaches have demonstrated that context-

aware computing provides abstractions useful in supporting

mobile applications, they do not directly address the distin-

guishing characteristics of ad hoc networks and their desired

applications. Specifically, we build on the above context def-

initions but take an application-level approach to adaptation,

focusing on how applications specify and use elements of their

context:

• Context should be generalized so that applications in-

teract with different types of context (e.g., location,

bandwidth, etc.) in a similar manner.

• Different applications require contexts tailored to their

individual and changing needs.

• An application’s context includes information collected

from a distributed network of devices, which must be

specified without significant a priori knowledge.

• Due to the large-scale environment, applications require

decentralized context interaction.

• High-level abstractions ease the programming burden.

In this paper, we use this new definition to design and de-

velop a middleware infrastructure that supports rapid context-

aware application development in mobile ad hoc networks.

III. A CONCEPTUAL MODEL OF CONTEXT-AWARE

APPLICATIONS

Armed with this new perspective on context-awareness, we

developed a conceptual model to describe the general behavior

of mobile ad hoc network applications and to provide support

for their rapid development.

A. Computational Model

We assume a computing model in which hosts move in

physical space, and applications are structured as a community

of mobile software agents that can migrate among hosts. An

agent is the unit of modularity and mobility, while a host is

a container that is characterized by, among other things, its

location in physical space. Communication among agents and

agent migration can take place whenever the hosts involved

can communicate. A closed set of connected hosts forms an

ad hoc network.

Since context is relative to a particular application on a

particular host, we use the term reference agent to denote the

agent whose context we are considering, and we will refer

to the host on which this agent is located as the reference

host. In principle, the context associated with an agent consists

of all the information available in the network. Such broad

access to information is costly to implement and undesirable

in large networks. Consider the application in which a driver

on the highway collects traffic information. Automobiles may

be transitively connected for hundreds of miles, but only local

traffic information is of interest to the driver. For these reasons,

we structure the context in terms of fine-grained units called

views.

Fig. 1 shows our computational model whose components

are discussed in detail throughout this section. A host has a

physical location and a profile describing its properties. An

agent has a profile and a logical location, the host on which it is

running. Agents can define views by providing a specification.

Finally, every agent stores its data in a local tuple space.

While all of these aspects are essential to our computational

model, successful asymmetric coordination through the view

concept is the cornerstone of the middleware. We next explore

this concept in more detail before continuing with the access

operations in Section IV.
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Fig. 1. The computational model

B. Data Representation

Our model intentionally does not separate the notions of

data and context. That is, given our redefinition of context

from Section II, we envision that any data available in the

network has the potential to impact an agent’s behavior and

is therefore context. The manner in which an agent perceives

data has ramifications on the ease of programming and the

efficiency of operations. Therefore we explicitly separate the

specific data items an application can access from the manner

in which they are presented to the application. That is, we

assume a single data representation as a basis for coordination.

Other forms of interaction can be swapped in for our choice;

the investigation of such context-sensitive data structures [36],

[37] is outside the scope of this paper.

In our model, applications perceive the network as an

underlying database of tuples. Tuple space representations

based on Linda [16] enjoy a great deal of popularity due to the

use of content-based data access. Several mobile computing

systems have found success using shared tuple spaces [7],

[33]. We support transient sharing of tuple spaces, combine

it with a flexible tuple representation, and allow an agent to

use a declarative view specification to indicate with which

other components it wants to share data.

To support tuple spaces, we developed ELIGHTS, in which

a tuple is an unordered set of triples of the form:

〈(name, type, value), (name, type, value), . . .〉

For each field, name is the name given to the field, and type

is the data type of each value. In any tuple, the field names

must be unique. The name allows us to relax the ordering

restrictions seen in traditional tuples. Fundamentally, users

access tuple spaces by matching a pattern against a tuple’s

contents. An ELIGHTS pattern has the form:

〈(name, type, constraint), (name, type, constraint) . . .〉

In patterns, name and type are identical to their counterparts

in tuples. The constraints are functions that provide require-

ments that the value in a field must match for the tuple’s

field to match the pattern’s field. The matching function M is

defined over a tuple θ and a pattern p as:

M(θ, p) ≡ 〈∀c : c ∈ p :: 〈∃f : f ∈ θ ∧ f .name = c.name
∧ f .type instanceof c.type

:: c.constraint(f .value)〉〉

In the three-part notation 〈op quantified vars : range ::

exp〉, the variables from quantified vars take on all values

permitted by range. If range is missing, the domain of the

variables is restricted by context. Each instantiation of the

variables is substituted in exp, producing a multiset of values

to which op is applied, yielding the value of the three-part

expression. If no instantiation satisfies range, the value of

the is the identity element for op, e.g., true when op is ∀
or zero if op is “+.” For each constraint in the pattern, the

tuple must have a field with the same name, the same type

or a derived type, and a value that satisfies the constraint.

The function requires that each constraint is satisfied, but it

does not require every field to be constrained. In enabling

coordination among distributed application components, it

is assumed that some meta-knowledge about the type and

representation of the context is shared among the components.

This assumption enables the model to be more flexible in

allowing any data types to be stored as context but makes

application development slightly more complex by leaving the

definition of a naming scheme to the developer.

C. The View Concept

A view is a projection of all data available to the reference

agent. An agent can define multiple views (which can be

redefined over time as needs change). In the remainder of

this section, we first define the view and the components

of its specification and behavior informally. We end with a

formalization of the view and its contents.

Declarative View Specifications. The view concept is

egocentric in that every view is defined with respect to a ref-

erence agent and its needs for resources from its environment.

Although we focus on a single view, an agent sees the world

through a set of views that may be altered at will by defining,

redefining, and discarding views as processing requirements

demand. An agent requests a view by providing a declarative

specification which controls the scope of the view (a larger

or smaller network neighborhood) and the size of the view

(the range of entities included). The former is accomplished

by providing constraints over the properties of the network,

hosts, and agents, while the latter is achieved through the

use of constraints on the data. For example, an automobile’s

collision avoidance agent might declare the following view:

All location data (reference to data) owned by collision
warning agents (reference to agents) on cars (reference
to hosts) within 100 meters (restriction of the network
neighborhood) of my current location (property of the
reference host).

Figure 2 shows an evaluation of the declarative view speci-

fication. The figure shows cars on a highway; the arrows indi-

cate their approximate movement patterns. The “X” represents

the reference agent. To simplify the picture, we assume only

a single agent per car. In the picture on the left, the reference

agent provides a restriction of the cars that participate in the
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Fig. 2. View used by a collision warning agent on car X

view. The center picture shows how data items (circles in the

picture) map to cars. Because the reference agent is interested

only in location data (black circles in the picture on the right),

the actual view contains only these data items.

In providing a view specification, an agent indicates the

specific data that should comprise the view. The data, the

agents owning the data, the hosts where the agents are located,

and the paths to those hosts must all satisfy the application

agent’s view specification.

Network Constraints. We extend the availability of context

information beyond a host’s immediate scope, i.e., a host can

gather context from a subset of the entire ad hoc network.

Doing so requires an abstraction of the network topology and

its properties. After specifying some constraints, including an

individualized definition of distance, an application desires a

qualifying list of acquaintances. That is,

Given a host α and a positive bound D, find the set of
all hosts Qα such that the cost of the shortest path from
α to each host in Qα is less than D.

To provide such an abstraction of the ad hoc network, we

use the Source Initiated Context Construction (SICC) protocol

and its network abstraction [23], [27], [39]. SICC provides an

abstraction of the network as a tree that contains only those

hosts that are within a specified distance from the reference

host, where the distance can be calculated via an application-

specified metric. Using this abstraction, application delegate

responsibility for low-level communication and focus instead

on application-level adaptation and coordination. To use SICC,

the application agent must include three things:

• the mechanism for calculating the weight of a link,

• the cost function used to determine the cost of the path,

• and a bound on that cost function.

The computation results in a tree rooted at the reference node

and spanning a subnet of the network. The path to every

node satisfies the restrictions imposed by the cost function and

bound, and the tree is maintained as long as needed. As hosts

move, the properties defining the tree change, thus changing

both the contents and the topology of the tree. Building on

the automobile example from above, the network constraints

portion of the view specification would restrict context hosts

to only those within 100 meters.

Host Constraints. While the network constraints deal with

physical properties, the host constraints handle logical prop-

erties. Examples include the host’s id, the identity of the

device’s owner, or services the device provides. A host stores

the properties in a host profile, which is a special private tuple

where the fields of the host are attributes:

〈(att name, type, value), (att name, type, value), . . .〉

An example profile for a car might be:

〈(vehicle type, enumeration, car),
(direction, string , NORTH ),
(speed , integer , 65 )〉.

