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Abstract—Human pose estimation (HPE) has many wide 

applications such as multimedia processing, behavior 

understanding and human-computer interaction. Most 

previous studies have encountered many constraints, such 

as restricted scenarios and RGB inputs. To mitigate 

constraints to estimating the human poses in general 

scenarios, we present an efficient human pose estimation 

model (i.e., EHPE) with joint direction cues and Gaussian 

coordinate encoding. Specifically, we propose an 

anisotropic Gaussian coordinate coding method to describe 

the skeleton direction cues among adjacent keypoints. To 

the best of our knowledge, this is the first time that the 

skeleton direction cues is introduced to the heatmap 

encoding in HPE task. Then, a multi-loss function is 

proposed to constrain the output to prevent the overfitting. 

The Kullback-Leibler divergence is introduced to measure 

the predication label and its ground truth one. The 

performance of EHPE is evaluated on two HPE datasets: 

MS COCO and MPII. Experimental results demonstrate 

that EHPE can obtain robust results, and it significantly 

outperforms existing state-of-the-art HPE methods. Lastly, 

we extend the experiments on infrared images captured by 

our research group. The experiments achieved the 

impressive results regardless of insufficient color and 

texture information. 

 

Index Terms—Human pose estimation, regularization, Gaussian 

coordinate encoding, skeleton direction, deep learning. 

 
 

I. INTRODUCTION 

UMAN pose estimation (HPE) is a long-standing and 

challenging problem in the field of computer vision, and it 

aims to locate the keypoints of each person in an RGB image 

[1-3]. As an upstream task of behavior monitoring [4], human-

computer interaction [5-7], action recognition [8, 9], and online 

learning [10], HPE must be improved in terms of accuracy and 

robustness [11, 12]. However, HPE often encounters some 

challenges in real scenarios, thus affecting the accuracy of 

location. For example, limbs and its proneness to the ambiguity 

of human body and its background objects are often occluded. 

To this end, the accurate extraction of human features from 

images is crucial to the development of the HPE task. 

 
Fig. 1. Human pose estimation results in natural scenes by the proposed EHPE 

method. (a) A person occluded by a kite. (b) Adjacent interference. (c) Chaotic 

background. (d)-(f) HPE results of our EHPE method. 

The extraction of human pose features can be categorized 

into handcraft feature-based method (HCFB) and convolutional 

neural networks-based method (CNNB). In the HCFB method 

[13], the scale-invariant feature transform and histogram of 

oriented gradient of the human body parts in the image are 

calculated first. Then, the graph model is established with the 

human body joints as nodes. Last but not the least, the state 

space is continuously reduced by combining the prior 

constraints of human kinematics. The HCFB method is often 
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efficient. However, HCFB cannot describe and express the 

deformation that often occurs in the process of human 

movement due to the characteristics of hinge and individual 

differences. Moreover, the generalization ability of these 

models in natural scenes is unsatisfactory. To solve this 

problem, a CNN-based method was developed with the rapid 

development of deep learning technology. Given its excellent 

performance in image data processing, CNNs have achieved 

great success when they were introduced into the field of HPE. 

An important prerequisite is the acquisition of training data for 

the normal function of the neural network model. The general 

detection process for the CNN-based HPE model can be divided 

into three stages, namely, preprocessing of the training data, 

feeding into the designed network architecture, and post-

processing of the output data. 

Over the past decades, numerous studies have proposed CNN 

techniques, such as the cascaded pyramid model [14]. The 

purpose is to alleviate the problems of keypoints that are 

difficult to detect. In [15], the predicted heatmap is spatially 

accurate by connecting high- and low-resolution subnets in 

parallel. In our previous work [16], a light multi-stream neural 

network is proposed to learn the view-invariant representations 

from skeletal self-similarities of varying scales for the human 

action recognition. To address the detection problem occluded 

keypoints, Zhang et al. [17] designed an efficient network 

structure named cascaded context mixer, with three useful 

training strategies and four effective post-processing techniques. 

These methods have made outstanding contributions to the 

learning of multi-scale features of images. 

Although CNNs are powerful in learning image features and 

have been successfully leveraged to numerous of computer 

vision tasks [18], three fundamental issues for CNN-based HPE 

remain. 