Host constraints are a pattern over this profile. For example,

the following cnstraints restrict the view to only vehicles

moving in the same direction at nearly the same speed:

〈(direction, enumeration, = mydirection),
(speed , integer , < myspeed + 2),
(speed , integer , > myspeed − 2)〉.

The example constraint does not restrict the type of vehicle

because that property does not interest the specifying host.

This constraint also refers to three local variables (that start

with “my,” which refer to values stored in the specifying

host’s profile. In Section VI-B, we show a complete example

in which such a specification is useful because it provides a

relatively consistently connected set of hosts.

Agent Constraints. Every agent defines another profile con-

taining agent properties. Providing constraints over agent pro-

files allows application agents to restrict the set of agents that

contribute data to the view. Restricting operations to one type

of agent or another increases the efficiency of coordination

by decreasing the number of parties involved. Revisiting the

car example from above, the agent profiles would be defined

similarly to the car’s profile above, but with agent properties

(e.g., the profile may contain a service of type traffic or

weather that the particular agent offers).

Data Constraints. In the same way that agent constraints

restrict the agents contributing to the view, the data constraints

restrict individual data items. The application agent simply

supplies a data pattern that all data in the view must satisfy.

The use of this constraint can be extended if an application

attaches “meta-data” by inserting extra fields in the applica-

tion’s tuples that can be used in matching data constraints.

With respect to the automobile example, the data constraints

could select only location data no more than 30 seconds old.

Transparent View Maintenance. Applications use the

above process to define views in a relatively static manner
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Fig. 3. View dynamics.

(although applications are allowed to redefine views and their

constraints at any time). As hosts and agents move and the

available data changes, the view is automatically updated.

However, this update occurs only at a perceptual level; views

and the data belonging to them are not actually calculated

until or unless an application uses the view. From the applica-

tion’s perspective, these changes are transparent and manifest

themselves only in changes in the set of available data.

Therefore, an agent can operate over a view without explicit

regard for context dynamics. The overhead of constructing and

maintaining a view is incurred only when the application is

actively using the view, but the application benefits from the

perception of a persistent data structure that reflects the current

contents of the view.

The dynamic nature of the view is illustrated in Figure 3,

where the depicted view of agent a1 changes as the distance

between hosts h1 and h3 decreases. Hosts, agents, and data

that contribute to the view have darkened borders. In (a), due to

a1’s specification, only h1 and h2 qualify to contribute agents

to the view. Because of the restrictions on agent and data

properties, only certain data items on certain agents on these

hosts appear in the view. The balloon pointing to a1 shows a

table of the view’s contributors. In (b), when h3 moves closer

to h1, it satisfies the view’s constraints, and its qualifying

agents can contribute qualifying data.

Formal View Definition. Given the four types of con-

straints, a view specification consists of three patterns (over

data, agent profiles, and host profiles) and the network con-

straints (consisting of a link weight metric, a cost function,

and the function’s bound). Given these constraints, the view

is informally defined as the set of all tuples that satisfy the

view’s data constraints, is owned by an agent that satisfies

the view’s agent constraints, and is located on a host that

satisfies the view’s host constraints. Finally, these hosts must

also lie within the boundaries defined by the view’s network

constraints.

Given a reference host r, we define η, the subnet of the

network that satisfies the network constraints (n) to be a subset

of the closure of r’s network. η must be a tree, r must belong

to η, and η must satisfy n. Given the network constraints (n),

the host constraints (h), the agent constraints (a), and the data

constraints (d), a view specified by a reference agent r contains

the tuples defined by:

viewr(n, h, a, d , ) ,

〈set η, γ, α, θ : η ⊆ Closure(r) ∧ tree(η) ∧ r ∈ η ∧ η sat n
∧ γ ∈ η ∧M(γ.profile, h) ∧ α.loc = γ
∧M(α.profile, a) ∧ θ ∈ α.T ∧M(θ, d)

:: θ〉.

γ is a host, α is an agent, and θ is a tuple. α.T refers to the

agent α’s local tuple space. loc refers to an agent’s host. This

definition has been extended to allow agents to control access

to the tuples they own. For brevity, details have been omitted

from this paper, but the interested reader is pointed to [24]

for further details. Throughout the remainder of the paper, we

will refer to a view as ν.

IV. INTERACTING WITH VIEWS

An agent interacts with the world by specifying views that

are presented to the application as tuple spaces. This section

overviews the operations allowed within the view concept.

A. Basic Operations

Basic tuple space operations can be divided into two cate-

gories: tuple generation that places new tuples in the agent’s

local tuple space and on-demand access operations that allow

a reference agent to read and remove tuples in one of its

views. These operations and descriptions of their behavior are
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Operation Description

out(T, t) Places the tuple t in the agent’s local tuple space (designated, for completeness, as T ).

t := rd(ν, p) Returns in t a copy of a tuple that satisfies the view ν’s specification and the pattern p. If no such tuple
exists in ν, the agent blocks until one does.

t := in(ν, p) Returns in t a tuple that satisfies the view ν’s specification and the pattern p, and also deletes the tuple
returned. If no such tuple exists in ν, the agent blocks until one does.

t := rdp(ν, p) Returns in t a copy of a tuple that satisfies the view ν’s specification and the pattern p. If no such tuple
exists in ν, ǫ (a null value) is returned.

t := inp(ν, p) Returns in t a tuple that satisfies the view ν’s specification and the pattern p, and also deletes the tuple
returned. If no such tuple exists in ν, ǫ (a null value) is returned.

tset := rdg(ν, p) Returns in tset the set of copies of all tuples that satisfy the view ν’s specification and the pattern p. If no
such tuple exists in ν, the agent blocks until one does.

tset := ing(ν, p) Returns in tset the set of all tuples that satisfy the view ν’s specification and the pattern p, and deletes the
tuples returned. If no such tuple exists in ν, the agent blocks until one does.

tset := rdgp(ν, p) Returns in tset the set of copies of all tuples that satisfy the view ν’s specification and the pattern p. If no
such tuple exists in ν, ǫ (a null value) is returned.

tset := ingp(ν, p) Returns in tset the set of all tuples that satisfy the view ν’s specification and the pattern p, and also deletes
the tuples returned. If no such tuple exists in ν, ǫ (a null value) is returned.

TABLE I

BASIC OPERATIONS ON VIEWS

Operation Description

t := rdsp(ν, p) Returns in t a copy of a tuple that satisfies the view ν’s specification and the pattern p. If no such tuple can
easily be found in ν, ǫ (a null value) is returned.

t := insp(ν, p) Returns in t a tuple that satisfies the view ν’s specification and the pattern p, and also deletes the tuple
returned. If no such tuple can easily be found in ν, ǫ is returned.

tset := rdgsp(ν, p) Returns in tset the set of copies of all tuples that satisfy the view ν’s specification and the pattern p.
If no such tuple can easily be found in ν, ǫ (a null value) is returned.

tset := ingsp(ν, p) Returns in tset all tuples that satisfy the view ν’s specification and the pattern p, and also deletes the tuples
returned. If no such tuple can easily be found in ν, ǫ is returned.

TABLE II

SCATTERED PROBING OPERATIONS ON VIEWS

shown in Table I; complete operational semantics can be found

in [25].

B. Consistency Concerns

The above operations act over a view atomically, which

requires a transaction over all view participants. In some

applications (e.g., those involving money), this transactional

behavior is required. From a different perspective, the pre-

viously discussed operations come with strict guarantees—

if a matching tuple (or tuples) exists in the view it (or

they) will be returned. In certain conditions, we can provide

such transactional guarantees, even in the face of mobility.

Section VII provides some performance characterizations that

demonstrate how well this assumption holds. As described

in more detail in Section V, transactional semantics can be

provided by relying on a second protocol that defines legal

links for “safe” communication. However, as the number of

participants increases, this can become costly and difficult. To

more efficiently accommodate applications that do not require

these strong guarantees, we introduce scattered probes that

provide a best-effort alternative.

Different implementations of scattered probes apply in dif-

ferent scenarios. The general intuition is a simple one-at-a-time

polling of agents contributing to a view. The operation keeps

track of which agents have been polled, and if it has covered

all contributing agents without finding a matching tuple, the

operation returns ǫ (or an empty set). Table II shows these

operations, their operational semantics can be found in [25].

C. Active Views

Using the previous constructs, to wait for a piece of data,

an agent must either block or poll, which prevents it from

performing other work. To provide expressive, application-

centered constructs, we augment the view model to integrate

transactions, reactions, and generic behaviors with views.

These new operations are summarized in Table III.

Transactions. Performing several operations sequentially

is not atomic because other operations can interleave. For

example, if an agent performs a successful rdp operation

and immediately attempts to in the same tuple, it may be

unsuccessful if another agent has, in the meantime, removed

the tuple. An application may want a sequence of operations

to be atomic with respect to other operations on the involved

views. To support this, we introduce transactions that must

explicitly specify the views over which they will operate,

and they are restricted to acting only on those views. In the

collision detection example, it may be imperative that if a car

is present, its current location is reflected in the tuple space.

In this situation, the car could use a transaction to remove an

old location and replace it with a new location as a single
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Operation Description

T = transaction Performs the specified operations (op
1
, op

2
, . . .) as a transaction over the specified views

over v1, v2, . . . (v1, v2, . . .). Any attempt by the operations inside the transaction to use views not
begin op

1
, op

2
, . . . end included in the list results in an exception.

ρ = react to p Basic reaction triggered by the presence of a tuple matching the pattern p within the view
[remove] on which the reaction is registered (not shown). A basic reaction can remove (delete) the
[and out(tuple modifiers(τ))] basic trigger tuple, and/or output a permutation of the trigger using tuple modifiers.

ρ = react to p Extended reaction triggered by the presence of a tuple matching the pattern p within the
[remove] view on which the reaction is registered (not shown). In addition to optionally removing
[and out(tuple modifiers(τ))] the trigger and outputting a modified tuple, an extended reaction can include a transaction
extended by T (τ) that is executed in the same atomic step as the triggering. To ensure the behavior’s

atomicity, the trigger tuple must be local.

ρ = react to p Followed reaction triggered by the presence of a tuple matching the pattern p within the
[remove] view on which the reaction is registered (not shown). In addition to optionally removing
[and out(tuple modifiers(τ))] the trigger and outputting a modifiec tuple, a followed reaction can include a transaction
followed by T (τ) that executes after the triggering (but not in the same atomic step).

M = migrate p Migration moves any tuple matching the pattern p that appears in the view on which the
[tuple modifiers(τ)] behavior is registered. The trigger is moved to the agent that created the behavior,

altered according to the tuple modifiers.

D = duplicate p Duplication creates a copy of any tuple matching the pattern p that appears in the view on
[tuple modifiers(τ)] which the behavior is registered. The copy of the trigger is algered according to the

tuple modifiers and placed in the specifying agent’s local space.

E = event(p) Event registrations are triggered when a matching event occurs in the view on which the
followed by Te(τ) event behavior was registered. A single event tuple is generated for each registration. The

triggering of an event registration is followed by the specified transaction.

TABLE III

ACTIVE VIEW CONSTRUCTS

atomic action (so that it never appears to any other car that

the location reading was not available).

Reactions. Coordination systems [7], [33] and publish-

subscribe systems [8], [14] have found the ability to react to

particular data items essential for adaptation. In the highway

example, an application may react to the presence of a location

tuple that is “too close” as defined by application level

properties. In the view model, a Basic Reaction associates

a pattern with actions to perform when a tuple in the view

matches the pattern. We further augment reactions to allow

them to execute a transaction in response to a trigger. An

Extended Reaction couples the triggering and response as a

single atomic action but, to ensure atomicity, requires that the

trigger tuple is local. A Followed Reaction treats the triggering

and the response as separate atomic actions, the implication

being that the triggering tuple may not be available to the

responding transaction. In all cases, each agent maintains a list

of the reactions registered on it on behalf of other agents. If an

agent is located in an application’s view, and that application

has defined a reaction on the view, the agent has a registration.

If the agent leaves the view, the reaction is deregistered. If the

agent returns, the reaction is reregistered as a new reaction,

which may cause the reaction to fire again for data items that

have already been reacted to. Details of the three types of

reactions can be found in [26].

Behaviors. In our use of the basic model, we discovered that

many applications construct generic behaviors out of the basic

constructs. Capturing these behaviors as built-in programming

constructs reduces the programming burden in common cases

and provides powerful high-level abstractions that promote

reuse and reduce programming errors. We have classified three

such behaviors: automatic data duplication, data migration, and

event generation. The use of these behaviors enables novice

programmers to create applications that involve sophisticated,

repetitive coordination activities with minimal added overhead.

A mobile agent may want to collect data without explicitly

having to read each piece. When data consistency is important,

a common solution is data replication and associated replica

management, where copies of the data are kept consistent. This

solution is impractical in ad hoc environments where agents

carrying originals and duplicates meet unpredictably. Instead

of attempting to resolve this issue, we avoid the excessive

overhead of replica management by providing two alternatives:

data migration, in which only one copy of a tuple persists, and

data duplication, in which independent copies of data items

are made. The application is left with the responsibility of

managing consistency in these situations. Duplicated tuples

may match the view specification and be infinitely duplicated.

They may also appear in other agents’ views. Applications deal

with these concerns individually, e.g., by tagging all duplicates

and preventing duplication of tagged tuples.

All of the previously described constructs act over state.

Many applications also benefit from reacting to events. Events

include an agent’s arrival, another agent’s data access opera-

tions, etc. We introduce an event generation mechanism to

our model (see Section V), represent events as special tuples,

and register an agent’s interest in an event via patterns. To

allow multiple registrations for the same event yet prevent

superfluous event generation, we raise events only when a

matching registration exists. A unique event tuple is created

for each specific registration, and each callback consumes the

event tuple created for it.
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V. EGOSPACES MIDDLEWARE

The programming constructs described above enable novice

programmers to build complex mobile applications. Section VI

will demonstrate some of these applications. In this section,

we describe EgoSpaces, the middleware that provides the

programming abstractions. Figure 4 shows the middleware’s

high-level architecture. Gray boxes represent components we

assume to exist (message passing and the ad hoc physical

network) or components the programmer provides (the appli-

cation). White boxes represent pieces of the architecture we

provide.

Fig. 4. The EgoSpaces system architecture

A. Supporting Packages

To build EgoSpaces, we implemented three support pack-

ages that provide lightweight implementations of services

necessary for implementing the view abstraction and view

operations.

1) Discovering Network Neighbors: In ad hoc networks,

all hosts serve as routers. To distribute messages, a host must

maintain up-to-date knowledge of its current neighbors. We

utilize a discovery service with periodic beaconing parameter-

ized with policies for neighbor addition and removal. The error

associated with neighbor knowledge is directly dependent on

the beaconing period. The impact of this error is explored in

detail in Section VII.

2) Monitoring Environmental Conditions: We have devel-

oped CONSUL [18], a general-purpose monitoring framework

which maintains a registry of sensors available locally and

on neighboring hosts (within one hop). An application tailors

CONSUL to its needed capabilities. As an example, to add a

location monitor, the application provides code that interacts

with, for instance, a GPS device. In general, a monitor contains

its current value (e.g., the value of a GPS monitor might be

represented by a variable of type Location) and allows

an application to access the value or react to changes. The

information EgoSpaces gathers from CONSUL is essential in

enabling the communication protocol to adapt to the changing

context.

3) Defining Network Metrics: To provide network con-

straints, we use the SICC protocol [27], [39] to construct a

subnet of the ad hoc network based on network properties.

As it processes queries in a distributed fashion, SICC uses

local sensor information from CONSUL and the view’s metric

and bound to build a tree over the subnet of the network

that contains exactly the hosts that satisfy the view’s network

constraints. When the application accesses the view, the system

routes over this tree to service queries. The protocol also

maintains the tree as hosts move and path costs change. The

protocol provides EgoSpaces the ability to send messages to

exactly the hosts in the context, i.e., those hosts that contribute

to the view.

B. Application Interaction with EgoSpaces

EgoSpaces reduces programming context-aware mobile ap-

plications to simple operations tailored to novice program-

mers’ capabilities. An application developer extends the

Agent base class, which allows access to view specification

mechanics and communication capabilities.

public abstract class Agent {
protected final AgentID aID;

protected AgentProfile profile;

public Agent();

public AgentProfile getProfile();

protected final void register();

protected final void out(ETuple tuple);

}

Fig. 5. The API for the Agent class

1) Agent Extension: Figure 5 shows the API of the abstract

Agent class. An application’s agent inherits two fields: the

unique AgentID and the AgentProfile. An AgentID

consists of the unique id of the host on which it was created

coupled with a counter incremented by that host. Even if the

agent moves within the network, it retains an id associated

with the host where it was first created. An agent’s profile

fosters coordination by allowing other agents to include or

exclude the agent from coordination based on its properties

(via agent constraints). Initially, the profile contains two fields

named “Agent ID” and “Host ID” that contain the AgentID

and the id of the agent’s host. An agent can add, remove, and

modify properties in its profile (except for the AgentID and

the HostID, which are controlled by the system).

In extending the Agent base class, an application agent

receives two methods. The first registers the Agent with the

local EgoManager which delegates responsibility for data

management and communication. The second method, out

allows an agent to create tuples. When the agent is registered,

these data items are available for coordination.
2) View Definition and Use: Once registered with the

EgoManager, an agent can define views. The View API

includes a constructor, data access operations, and the ability

to enable behaviors. The constructor requires the agent to

provide the four constraints that define a view (data, agent,

host, and network constraints). The network constraints are

provided via a metric and bound as required by the SICC

protocol. Because EgoSpaces represents profiles as tuples, the

remaining constraints can be provided as patterns over tuples.