1) Object occlusion: The occlusion of the predicted human 

body frequently occurs in real scenarios (see in Fig. 1(a)). 

Occlusion by objects results in the loss of partial joint 

information, which affects the acquisition of local features 

by the network model. 

2) Neighbor interference: Generating ambiguity in CNN-

based HPE models is easy when classifying keypoints due 

to the similar texture, color and structure features among 

human bodies. In Fig. 1(b), the interference between 

adjacent human joints plays a vital role in the blocking 

localization effect. 

3) Complex background: Human body detection is disturbed 

by a complex background in general cases (see in Fig. 1(c)), 

making localization difficult. Images dominated by human 

bodies mixed with background can be hardly recognized 

by the CNN, regardless of the strong contrast between the 

foreground and background. 

The above three challenges can be summarized as a problem 

of location interference, including interference with objects, 

adjacent characters, and background and the loss of important 

information. These problems make the development of the HPE 

task limited to a simple scenario without these interference 

factors. Hence, there is an urgent need to develop HPE methods 

that can perform well in general scenarios. 

Natural scenes have a strong spatial geometric relationship 

between the adjacent keypoints of the same individual and thus 

can provide a strong basis for inferring the position of the 

keypoints of the human body that are disturbed by the above. 

Hence, in addition to constructing a network model for implicit 

learning, contextual information and high-level semantic 

relationships of the human pose must be investigated to 

improve the accuracy of HPE further. However, these topics are 

ignored by the method proposed in [14], [15], [17]. Furthermore, 

to the best of our knowledge, no research has introduced this 

keypoint object-level relationship into the HPE task. Therefore, 

the motivation of our work is to design an encoding method that 

can adapt to the change of the limb direction and the position of 

adjacent keypoints. Meanwhile, it can combine the ability of the 

network to judge remote spatial context information. In 

summary, the location of human keypoints is predicted by 

considering the important effects of local keypoints and high-

level semantic relationships. To achieve this goal, we 

innovatively construct a new human body keypoint encoding 

method that can automatically explore body direction clues. 

Compared with that of previous works, the major contributions 

of this study can be summarized in three aspects. 

1) A novel HPE model is developed to reveal effectively the 

skeleton direction cues for keypoint coordinate encoding. The 

anisotropic Gaussian label is constructed for each keypoint in 

accordance with adjacent limb connection. To the best of our 

knowledge, this is the first study to introduce skeleton direction 

information in the heatmap encoding of HPE task. 

2) An efficient yet robust convolution neural network 

architecture is proposed optimized by the KL and L2 norm loss 

(multi-loss). This novel loss can effectively measure the 

difference between ground-truth heatmap distribution and 

predicted one. 

3) Experiments are conducted on two datasets: MS COCO 

and MPII datasets, and the extended experiment is carried out 

on the infrared images captured by our group. Compared with 

several baseline and state-of-the-art methods, the proposed 

EHPE shows better performance, thus validating its 

effectiveness. 

The rest of this article is organized as follows. The related 

work of this article is described in Section II. In Section III, the 

proposed method is introduced in detail. Furthermore, the 

experiments and results are illustrated in Section IV, we 

conclude this research in Section V. 

II. RELATED WORK 

A. CNN-based HPE Model 

The HPE task aims to predict the keypoints of one or more 

persons in an image/video and thus is beneficial for 

understanding human action and intentions. In the era of 

artificial intelligence, an HPE model based on deep learning 

technique has emerged. In contrast to the handcraft-based 

method, CNN-based architecture can obtain the global context 

information of images and capture the multiscale joint point 

feature vectors in different receiving fields. Therefore, it can 

extract the scene information closest to the real one. Recently, 

many HPE methods have been proposed. Toshev et al. [19] first 
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proposed an HPE formula based on a deep neural network. 

Tompso et al. [20] proposed a hybrid architecture including the 

Markova random field and CNN. Chu et al. [21] leveraged the 

hourglass as the baseline and introduced the conditional random 

field instead of global features for the spatial correlation 

modeling. Based on the improvement of the stacked hourglass 

network, Ke et al. [22] proposed a multi-scale regression 

network (MSR-net) and a multi-scale monitoring network 

(MSS-net). It combines rich multiscale features and improves 

the robustness of keypoint location through cross-scale feature 

matching in comparison with [19, 21, 23]. To solve and study 

human frame inaccuracy and pose estimation in crowded scenes, 

several approaches have been proposed, such as the regional 

multi-person pose estimation (RMPE) [24] method, and the 

CrowdPose [25] method. Nie et al. [26] proposed a novel 

analytically induced learner, which assists HPE by effectively 

applying analytical information of body parts. Some studies 

were also devoted to lightweight networks.  