Once a View is defined, the reference agent sees it as the set

of data items that satisfy the associated restrictions and uses

the constructs discussed in Section III to access data.
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C. EgoSpaces Implementation

Agent Registration and Migration. When an agent is cre-

ated, a data structure is initialized to hold any tuples the agent

creates. If the agent generates tuples via out operations before

it registers with the EgoManager, the tuples are placed in this

local storage. These tuples are not yet available for access by

other agents. When the agent calls the register method, the

EgoSpaces system registers the agent with the EgoManager,

and the contents of the agent’s local storage are placed in a

host-level tuple space. During the transfer to the host-level

tuple space, each tuple is annotated with the owning agent’s id.

We use a single host-level tuple space to reduce the overhead

of remote operations, which will become more apparent in the

discussion of operation processing.

The registration mechanism described above reduces agent

migration to a few simple steps. Upon migrating, an agent is

deregistered from the current EgoManager. This moves the

agent’s tuples from the host-level tuple space to the agent’s

local storage. The agent’s code and state are then moved to

the destination host, where the agent is registered with the

local EgoManager.

View Creation and Maintenance. Any registered agent

can define views. For each view, the EgoManager uses

SICC to construct the subnet of hosts over which the view’s

operations are issued. The EgoManager only builds and

maintains views when operations are issued to avoid unnec-

essary communication. The protocols to build and maintain

views are described in [39].

View Operation and Agent Interaction. When the refer-

ence agent issues an operation on a View, the operation and

view constraint information are passed to the EgoManager,

which creates a dedicated operation thread for the request.

From this point, the steps necessary to implement each oper-

ation depend on the operation’s semantics.

Fig. 6. Sequence diagram of an in

Atomic Blocking Operations. Figure 6 shows a sequence

diagram of an in operation. The calling thread blocks until

the operation thread finds a match. The operation thread uses

SICC to distribute a query to every host in the context, and

the query remains registered on those hosts until the operation

thread deregisters it. If new hosts move into the context while

the query remains active, they receive the query. Similarly, as

hosts move out of the context, the query is removed.

Two things can happen when the operation is registered.

First, a tuple in the host’s tuple space may immediately match

(not shown). If so, the context host notifies the operation

thread. If not, the context host stores the registration and

checks every tuple generated to see if it matches. When a tuple

matches the request, the context host reserves the matching

tuple for the requesting agent until either the operation thread

requests it be removed and returned or the query is deregistered

(indicated as the blackened period in Figure 6). A match

may also be triggered by a new host with a matching tuple

moving into the view. When the operation thread receives

notification of a match, it sends a message to the owning

host to remove the tuple. It is possible that the operation

thread will receive multiple matches for an in; it chooses one

nondeterministically. Once the operation is ready to return, the

query is deregistered from all of the context hosts.

When a context host finds a match to a rd, it simply

returns it and waits for the operation thread to deregister the

query. Aggregate operations perform the same steps as their

counterparts, but to ensure they return all matching tuples,

when the operation finds the first match, it issues an aggregate

atomic probe to complete the operation.

Fig. 7. Sequence diagram of a rdp
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Atomic Probing Operations. The sequence diagram in Fig-

ure 7 shows a rdp. When the reference agent issues its

operation, the EgoManager spawns an operation thread; the

reference agent waits for a response. The operation thread

first collects the ids of the view’s hosts using a SICC query.

Every host in the context responds with its id and the ids of

its children in the tree. The EgoManager on the reference

agent’s host uses this information to ensure that it hears from

every contributor before continuing. At this point, the set of

hosts for the operation is fixed. If new hosts move into the

view, their addition is delayed until this operation completes.

Once the operation thread has gathered the ids of all context

hosts, it locks them in order of increasing id. Locking a tuple

space prevents other threads from modifying the tuple space’s

contents; ordered locking prevents deadlock. When a host

receives a locking request, it waits until its tuple space is not

locked by another thread, then returns positively. The operation

thread waits to hear from each host before locking the next

one.

Fig. 8. Locking example

The need for locking is not immediately obvious. Consider

the case shown in Figure 8, in which four tuple spaces contain

tuples in the reference agent’s view. The ellipse inside each

tuple space contains the tuples that satisfy the view constraint.

The black tuples also satisfy the operation’s template. In this

figure, the operation queries the tuple spaces for matching

tuples in order without locking them; the outlined rectangle

indicates the tuple space being queried. In part (a), the

operation queries Host 1. Being unsuccessful, the operation

thread then queries Host 2 (part (b)). At the same time, a

different operation moves tuple x from Host 3’s tuple space to

Host 1’s tuple space. In part (c), because the operation thread

did not find a matching tuple, it queries Host 3, while the

tuple y is moved to Host 2. The operation thread finds no

match at Hosts 3 or 4. This violates the operation’s semantics

because a match existed for the duration of the operation.

After locking every host in the context, the operation thread

requests a matching tuple from each host in order. For the rdp,

as soon as the operation thread finds a single match, it returns

the tuple. For an inp, the operation thread returns the first

match, but also removes the matching tuple. For aggregate

operations, the operation thread must query every host tuple

space instead of halting once it finds a match.

Scattered Probing Operations. These operations provide

weaker semantics than the previous two in that the operations

are allowed to miss matching tuples in the view. That is, the

case shown in Figure 8 is acceptable. The weakened semantics

of these operations allow more efficient implementations. The

sequence of events in executing a scattered probing operation

follows those of an atomic probing operation, without the need

to lock the context hosts. Thus, context hosts are active only

while responding directly to the operation thread.

Transactions. A transaction operates over several views. As

such, transactions are inherently costly. EgoSpaces reduces

this cost by requiring a reference agent to explicitly declare

which other agents need to be locked for the transaction by

providing a list of views. Because the agents contributing to

each view are known, EgoSpaces can lock the transaction’s

participants (including the reference agent) in order (by id).

If any other agent also performs a transaction, it locks agents

in the same order, avoiding deadlock. If a new agent moves

into the view while a transaction is in progress, its arrival

is ignored until the transaction completes. If a contributing

agent moves out of the view while a transaction is locking

agents, it is unlocked before departing. If the transaction’s

operations are already executing, the agent’s departure must be

delayed until the transaction completes. We guarantee enough

time to complete the transaction before the agent disappears

from communication range using safe distance [22]. The latter

is defined as a function over the speed and direction of the

nodes involved in the communication and the maximum time

necessary to complete a requested transaction. If transactions

can have longer durations, the safe distance that defines

allowable network links becomes shorter.

Reactions. Because reactions are the core of the EgoSpaces

behaviors, an efficient implementation is essential. The im-

plementation of reactions in EgoSpaces is very similary to

blocking operations with added bookeeding for maintaining

the registrations for multiple matches. Each agent keeps a

reaction registry (containing all reactions it has registered)

and a reaction list (containing all reactions this agent should

fire on behalf of other agents, including itself). A reaction

registry entry contains a reaction’s id, the tuple to output when

the reaction fires (if any), and the transaction that extends or

follows this reaction (if any). A reaction list entry contains

the reaction issuer’s id, the reaction’s pattern, the view’s data

pattern, and a boolean indicating whether or not to remove

the trigger. Upon registration, the reaction is inserted in each

view participant’s reaction list. For all matching tuples, the

reaction fires, sending a notification (containing a copy of

the trigger) to the registering agent. If specified, the tuple

is deleted. As long as the reaction remains enabled, new

tuples are checked against the pattern. For each match, the

registering agent receives a notification and locates the reaction

in the reaction registry. If necessary, it performs the appropriate

out operation and schedules any associated transaction. In

Figure 9, agents B and C register reactions, which both match

t. The reaction with the highest priority (B’s reaction) fires

first, generating notification n. Because this reaction removes

t, C’s lower priority reaction will not fire. B’s reaction can

be extended or followed by a transaction. The former is only

allowed when the trigger is local (i.e., A=B). As agents move
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Fig. 9. The Reaction Mechanism

out of the view, they remove information regarding registered

reactions. If these agents return, they receive the registrations

and fire the reactions again for matching tuples.

Behaviors. Because the semantics of behaviors are written

as reactions (see [26]), their implementations rely on the

reaction’s implementation. We build these behaviors into the

system to provide common actions as simple operations and

to allow for code encapsulation and reuse.

Event Generation. To implement event capture, we add an

event raising mechanism. Each type of event has a defined

string (e.g., hostArrival) and some secondary information (e.g.,

the HostID for a host arrival event). The event generation

mechanism raises an event only if an agent has registered.

Upon generation, special event tuples are created for each

registered agent, and these tuples are transmitted to the agent

and trigger the event’s callback.

VI. SIMPLIFYING APPLICATION DEVELOPMENT

The best demonstration of the middleware’s ability to ease

context-aware application development is by example. We

present three applications that show different uses of the view

concept in varying application domains.