 
Fig. 2. Concrete architecture of the proposed EHPE neural network. The symbol β is angle of different limbs (lower limb and upper). T is the threshold for 

performing anisotropy coding. 

 

For example, the simple baseline model [27] proposed by Xiao 

et al. is more intuitive and simpler than the stacked hourglass 

model [28]. The main contribution of Fastpose [29] proposed 

by Zhang et al. is its light weight network that applies 

knowledge extraction to the detection of human body keypoints. 

In [15], Wang et al. constructed a high-resolution network, 

which can interfuse multi-scale features in the entire network 

and achieves the optimal performance. Artacho et al. [30] 

proposed a void space pooling module based on the waterfall 

model, which is a unified framework independent of post-

processing. Many other kinds of CNN-based methods still 

attract research in this community. Although existing studies 

have made some progress in HPE, no work has considered 

learning the relationship among adjacent limbs in a person to 

predict body poses. 

B. Heatmap Regression 

The encoding of HPE method can be divided into two kinds 

of channels. The first is regression based on labels (direct 

regression), and the other is regression based on heatmap 

(heatmap-based). For label-based regression, Toshev et al. 

proposed the cascading DNN regression [19] to  predict human 

keypoint in a holistic way. Carreira et al. [31] used this 

approach of direct regression in their respective studies. Liu et 

al. [32] proposed a nonuniform Gaussian-label distribution 

learning method for the head pose estimation task, which aims 

at predicting the orientations of head pose. One advantage of 

adopting this framework is that it allows for end-to-end learning 

and continuous output. However, without other processes, it is 

very difficult to learn the mapping characteristics directly from 

the original image. In other words, the direct regression to the 

labeled coordinates is unstable and will cause large fluctuations. 

Therefore, the network hardly converges. However, the 

regression of heatmap-based methods solves the shortcoming 

of direct regression because of two reasons. On the one hand, 

the keypoints of a human body cannot be accurately defined by 

a certain pixel; thus, the heatmap-based method can overcome 

the problem of inaccurate data annotation. On the other hand, 

the human body priori can reveal that adjacent key points have 

a strong correlation, and this interrelated nature is difficult to 

capture by regressing coordinates independently. Intuitively, 

the heatmap-based method converts the target pixel into a 

probability distribution area and performs classification before 

regression, thus greatly reducing the difficulty of convergence 

of the model. 

For heatmap-based regression, the convolutional pose 

machine [33] performs multistage regression on the heatmap. It 

learns remote connection nodes by amplifying the receptive 

field. Intermediate supervision is also utilized to avoid gradient 

disappearance. In [28], the author designed a stacked hourglass 

model, whose major contribution lies in the use of multiscale 

features to identify posture. Some works also considered the 

importance of coordinate representation. Zhang et al. [34] used 
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the maximum value on the heatmap and its corresponding 

position to estimate the mean position of the true Gaussian 

distribution, the quantization error caused by lower sampling 

can be reduced to the greatest extent. In [35], Huang et al. 

designed continuous metrics in their work to eliminate the 

inherent errors caused by using pixel distance metrics in affine 

transformations. These works have achieved good results from 

their motivations, but the inflexible tag construction method has 

been adopted, and the final effect of its estimation is still limited 

by some frequent problems of HPE. In view of this situation, it 

is reasonable to believe that an encoding method that conforms 

to the human a priori needs to be proposed urgently. In this 

manner, the network returns the predicted value of the skeleton 

direction as far as possible when making the predictions, thus 

helping the network understand the semantic interconnection 

between the keypoints easily. 

III. ARCHITECTURE OF PROPOSED MODEL 

A. Overview of EHPE Model 

The overall model architecture is shown in Fig. 2. The 

proposed EHPE method includes three modules. The first 

module is the network model used for training parameters. The 

second module is the encoding module of the input image, and 

the third module realizes the decoding of the output image. In 

this work, the HRNet is selected as the backbone. 

However, network architecture must be modified for 

improved efficiency and performance. The developed network 

consists of three layers: the convolutional layer, the covariance 

pooling layer, and the output layer. For the convolutional layer, 

HRNet [36] is chosen as the backbone to extract the features of 

the input images. Traditional CNNs are designed with 

convolutional layers, pooling layers, and FC layers to capture 

only the first-order statistics, such as the mean or maximum of 

the eigenvalues. Second-order statistics, such as the covariance, 

are deemed to be better regional descriptors than first-order 

statistics [37]. The core of the HPE task is directly bound up 

with how human keypoints are distorted, rather than the 

detection of their presence. Obtaining second-order statistics is 

more suitable than using first-order statistics to present such 

distortions. Thus, we introduce covariance pooling instead of 

average or maximum pooling after the last convolutional layer 

and build covariance matrices as global image representations. 

Backpropagation is not easy due to the nonlinear functions 

involved in covariance pooling. Therefore, end-to-end learning 

[38] is referred to calculate the gradients.  

B. Encoding with the Anisotropic Gaussian 

For the HPE, coordinate encoding is an indispensable part of 

the heatmap-based approach. In general, the Gaussian function 

is used to encode the annotation keypoints in the dataset. In this 

study, a novel encoding scheme is proposed, and it can be 

summarized into three stages: classification, fitting, and 

encoding (CFE). The pipeline of label construction is shown in 

Fig. 3. The first stage is to construct anisotropic and isotropic 

Gaussian distributions near the labeled points in accordance 

with the similarities and differences of variances. The second 

stage illustrates the process of anisotropic distribution to fit the 

limb direction. In the third stage, we present the final 

differentiated encoding strategy. In accordance with the above 

steps, the details are described below. 

 
Fig. 3. Pipeline of label construction. (a) Original HPE image. (b)-(c) Gaussian 

label in green box. (d)-(g) Elliptic Gaussian label in blue box if the angle is 

larger than the given threshold T. 

Stage I-Classification of heatmaps: In this part, a new 

classification of heatmaps is revealed. For a given key point 

coordinate (μx, μy), it is used as the center to generate a Gaussian 

heatmap. For the limbs in Fig. 3(a), the label is constructed as 

𝐺(   )  𝑒 𝑝 (
 

 
(   )𝑇𝚺− (   ))              (1) 

  [
  

  
]                                        (2) 

where ∑ is the covariance matrix, which is utilized to generate 

multivariate Gaussian heatmap. It is indicated by the following 

formula, 

∑  [
σ 

 0

0 σ 
 ].                                  (3) 

where σ1
2 and σ2

2 represent the variance of the Gaussian 

heatmap. Figure 3(c) shows the Gaussian heatmap when σ1
2 = 

σ2
2. It appears as an isotropic circle in the image. As shown in 

Fig. 3(e), we can intuitively observe that the Gaussian function 

presents an elliptical shape if σ1
2≠ σ2

2. Specifically, the default 

setting is σ1
2 > σ2

2. 

Stage II-Fitting of skeleton direction: To establish a 

Gaussian label in line with the priori of human body structure 

as much as possible, the orientation of the skeleton must be 

fitted at this stage. 

Given the anisotropy of Gaussian distributions whose 

variances are different, we need to rotate the entire Gaussian 

probability distribution to follow the direction of the upper limb 

in the image space. In the process, each point on the distribution 

is adjusted from (x, y, ω) to (x,́ y,́ ω); ω represents the coding 

probability value at this coordinate keypoint. (x,́ y)́ is the 

position of (x, y) rotated around the key point coordinates. The 

rotation operation can be given by the following formula, 

[
  

  

1

]  𝑀 [
 
 
1
]                                    (4) 

where the matrix M is an affine transformation matrix. When a 

pixel with a probability value is ready to be rotated in the image 

space, the origin coordinate must be moved first to the center of 

the rotation. Then, the rotation matrix is performed by the 

rotation operation. Lastly, the rotated result is mapped back to 

the original coordinate space. In accordance with the above 

three steps, the matrix M can be expressed by the following 

expression: 
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𝑀  [
1 0
0 1

  

  

0 0 1
] [

cos   sin  0
sin  cos  0

0 0 1
] [

1 0
0 1

   

   

0 0 1
]     (5) 

where the calculation of the rotation angle θ is the key step. As 

mentioned above, the initially constructed anisotropic Gaussian 

heatmap exhibits an elliptical shape. Its long axis is in the x 

direction of the image coordinate system. In Fig. 3(f), the 

keypoint adjacent to the current keypoint must be retrieved. The 

rotation angle θ can be expressed by the following formula: 

  {
tan− (

 0− 1

 1− 0
)，if   ≠  0;

𝜋

 
.                          oth rwis .