A. Emergency Vehicle Warning System

Our first application warns cars of nearby emergency vehi-

cles. When a driver needs to clear the road for the emergency

vehicle, a light on the dashboard turns on.

View Definition. Key to this application is the ability to

notify the car in time for it to give way for the emergency

vehicle. The car’s view constraints are:

• Network constraint. The network is restricted based on

physical distance between hosts.

• Host constraint. Only emergency vehicles’ hosts con-

tribute to the view.

• Data constraint. The view contains only emergency warn-

ing tuples.

Agent Interaction. An emergency vehicle creates a tuple

when it turns its siren on and removes the tuple when it turns

its siren off. The access controls for the emergency vehicle

prevent any other agent from removing the warning tuple

(i.e., no in operations are allowed except by the emergency

vehicle’s agent).

A car issues a rd operation on its view. This operation

will match any warning tuple and blocks until a warning

tuple appears in the view, indicating an emergency vehicle’s

presence, at which time, the light on the dashboard warns

the driver. The application can probe the view (with periodic

rdp operations) to wait for the disappearance of the warning

tuple. After the emergency vehicle has passed, the application

can reissue the rd, and the driver can continue. If multiple

emergency vehicles appear, this implementation ensures that

the driver remains pulled over until all emergency vehicles

have passed.

Lessons Learned. The key to successful implementation of

this application lies in the definition of the view. Because both

the cars’ and the emergency vehicles’ speeds are variable, the

scope of the view depends on their velocities. Given a well-

defined view, the application agent’s minimal interaction with

EgoSpaces involves only simple view operations. The car is

guaranteed to be notified as soon as possible of the approach of

an emergency vehicle. Notification that the emergency vehicle

has departed may not be as timely. This latter behavior could

be further accomplished using the reactive constructs.

B. Subscription Music Service

The second application enables music sharing on a network

of cars. Users subscribe to a music service which allows

them to share music with other subscribers they meet on the

highway. The application allows a user to manage his music

files, search a region of the highway for music, and download

files. If a download only partially succeeds, the application

remembers the user’s desire for the song, and, when the file

is encountered again, the download picks up where it left

off and completes. Figure 10 shows the user interface. View

Fig. 10. The subscription music service

Definition The constraints the user can manipulate include:

• Network constraint. The span of the view is defined by

network hops.

• Host constraint. Restricting the hosts in the view to those

traveling in the same direction provides stability in the
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contents of the view, making successful downloads more

likely.

• Data constraint. The user can limit potential downloads

based on file size.

The following code builds the data constraint based on the

file size, where LTConstraint requires data items to have

values in the size field less than maxSize:

LTConstraint lt =

new LTConstraint(new Integer(maxSize));

EConstraint ec =

new EConstraint(‘‘Size’’, Integer.class, lt)

dc.addConstraint(ec);

EConstraint builds a pattern over tuples; dc represents the

set of patterns that define the agent’s data constraints.

Agent Interaction. The application represents each song in

multiple tuples. One tuple holds information about the song,

and multiple additional tuples hold the song data. The data

is divided into multiple tuples to facilitate the ability of the

application to continue interrupted downloads. The following

code generates an information tuple:

ETuple songTuple = new ETuple();

songTuple.addField(new EField("Filename", file));

songTuple.addField(new EField("Title", title));

songTuple.addField(new EField("Artist", artist));

songTuple.addField(new EField("Album", album));

songTuple.addField(new EField("Size", size));

songTuple.addField(new EField("Length", length));

out(songTuple);

This code is part of the FileShareAgent, which extends

the Agent base class.

To perform searches, the user enters restrictions in the

search panel, which the application constructs into a template.

The user can select a file based on its title, artist, or album.

Because a music subscription service does not require atomic-

ity guarantees, we use scattered probing operations. To query

the view, the agent uses the following code:

ETemplate template = new ETemplate();

template.addConstraint(titleConstraint);

template.addConstraint(artistConstraint);

template.addConstraint(albumConstraint);

ETuple[] results = searchView.rdgp(template);

Lessons Learned. Using the view abstraction and co-

ordination constructs, EgoSpaces allows the programmer to

focus on how the music subscription application uses the

information collected instead of having to explicitly discover

and communicate with other agents in the network.

C. Collaborative Puzzle Game

The final application demonstrates how EgoSpaces can

be useful to cooperative work applications. In this example,

several users collaborate to complete a distributed puzzle.

Figure 11 shows the screens of two puzzle participants.

View Definition. This application uses the view constraints

to limit the amount of data displayed based on properties of the

puzzle. This view is logical and can be as simple as to contain

only data constraints. The specific constraints used depend on

a particular user’s goals; as one example, the view might be

defined to contain only edge pieces, or only pieces of a certain

color. An example of the data constraint required to define the

former is:

EqualConstraint e =

new EqualConstraint(new Boolean(true));

EConstraint ec =

new EConstraint(‘‘edgePiece’’, Boolean.class, e);

dc.addConstraint(ec);

The EqualConstraint function included in EgoSpaces

requires the field’s value to equal the designated value.

Puzzle players may find many different view definitions

useful. If players have an idle status, a player might define

a view that contains only pieces owned by idle players. If a

player is facing a hole of a certain shape, he might specify

his view to contain only the partially assembled piece he is

working on and any pieces that are the shape of the hole.

Agent Interaction. The pieces of the puzzle are represented

by tuples in the data space of the agent initializing the puzzle.

Each agent (a player in the puzzle game), can define views

that determine which puzzle pieces are displayed at a given

time. A user can select a piece by clicking on it. When the user

does so, the tuple corresponding to the puzzle piece is moved

to user’s local data space. To all users, this change appears as

a change in the color of the border of the displayed puzzle

piece. Players can assemble their pieces, and these changes

are reflected in the displays of connected players.

When a user defines a different view, his display changes.

For example, if the user defines a view to contain only edge

pieces, all of the interior pieces are hidden (the view at the

left of Figure 11). Changes made by the player on the left

are displayed to the player on the right, but the reverse is not

necessarily true. This is because the player on the right may

make changes that affect only interior pieces not included in

the other player’s view.

Lessons Learned. In the previous two application scenarios,

the view definitions were based on obvious notions of distance

and relative location. In this example, on the other hand, we

see that the same abstractions can be used to define logical

views in smaller scale networks. While the particular subset

was determined partially by the data’s location in the previous

examples, in the puzzle game only properties of the data or

agents matter. Other applications that involve cooperative work

by distributed parties can be implemented in a similar way.

If the collaborative project does span a large-scale network,

the application can be extended to account for the relative

locations of the data items.

VII. PERFORMANCE EVALUATION

The main goal of the EgoSpaces middleware is to simplify

the development of context-aware applications in mobile ad

hoc networks. While the programming interface and its use

described in the previous sections are important to this goal,

the performance of the middleware must also be a concern to

ensure that the overhead associated with using the middleware

is not detrimental to applications’ operations. In this section,

we quantify the performance characteristics of several of the

operations described in Section IV under varying environmen-

tal and application conditions. The goal of this evaluation is to

provide application developers that use EgoSpaces information
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Fig. 11. Two views of a puzzle game

about the performance they can expect from the middleware

and the overhead of employing, for example, operations with

transactional semantics.

A. Simulation Settings

For the purposes of this evaluation, we used the open source

OMNeT++ discrete event simulator [44] and its mobility

framework extension [29]. All of the results we report are

for 50 node networks in which the nodes are dispersed in

a rectangular area of size 3000x600m2. The nodes move

according to the random waypoint mobility model [6], in

which each node is initially placed randomly in the space,

chooses a random destination within that space and moves

in the direction of the destination at a given speed. Once

the node reaches the destination, it pauses for a specified

interval (the pause time) then repeats the process. In all of

our simulations, we use a pause time of 0 seconds to provide

relatively dynamic networks. The results we present here

are for simple views whose network constraints are based

on a hop count metric, but, because the packets carry all

information for calculating views with them, simulating views

based on other properties is straightforward. We chose the

simple metric for presentation purposes because it makes the

views and their scopes easier to visualize. In addition, because

more of the overhead of view construction is dependent on

the communication costs than on computation costs, a hop

count-based view provides more generalizable results. Data

availability was modeled randomly as each node having a 10%

probability of possessing a requested data item. Queries were

assumed to consume no more than 64 bytes (including the

constraints and the operation’s pattern), and the data carried

in the reply was assumed to fit in 1024 bytes. All results below

are reported with 99% confidence intervals.