            (6) 

where (x0, y0) is the keypoint of the current encoding, and (x1, 

y1) refers to the coordinate of the upper adjacent point of the 

current encoding keypoint. The adjacent keypoint of the upper 

bone of each keypoint is given by the dictionary definition. As 

shown in Fig. 3(g), we can fit the orientation of the skeleton. 

Stage III-Encoding of anisotropic strategy: In this stage, the 

final encoding scheme based on the above method is given. 

Before that, we provide  differentiated treatment for keypoints 

in different states. 

In Figs. 3(b) and 3(d), the law of cosines is introduced to 

calculate the angle formed between the current keypoint and the 

adjacent limb. Based on the currently encoded keypoint, a and 

b represent the length of the upper and lower limbs, and c 

describes the straight-line distance between the upper and lower 

adjacent keypoints. The method of calculating the angle 

between the limbs is given by 

  𝑐𝑜𝑠− (
𝑎2+𝑏2−𝑐2

 𝑎𝑏
)                        (7) 

In Step_1 in Fig. 3, the included angle β provides the 

premise for implementing the anisotropic encoding strategy. 

Then, the overall label generation scheme is illustrated as, 

𝐸𝐺(   )  {
𝑒 𝑝 (

 

 
(     )

𝑇𝚺− (     ))  𝑖𝑓     

𝑒 𝑝 (
 

 
(    )

𝑇𝚺− (    ))  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (8) 

where T is the threshold for performing anisotropic coding. In 

our experiment, T achieves the optimal performance when it is 

set at 130°. The covariance matrix ∑ varies in accordance with 

different alternatives. 

C. Decoding 

The coordinate decoding method includes two steps. The 

first step is to obtain the maximum response position m and the 

second maximum response position s of the output heatmap, 

Then, d times of the unit length are shifted from the maximum 

activation position to the second largest activation position. The 

predicted position p is calculated by 

𝑝  𝑚  𝑑
𝑠−𝑚

||𝑠−𝑚||2
,                           (10) 

where the offset distance d is to compensate for the quantization 

error, with its value usually set as 0.25, which is determined by 

the expected error. Given that the heatmaps are calculated in the 

low-resolution pixel space, mapping the coordinates back to the 

original image space through upsampling is necessary. The 

final prediction point can be expressed as, 

�̂�  𝜆𝑝,                                   (11) 

where λ represents the upsampling rate. However, this decoding 

method based on statistical error cannot realize the practical 

consideration of the output heat map, thus, we adopt the 

decoding method based on Taylor distribution perception in this 

study. To eliminate the influence of multiple peaks, the 

Gaussian kernel is adopted to smooth the predicted heatmap 

because the predicted heatmap usually does not show the 

Gaussian properties well. Then, the keypoints are predicted in 

accordance with the actual distribution information. Lastly, we 

restore the predicted position to the original image space and 

obtain the final results by (11). Interested readers can refer to 

[34] for decoding in detail. 

D. MAP-based HPE Model 

Recently, the maximum a posteriori (MAP) estimation 

method has been widely used for image regression tasks; it uses 

a prior probability density functions as the prior constraints. It 

has played a key role in tracking the ill-posed problems widely 

existing in HPE tasks. In this study, the MAP framework is 

introduced to address the aforementioned problem in HPE for 

the first time. Given a group of pose images X with their 

ground-truth heatmap distribution P, the aim of training is to 

find the best θ estimation by maximizing the posterior 

probability p(θ|X, P). The neural network parameters are 

represented by the symbol θ, which is needed for calculation in 

EHPE network. For the i-th person instance, the k-th joint point 

is encoded into the ground truth heatmap 𝐺𝑘
𝑖 (x, y). The MAP 

estimation can be illustrated as, 

 ∗  arg𝑚𝑎  𝑝( |𝑋 𝑃).                        (12) 

Based on Bayes criterion, (12) becomes, 

 ∗  arg𝑚𝑎 
𝑝(𝑋 𝑃|𝜃)𝑝(𝜃)

𝑝(𝑋 𝑃|𝜃)
 .                        (13) 

Since p(X, P) is independent of the variable θ, and p(X, P) 

can be considered a constant. Thus, (13) can be rewritten as, 

 ∗  arg𝑚𝑎  𝑝(𝑋 𝑃| )𝑝( ).                     (14) 

The monotonic logarithm function can be rewritten as 

 ∗  arg𝑚𝑎  log𝑝(𝑋 𝑃| )  log𝑝( ).           (15) 

Two probability density functions need to be defined. The 

likelihood probability p(X, P|θ) represents the distance between 

the predicted distribution and the ground truth distribution. 

Kullback-Leibler (KL) divergence is selected to measure the 

distance. Consequently, the likelihood probability can be 

presented as, 

𝑝(𝑋 𝑃| )  ∑ 𝑝𝑗𝑙𝑛
𝑝𝑗

𝑔𝑗
𝑗                          (16) 

where g denotes the prediction heatmap value in G. Added with 

the KL divergence, the loss function is proposed as, 

𝐿( )  
 

𝐾
∑ ∑ (𝑃𝑘

𝑖 𝑙𝑛
𝑃𝑘

𝑖

𝐺𝑘
𝑖)

𝐼
𝑖

𝐾
𝑘  𝜂‖ ‖ ,           (17) 

where  𝑃𝑘
𝑖  𝐺𝑘

𝑖  represent the predicted value and the true value 

on the heatmap, respectively. 

To reduce the overfitting issue, the Euclidean distance is 

introduced to measure the predicted heatmap distribution 𝑃𝑘
𝑖  

and ground-truth heatmap distribution 𝐺𝑘
𝑖 . Then, the proposed 

loss is defined as, 

𝐿( )  
 

𝐾
∑ ∑ (𝑃𝑘

𝑖 𝑙𝑛
𝑃𝑘

𝑖

𝐺𝑘
𝑖)

𝐼
𝑖

𝐾
𝑘  

𝝀

𝟐
‖𝑃𝑘

𝑖  𝐺𝑘
𝑖 ‖

 
 𝜂‖ ‖ . (18) 
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Fig. 4. Comparison of the results. (a)-(d) Original images. (e)-(h) Results by our EHPE method. (i)-(l) Contrast between our method (orange line) and DARK (blue 

line), with the details shown in the blue boxes (m)-(p). 

 

The derivative of L(θ) with respect to parameters θ can be 

rewritten as, 
𝛿𝐿(𝜃)

𝛿𝑝𝑘
 𝑔𝑘  (𝜆𝑝𝑘  𝜆𝑔𝑘  1)

exp (𝑝𝑘)

∑ exp (𝑝𝑘)𝑘
.         (19) 

This updated formulation is easy to vectorize for training 

batch input. The Adam method is introduced to minimize the 

objective loss function L(θ), and its optimization process is 

provided in Algorithm 1. 
Algorithm 1. Training strategy for the proposed EHPE model. 

Input: Human pose image X in the training set.  
Set: Batch size t, learning rate , exponential decay rate of the first 
moment estimation φ1, exponential decay rate of the second moment 
estimation φ2, parameter ε is set as a small positive constant. 

i) Initialize parameter vector θt, 

Initialize biased first moment estimation m0, 
Initialize biased first moment estimation v0; 

ii) While θt not converged do: 

t ←t+1, m0 ←0; 
Compute gradients w.r.t. loss function gt 

mt ←φ1∙mt-1 + (1-φ1)∙gt; 
vt ←φ2∙mt-1 + (1-φ2)∙ g

2
t; 

tm


 ← mt-1 / (1-φ2
t); 

tv


 ← vt / (1-φ2
t); 

θt←θt-1 - )( εvmα tt 


; 
end while 

Output: Optimization parameters θt 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. General Setting 

1) Datasets: Two of the most widely used public datasets are 

introduced in our experiments, including the MSCOCO dataset 

developed by Microsoft and the MPII dataset with both single-

player and multiplayer scenarios. 