B. Comparing Operations with Differing Semantics

Our first set of results compares basic performance metrics

for the six standard operations: rd, in, rdp, inp, rdsp, and

insp. The evaluation of these basic operations can be gener-

alized to express the performance of the more sophisticated

operations as well. In the worst (i.e., most expensive) case,

a transaction is a sequence of atomic probing operations,

and the performance for a transaction is the aggregation of

the performance for the operations that it comprises. Our

implementation of a reaction is based on the implementation

of the atomic blocking operations (in fact, a reaction is

implemented as an atomic blocking operation augmented with

additional bookkeeping and persistence). Finally, as described

in Section V, behaviors (i.e., migration, duplication, and event

capture) have been implemented as reactions.

For this initial set of simulations, we set the node speed to be

20m/s (a fairly dynamic scenario; equivalent to automobiles on

a city street). The host constraints and agent constraints were

unrestrictive (all hosts and all agents qualified for inclusion

in the view) and, as indicated above, each agent had a

10% chance of having the requested data item. The network

constraints defined a cost function based on hop count with

a bound of two hops (i.e., any host within two hops of the

reference agent was included in the view). For each data point,

50 runs lasting 900 seconds were performed. In each run,

five hosts were randomly selected to be requesters, and they

issued a new operation every half second. This is a high-

level of traffic when considering a user’s interaction with

an application, but corresponds to an application that may

periodically monitor a condition in its environment (e.g., the

positions of nearby automobiles). In the case of the blocking

operations, the operation was registered for the full half

second, when it was deregistered and a new operation was

issued. While the operation remains registered, the view is

maintained, though no new data items are introduced during

the registration, so a blocking operation is never unblocked.

Figure 12(a) shows the operation latency for each of the

six operations. In the case of the probing operations (both

scattered probes and atomic probes), the time reported is the

time to return a result, whether it be the actual data or a

null value. In the case of the blocking operation, the average

reflects only instances when the data was actually available,

ignoring cases when the operation did not return a result before

the application cancelled it. Notably in this figure, the in(∗) op-

erations take slightly longer than the rd(∗) operations because
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Fig. 12. (a) Operation latency for the six single operations in EgoSpaces (in seconds). (b) Overhead per operation issued for each operation type (in bytes).

they require an extra round of communication between the

requester and the data provider to ensure that the data item is

removed. As expected, the atomic operations take significantly

more time to complete than the scattered probing operations,

but, perhaps surprisingly, the atomic probing operations take

more than twice as long as the blocking operations. This is

due to the fact that, in order to be able to reliably return

a null value assuring the application that the data item did

not exist, an atomic probe must perform a two-phase commit

protocol. These transactional semantics are expensive, but, as

discussed previously, necessary for some applications. A final

thing to notice about Figure 12(a) relates to the expense of

an EgoSpaces transaction. Recall that a transaction can be

made up of any sequence of non-blocking operations. Given

the results displayed in the figure, a transaction consisting of

five dependent operations (meaning each operation must wait

for the previous one to finish before being issued) takes less

than half of a second. For applications that demand this added

consistency, this latency represents a reasonable tradeoff for

the strengthened semantics.

Figure 12(b) shows the amount of overhead (in bytes) gen-

erated for each request that is sent. In counting the overhead,

we counted everything except the one-way transmission of

the data item. Also, each propagation of the same packet is

counted as another packet of overhead. What is important,

then, in this characterization, is not necessarily the number

assigned to the overhead but the relationship between the

overhead for different operations. First, as in the latency, the

overhead for the in(∗) operations is slightly larger than for

the rd(∗) operation because the former require extra control

communication to confirm the removal of a data item. The

overhead for the atomic operations is greater than for the

non-atomic because they require a beaconing mechanism that

enables each node to keep track of its neighbors. In these

simulations, a beacon interval of one second. The effect of the

beacon interval on overhead is explored in more detail below.

For the probing operations, the beacon is used to ensure the

transactional semantics (i.e., to ensure that every participant

in the view has been queried before returning), while in the

blocking operations this is to ensure that nodes moving into

the view are notified of an operation while nodes moving out

of the view can remove the operation. As above, the overhead

for a transaction is dependent on the number of operations

it comprises, and the overhead of a reaction is similar to the

blocking operations.

C. Impact of Environmental and Network Factors

To be able to perform transactions on changing views and

to maintain views as they change over time, it is necessary for

hosts to have an up-to-date knowledge of its neighboring (one-

hop) nodes. This is accomplished through a beaconing mech-

anism in which each node periodically broadcasts a “hello”

message. Nodes that hear other nodes’ beacons add them to

their neighbor lists. After not hearing a node’s beacon for

three beacon intervals, a node removes the departed node from

its neighbor list. This beacon interval can have a significant

impact on the performance of the EgoSpaces middleware.

Figure 13 shows two measurements on the same graph.

The simulation settings are the same as above, and a rdp

operation was used to generate these results. First, the dashed

line indicates how the measured overhead changes with chang-

ing beacon interval. Not surprisingly, as the beacon interval

increases, nodes send fewer beacons, so less overhead traffic

is generated. This decrease in overhead comes at a cost,

however, with respect to the consistency guarantees that can

be provided. The solid line measures the degree with which

EgoSpaces could guarantee the consistency of an atomic

operation. The distance of this line from 1 indicates the

percentage of times that a rdp operation had to abort, i.e., it

could not return a data value, but it could also not guarantee

that one did not exist. For example, with a beacon interval of

one second, 91.5% of rdp operations completed successfully

(either with a matching data item or with a guaranteed null

value). The value compounds in a transaction consisting of

multiple atomic probes; a transaction of five dependent rdp

operations would complete successfully only 64.1% of the

time. This value decreases with increasing beacon intervals



15

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  0.5  1  1.5  2  2.5  3  3.5  4

 1

 0.95

 0.9

 0.85

 0.8

 0.75

N
or

m
al

iz
ed

 o
ve

rh
ea

d 
(b

yt
es

)

pe
rc

en
t a

to
m

ic
ity

 h
ol

ds

beacon interval (seconds)

percent atomicity holds
overhead per packet (bytes)

99% confidence intervals

Fig. 13. The tradeoff between guaranteed consistency and overhead for
changing beacon intervals (for rdp operations).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 5 4 3 2 1

 5000

 4000

 3000

 2000

 1000

 0

A
ve

ra
ge

 la
te

nc
y 

of
 r

es
po

ns
e 

(s
ec

on
ds

)

N
or

m
al

iz
ed

 o
ve

rh
ea

d 
(b

yt
es

)

Context size (number of hops)

operation latency (s)
overhead per operation (bytes)

95% confidence intervals

Fig. 14. The relationship between the size of the view and the latency of
the operations (solid line) and the overhead incurred (dashed line).

due to the fact that the neighbor lists are increasingly in-

consistent. Two other important points should also be noted.

First, in inp operations, we did not encounter any instances

in which a discovered data item could not subsequently be

removed. Second, every time the consistency assumption was

not met (even in inp operations), it was possible to notify

the application and rollback the operation. However, the same

would not necessarily be true in a transaction consisting of

multiple operations. These simulations did not incorporate

the safe distance algorithm [22] described earlier. Doing so

would further restrict the size of the view but provide greater

reliability to the application.

We next evaluate the scalability of the view concept with

respect to increasing the size of the view (i.e., the number of

participants in the view). Figure 14 compares a view’s size

(in number of hops) along the x-axis to both the latency of

operations issued on the view (in this case, rd operations) and

the overhead incurred in both issuing the request, and, in the

case of the rd operation shown, maintaining the view until the

request is satisfied or cancelled. The latency of the operation

increases significantly from the one-hop case to the multi-hop

case, but only marginally thereafter. This is due to the fact that

the one-hop case requires only a single broadcast to distribute

the request, while the multi-hop cases require the request to

be rebroadcast, resulting in interference and the need for the

lower protocol layers to backoff to ensure message delivery.

The overhead for distributing view requests increases a bit

faster than linearly, but the increase is directly proportional to

the increasing number of view participants.

Our final measurements, shown in Figure 15, compare the

impact of changing the average node speed on the over-

head of issuing operations. We use a blocking operation

(rd) for this measurement since it requires maintaining the

view until a matching data item is found or the operation

times out (whichever is first). In this example, the view’s

size was still two hops, but we varied the duration of the

registration between .5 seconds (the value used above) and

60 seconds (indicating a significantly longer registration, and

therefore a significantly longer portion of time over which

the operation remained registered). Figure 15(a) compares

the two registration durations based on the same normalized

byte overhead metric used previously. As expected, a longer

duration registration incurs significantly more overhead. In

both cases, the overhead associated with maintaining the view

while the operation is registered increases as the speed of the

nodes increases (i.e., as the network becomes more dynamic),

but the increase is very gradual. Figure 15(b) shows the same

information, but amortizes the overhead incurred over the

duration of the registration. In this case, the overhead for a

longer duration registration is much lower than for the short

registration, indicating that most of the overhead incurred

stems from the initial multicast request, and the subsequent

overhead incurred by the distributed algorithm that maintains

the view is comparatively small.