MS COCO [39]: This database is collected for the common 

objects in the complex field scenario by Microsoft. It is a large, 

rich object detection, segmentation and subtitle dataset. This 

famous dataset is used widely for many tasks, such as 

segmentation, keypoint detection, object detection, and 

subtitles. In this study, a dataset of keypoint detection is 

adopted in our experiments. In the MS COCO2017 dataset, the 

training set contains 118,287 images, whereas the test set 

contains 5,000 images. Each instance has 17 keypoints, 

including the nose and eyes. Annotations on train and validation 

(with over 1.7 million labeled keypoints on 150,000 subjects) 

are publicly available. In evaluation, we followed the 

commonly used train2017/val2017/test-dev2017 split. 

MPII dataset [40]: It contains about 25K images, a total of 

40K human body instances, and 16 keypoints for each image. 

The annotations of training and validation sets are publicly 

benchmarked. The images in the MPII data set are extracted 

from YouTube videos and can be used as HPE for single person 

and multiple persons. In our experiment, the standard 

train/val/test split is adopted as in [20]. 

2) Baseline methods: To validate the developed EHPE 

approach, several state-of-the-art methods are selected in the 

comparison experiments. 

● RMPE [24]: A symmetric spatial transformation network is 

proposed to strengthen human object instances. 

● Mask-RCNN [41]: One-hot coding is performed on K 

keypoints of the human body, and the types of K masks are 

predicted to achieve pixel-level segmentation. 

● OpenPose [42]: Part affinity fields are introduced into the 

bottom-up HPE task. 

● CPN [14]: The cascade pyramid network can adopt 

appropriate methods for the key points with different 

recognition difficulty levels. 

● CFN [43]: The network leverages multi-level supervision to 

realize the keypoint location function. 

● Simple Baseline [27]: A baseline that is simple and reaches 

SOTA level is proposed. 

● HRNet [15]: The network uses a multi-scale fusion method 

to maintain high resolution characterization throughout the 

entire process. 

● DARK [34]: An efficient coordinate decoding based on 

Taylor expansion is proposed. 

● UDP [35]: Quantitative analysis of system errors introduced 

by biased data processing, and proposed an unbiased data 

processing flow. 

3) Evaluation metrics: The HPE model has two evaluation 

metrics, namely, percentage of correct keypoints (PCK) and 

object keypoint similarity (OKS). 

OKS is used as an evaluation index for MS COCO human 

body keypoint detection. It aims to calculate the truth value and 

predict the similarities of human body keypoints. For a human 

body instance p, the keypoints are written as, 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

(o) (p)
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𝑂𝐾𝑆𝑝  
∑ 𝑒 𝑝{−𝑑𝑝𝑖

2 / 𝑆𝑝
2𝜎𝑖

2}𝛿(𝑣𝑝𝑖= )𝑖

∑ 𝛿(𝑣𝑝𝑖= )𝑖
               (20) 

where dpi represents the Euclidean distance between the 

predicted position and the ground truth keypoint, sp indicates 

the scale of the human object, vpi indicates the visibility of the 

keypoint label, and σi is the offset of the artificially labeled 

position. Given OKS threshold s, the average accuracy rate (AP) 

can be calculated as, 

𝐴𝑃𝑠  
∑ 𝛿(𝑂𝐾𝑆𝑝>𝑠)𝑝

∑  𝑝
                           (21) 

PCK [40] represents the proportion of correct keypoints 

estimated. It is used as the MPII evaluation index to calculate 

the ratio of the normalized distance between the groundtruth 

keypoints and its predicted ones less than the given threshold. 

In the MPII dataset, the head length is utilized as the normalized 

reference. Thus, it is also called PCKh. 

B. Implementation Details 

Our experimental environment is on a personal computer 

server equipped with an NVIDIA TITAN RTX-24G GPU and 

64 GB Intel(R) Core(TM) I9-9900K CPU @3.60ghz. Our 

model implements Pytorch as a framework for deep learning 

and is trained with 200 epochs. Adam [44][45] is used as 

optimizer, and the batch size is set as 144. During the 

experiment, we set the learning rate to 0.001 and attenuate it to 

one-tenth of the original in 170–200 epochs. In addition, we set 

the exponential decay rates φ1 and φ2 of the moment estimation 

as 0.99 and 0 respectively in the optimization function. 