The view concept’s use of asymmetric coordination repre-

sents such a significant deviation from existing coordination

mechanisms that it is difficult to compare its performance to

alternatives. Through this evaluation, we have shown that our

implementation of the view concept is manageable within rea-

sonable traffic and mobility assumptions. In addition, results

in, for example Figure 15, demonstrate that the maintenance

aspect of the view is inexpensive in comparison to distribution

of multicast messages over a dynamic network, which is the

approach that underlies most other coordination approaches.

We have also shown that maintaining the consistency assump-

tion required for providing atomic operations is feasible to a

certain extent, with two benefits worth repeating. First, when

the atomicity assumption does fail for a particular operation,

the application can be notified, and, for single operations, data

was never left in an inconsistent state (i.e., the removal portion

of an in operation never failed). Second, combination of the

view’s construction mechanism with the our consistent group

membership can guarantee consistency for transactions of a

longer duration, but may require further restricting the view’s

participants according to the calculated safe distance.

VIII. RELATED WORK

Our experiences and the above applications have shown that

EgoSpaces’s programming abstractions dramatically simplify
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Fig. 15. (a) Overhead per rd operation for varying node speed (in bytes) (b) Normalized overhead per rd operation per second of registration (in bytes).

the development of mobile applications. These abstractions are

founded on the observation that representing the dynamic en-

vironment through an egocentric data structure allows natural

interactions for any novice programmer and reduces the need

for complex and error-prone network programming.

EgoSpaces is not the first programming environment to

use such abstractions for mobile computing. LIME [33] aims

to simplify the software development process and has been

shown to facilitate context interactions [32]. LIME enables mo-

bile coordination by abstracting communication into a global

virtual data structure, the tuple space. At any instant, a device’s

perception of the world is through this tuple space which

contains the data available on all connected devices. LIME

requires strong assumptions about the operating environment

that fail to hold as the number of devices, connections, and

the degree of mobility grows. This is because LIME requires

distributed transactions to perform any and all coordination

among mobile parties. EgoSpaces, which evolved from LIME,

still allows such transactional semantics but couples them

with weaker guarantees and a grouping mechanism (the view)

that, by utilizing asymmetric coordination, does not require

distributed transactions to maintain. Limone [15] centers the

coordination tasks around acquaintances, and knowledge of

specific coordinating partners is essential to Limone’s func-

tionality. EgoSpaces, on the other hand, takes a device agnostic

view, favoring complete abstraction of the network and its

devices in to the available context or data items.

Reactive tuple space approaches like MARS [7], TuC-

SoN [34], and TOTA [30] augment tuple spaces with reactive

capabilities. Mars and TuCSoN focus on coordination among

co-located mobile agents but do not enable coordination across

the networks, requiring agents to move to hosts where re-

sources are located to perform their computation. EgoSpaces

favors a more distributed approach due to the heterogeneous

nature of computational devices, and the increased overhead

of constantly transporting agents instead of simple data.

TOTA provides an alternative to EgoSpaces, but instead of

EgoSpaces’s egocentric pull-based interactions, TOTA prop-

agates tuples away from a reference node based on context

properties, in a manner similar to content based multicast [50].

Recent middleware have been developed to enable the

rapid development of pervasive or ubiquitous computing ap-

plications. GAIA [41] introduces Active Spaces as immersive

computing environments for context-aware applications. Users

move from one Active Space to another, seamlessly integrating

into new spaces. GAIA functions in small networked envi-

ronments where the available resources in the space can be

centrally managed by a kernel. This approach does not map

well to large-scale applications in mobile ad hoc networks that

necessitate an entirely decentralized solution. CORTEX [45]

proposes an infrastructure for context-awareness in nomadic

mobile environments. CORTEX focuses on quality of service

guarantees within a region of the network. Similarly, Solar [10]

provides an infrastructure to support context acquisition and

operation for nomadic wireless networks. The goals of these

systems are in line with our goals—to support large-scale

mobile computing—but the target environment differs in that

the concerns apparent in ad hoc networks require specialized

solutions not applicable in nomadic networks.

While EgoSpaces abstracts all of the context as data items

stored in a distributed tuple space, other context-aware middle-

ware approaches use the service abstraction to represent avail-

able resources. Context-aware resource bindings then update

the connections between clients and services as processing or

environment dictates [4], [28]. Context-sensitive bindings [19],

[40] uses a follow-me session to transfer a service connection

from one provider to another. This approach builds on the

EgoSpaces notion of an asymmetric definition of context.

Service-oriented network sockets [42] provide a similar ab-

straction but use existing service discovery mechanisms to

gather all matching services locally before deciding which

services to connect to. This can incur significant amounts of

overhead in environments that are highly dynamic. iMash [2]

presents a dynamic application session handoff scheme that

relies on a knowledgeable intermediary to handle service

switches on behalf of applications. Similarly, Atlas [12] uses

a central server to mediate the transfer of a service binding

from one provider to another.
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A complementary approach to coordination relies on event

based interactions. Context-aware publish subscribe systems

have also been proposed [5], [8], [13], [14], [31], [48],

in which events are generated and propagated through the

network towards matching subscriptions. EgoSpaces’s event

generation mechanism is analogous to these approaches, yet it

further allows an application to express its interest in an event

based on the view concept, further restricting the network over

which a subscription must be propagated.

Other middleware approaches adapt services within the

infrastructure to changing context properties, allowing ap-

plications to become relatively ignorant of the restrictions

their environment might impose. MobiPADS [9] essentially

employs adaptive fidelity techniques to adapt services based

on a particular device’s capabilities or on network properties

like available bandwidth. CARMEN [3] uses mobile agents

that track client devices, providing customized services based

on user profiles and environmental conditions. ReMMoC [17]

similarly attempts to simplify the development of applications

that rely on distributed services by unifying the discovery

and interaction mechanisms through a single web-services

based interface. Satin [49] uses encapsulation and compo-

nent mobility to dynamically reconfigure services to adapt to

applications’ changing needs on-demand. These approaches

have a significantly different goal than our work. EgoSpaces

focuses on enabling applications to adapt to changes while

these systems place the adaptation in the middleware, making

the application and user experiences that same regardless of

the environment.

In addition to the specific differences highlighted above,

EgoSpaces focuses specifically on enabling context-aware

coordination through data sharing. Our approach chooses to

abstract available context information into a data structure

that we allow applications to access and adapt in response

to. We have explicitly favored application-awareness over

transparency in an effort to enable applications to dynamically

respond to their environments in manners that are tailored to

the applications’ instantaneous needs.

IX. CONCLUSIONS

This paper describes a simplified application development

process for programmers in ad hoc mobile networks. The

investigation began with a careful study of emerging appli-

cations and the classification of these needs into a redefinition

of context-awareness. Given the lessons learned from this

exploration, we built a conceptual model of mobile applica-

tions. The use of context-awareness within mobile computing

and for the purpose of simplifying development for novice

programmers has shown significant promise. It is coupled

with the introduction of asymmetric coordination (via the view

construct). The need for asymmetry is based on the observation

that mobile applications tend to be egocentric in that they

define their needs from the environment independent of the

needs of other applications. The usefulness of the EgoSpaces

middleware has been demonstrated through the successful and

simple construction of dynamic applications from varying do-

mains and its performance characterized through simulation.

ACKNOWLEDGMENTS

The EgoSpaces prototype implementation and further doc-

umentation are available at http://www.ece.utexas.

edu/˜julien/egospaces.html. This research was sup-

ported in part by the National Science Foundation under Grant

No. CCR-9970939 and by the Office of Naval Research MURI

Research Contract No. N00014-02-1-0715. Any opinions,

findings, and conclusions or recommendations expressed in

this paper are those of the authors and do not necessarily reflect

the views of the sponsoring agencies.

REFERENCES

[1] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinker-
ton. Cyberguide: A mobile context-aware tour guide. ACM Wireless

Networks, 3(5):421–433, October 1997.

[2] R. Bagrodia, S. Bhattacharyya, F. Cheng, S. Gerding, R. Guy, Z. Ji,
J. Lin, T. Phan, E. Skow, M. Varshney, and G. Zorpas. iMASH:
Interactive mobile application session handoff. In Proc. of the 1st Int’l.

Conf. on Mobile Systems, App., and Services, pages 259–272, May 2003.

[3] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Context-aware
middleware for resource management in the wireless internet. IEEE

Trans. on Software Engineering, 29(12):1086–1099, December 2003.

[4] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Dynamic
binding in mobile applications. IEEE Internet Computing, 7(3):34–42,
2003.

[5] R. Boyer and W. Griswold. Fulcrum: An open-implementation approach
to internet-scale context-aware publish/subscribe. In Proc. of the 38th

Hawaii Int’l. Conf. on System Sciences, 2005.

[6] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva. A
performance comparison of multi-hop wireless ad hoc network routing
protocols. In Proc. of the ACM/IEEE MobiCom, pages 85–97, October
1998.

[7] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable co-
ordination architecture for mobile agents. Internet Computing, 4(4):26–
35, July–August 2000.

[8] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Trans. on Computer

Systems, 19(3):332–383, August 2001.

[9] A. Chan and S.-N. Chuang. MobiPADS: A reflective middleware for
context-aware mobile computing. IEEE Trans. on Software Engineering,
29(12):1072–1085, December 2003.

[10] G. Chen and D. Kotz. Solar: An open platform for context-aware mobile
applications. In Proc. of the 1st Int’l. Conf. on Pervasive Computing,
pages 41–47, March 2002.

[11] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou.
Experiences of developing and deploying a context-aware tourist guide:
The GUIDE project. In Proc. of the 6th Int’l Conf. on Mobile Computing

and Networking, pages 20–31, August 2000.

[12] A. Cole, S. Duri, J. Munson, J. Murdock, and D. Wood. Adaptive
service binding middleware to support mobility. In Proc. of the ICDCS

Workshops, pages 396–374, May 2003.

[13] P. Costa and G. Picco. Semi-probabilistic content-based publish-
subscribe. In Proc. of the 25th Int’l. Conf. on Dist. Computing Systems,
pages 575–585, June 2005.

[14] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-based infras-
tructure and its application to the development of the OPSS WFMS.
IEEE Trans. on Software Engineering, 27(9):827–850, September 2001.

[15] C.-L. Fok, G.-C. Roman, and G. Hackmann. A lightweight coordination
middleware for mobile computing. In Proc. of the 6th Int’l. Conf. on

Coordination Models and Languages, February 2004.

[16] D. Gelernter. Generative communication in Linda. ACM Trans. on

Programming Languages and Systems, 7(1):80–112, January 1985.

[17] P. Grace, G. Blair, and S. Samuel. A reflective framework for dis-
covery and interaction in heterogeneous mobile environments. ACM

SIGMOBILE Mobile Computing and Communications Review, 9(1):2–
14, January 2005.

[18] G. Hackmann, C. Julien, J. Payton, and G.-C. Roman. Supporting
generalized context interactions. In T. Gschwind and C. Mascolo,
editors, Software Engineering and Middleware: 4th Int’l. Workshop,

Revised Selected Papers, volume 3437 of LNCS, pages 91–106. March
2005.



18

[19] R. Handorean, R. Sen, G. Hackmann, and G.-C. Roman. Context-aware
session management for services in ad hoc networks. In Proc. of the

Int’l. Conf. on Services Computing, pages 113–120, July 2005.

[20] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy
of a context-aware application. Wireless Networks, 8(2/3):187–197,
March–May 2002.

[21] J. Hong and J. Landay. An infrastructure approach to context-aware
computing. Human Computer Interaction, 16(2–4), 2001.

[22] Q. Huang, C. Julien, and G.-C. Roman. Relying on safe distance to
achieve strong partitionable group membership in ad hoc networks. IEEE

Trans. on Mobile Computing, 3(2):192–205, April–June 2004.

[23] C. Julien. Supporting Context-Aware Application Development in Ad

Hoc Mobile Networks. PhD thesis, Washington University in Saint
Louis, 2004.

[24] C. Julien, J. Payton, and G.-C. Roman. Adaptive access control in
coordination-based mobile agent systems. In R. C. et al, editor, Software

Engineering for Large-Scale Multi-Agent Systems III, volume 3390 of
LNCS, pages 254–271, February 2005.

[25] C. Julien and G.-C. Roman. Egocentric context-aware programming in
ad hoc mobile environments. In Proc. of the 10th Int’l. Symp. on the

Foundations of Software Engineering, pages 21–30, November 2002.

[26] C. Julien and G.-C. Roman. Active coordination in ad hoc networks. In
Proc. of the 6th Int’l. Conf. on Coordination Models and Languages,
volume 2949 of LNCS, pages 199–215, February 2004.

[27] C. Julien and G.-C. Roman. Supporting context-aware interaction in
dynamic multi-agent systems (invited paper). In Environments for

Multiagent Systems, volume 3374 of LNCS, February 2005.

[28] M. Klein and B. Konig-Ries. Combining query and preference: An
approach to fully automize dynamic service binding. In Proc. of the

Int’l. Conf. on Web Services, pages 788–791, July 2004.

[29] M. Loebbers, D. Willkomm, and A. Koepke. The Mobility
Framework for OMNeT++ Web Page. http://mobility-fw.

sourceforge.net.

[30] M. Mamei, F. Zambonelli, and L. Leonardi. Tuples on the air: A
middleware for context-aware computing in dynamic networks. In Proc.

of the ICDCS Workshops, pages 342–348, 2003.

[31] R. Meier and V. Cahill. STEAM: Event-based middleware for wireless
ad hoc networks. In Proc. of the 22nd Int’l. Conf. on Distributed

Computing Workshops, pages 639–644, July 2002.

[32] A. L. Murphy and G. P. Picco. Using coordination middleware for
location-aware computing: A LIME case study. In Proc. of the 6th

Int’l. Conf. on Coordination Models and Languages, volume 2949 of
LNCS, pages 263–278, February 2004.

[33] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A middleware
for physical and logical mobility. In Proc. of the 21st Int’l. Conf. on

Distributed Computing Systems, pages 524–533, April 2001.

[34] A. Omicini and F. Zambonelli. TuCSoN: A coordination model for
mobile information agents. In Proc. of the 1st Int’l. Workshop on

Innovative Internet Information Systems, pages 177–187, June 1998.

[35] J. Pascoe. Adding generic contextual capabilities to wearable computers.
In Proc. of the 2nd Int’l. Symp. on Wearable Computers, pages 92–99,
October 1998.

[36] J. Payton, C. Julien, and G.-C. Roman. Context-sensitive data structures
supporting software development in ad hoc networks. In Proc. of the 3rd

Int’l. Workshop on Software Engineering for Large Scale Multi-Agent

Systems, pages 42–48, 2004.

[37] J. Payton, C. Simon, and G.-C. Roman. A query-centered perspective
on context-awareness in mobile ad hoc networks. Technical Report
WUCSE-05-8, Washington University in Saint Louis, Department of
Computer Science and Engineering, 2005.

[38] B. Rhodes. The wearable remembrance agent: A system for augmented
memory. In Proc. of the 1st Int’l. Symp. on Wearable Computers, pages
123–128, October 1997.

[39] G.-C. Roman, C. Julien, and Q. Huang. Network abstractions for
context-aware mobile computing. In Proc. of the 24th Int’l. Conf. on

Software Engineering, pages 363–373, May 2002.

[40] G.-C. Roman, C. Julien, and A. L. Murphy. A declarative approach
to agent-centered context-aware computing in ad hoc wireless environ-
ments. In Software Egineering for Large-Scale Multi-Agent Systems,
volume 2603 of LNCS, pages 94–109, 2003.

[41] M. Roman, C. Hess, R. Cerqueira, A. Ranganat, R. Campbell, and
K. Nahrstedt. A middleware infrastructure for active spaces. IEEE

Pervasive Computing, 1(4):74–83, October–December 2002.

[42] U. Saif and J. Paluska. Service-oriented network sockets. In Proc. of the

1st Int’l. Conf. on Mobile Systems, Apps., and Services, pages 159–172,
May 2003.

[43] D. Salber, A. Dey, and G. Abowd. The Context Toolkit: Aiding the
development of context-enabled applications. In Proc. of the Conf. on

Human Factors in Computing Systems, pages 434–441, May 1999.
[44] A. Vargas. OMNeT++ Web Page. http://www.omnetpp.org.
[45] P. Verissimo, V. Cahill, A. Casimiro, K. C. A. Friday, and J. Kaiser.

CORTEX: Towards supporting autonomous and cooperating sentient
entities. In Proc. of European Wireless, February 2002.

[46] R. Want, A. Hopper, V. Falco, and J. Gibbons. The Active Badge
location system. ACM Trans. on Information Systems, 10(1):91–102,
January 1992.

[47] R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen, D. Goldberg,
J. Ellis, and M. Weiser. An overview of the PARCTab ubiquitous
computing environment. IEEE Personal Communications, 2(6):28–33,
December 1995.

[48] E. Yoneki and J. Bacon. An adaptive approach to content-based
subscription in mobile ad hoc networks. In Proc. of the 1st Int’l.

Workshop on Mobile and P2P Computing, pages 92–97, 2004.
[49] S. Zachariadis, C. Mascolo, and W. Emmerich. SATIN: A component

model for mobile self-organisation. In Proc. of the Int’l. Symp. on

Distributed Objects and Applications, October 2004.
[50] H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc

networks. In Proc. of the 1st ACM Int’l. Symp. on Mobile Ad Hoc

Networking and Computing, pages 51–60, 2000.