C. Experiment Results and Analysis 

1) Results on the MS COCO Database 

The visualized HPE results shown in Fig. 4 verify our success 

and shows the impressive robustness of our approach. Figs. 

4(a)–(d) are the original images, and Figs. 4(e)–(h) show the 

effect of positioning by our method (orange lines). In Figs. 4(i)–

(l), the cyan line is used to show the effect of the comparative 

method, whereas the orange line shows our predictions. As 

shown in the details in the blue boxes, our method is 

surprisingly robust. DARK and our models are also based on 

CNNs while following the heatmap regression. However, 

DARK tends to fail to locate the keypoints correctly. The 

correlation mapping of keypoints generated by the DARK are 

not prominent, implying that the DARK model is weak in 

learning and combining high-level contextual keypoint 

information complements. Quantitative results on the MS 

COCO dataset are shown in Table I. The final AP accuracy 

reaches 79.1% and 3.3% higher than that of the state-of-art 

UDP method. Compared with the previous methods, our model 

achieves huge improvement, suggesting that our model is 

successful in exploiting and combining the complements 

residing in the skeleton direction. 

Figure 5 shows the visual results of the proposed label 

construction, indicating that our tags can adapt to changes of 

the skeletal direction. Furthermore, we visualized the heatmap 

obtained using our unique label construction method. In Fig. 5, 

we show a group of output images during the experiment. 

According to the proposed rules, the athletes keypoints in Fig. 

5(b) are encoded in two ways: the shoulders pointed by the 

green arrow adopt an isotropic Gaussian coordinate encoding, 

whereas the knees pointed by the red arrow adaptively use an 

anisotropic multivariate Gaussian coordinate encoding. 

 
Fig. 5. Visualized results of our label construction by the proposed method on 
MS COCO. (a) Original HPE image, the girl plays frisbee. (b) anisotropic 

Gaussian labels. 

TABLE I. Comparison result with the state-of-the-art HPE methods on the 
COCO test-dev set. 

Methods AP AP50 AP75 APm APl 

RMPE [24] 61.8 83.7 69.8 58.6 67.6 

Mask-RCNN [41] 63.1 87.3 68.7 57.8 71.4 
OpenPose [42] 65.3 85.2 71.3 62.2 70.7 

CPN [14] 72.1 91.4 80.0 68.7 77.2 

CFN [43] 72.6 86.1 69.7 78.3 64.1 
Simple Baselines [27] 73.7 91.9 81.1 70.3 80.0 

HRNet [15] 75.3 89.3 82.6 71.4 80.5 
DARK [34] 75.5 91.0 82.6 71.5 81.0 

UDP [35] 75.8 91.2 83.3 72.1 81.3 

EHPE (Ours) 79.1 93.6 85.8 76.3 84.0 

 

2) Results on the MPII Database 

The proposed method was compared with HRNet [15], 

DARK [34] and UDP [35] on the MPII verification dataset. As 

shown in Table II, even on the more stringent PCK 0.1 measure, 

our method showed excellent performance. The number of 

samples provided by MPII is far less than that of the MS COCO 

dataset, indicating that our method can train datasets with multi-

resolutions.  

Anisotropy
Gaussian

Gaussian

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 6. Comparison of the detection accuracy with the image resolution decreasing for (a)AP. (b) AP@0.5 (c)AP@0.75 (d)APm (e)APl 

D. Ablation Study and Discussion 

In this section, we discuss the effectiveness of each module 

of this method in depth. Our experimental design is described 

as follows. First, we conducted ablation experiments to prove 

the individual effectiveness of each module. Then, we compare 

the state-of-the-art methods in input images of different sizes. 

Next, our model is placed on different backbones for 

experiments to demonstrate that our method can be seamlessly 

integrated into any network. Lastly, we discussed the effect of 

the threshold of the keypoint label generation scheme and the 

coordinate encoding variance ratio on the final result. 

TABLE II. PCKh evaluation by the HRNet, DARK, UDP, EHPE methods on 

the MPII dataset. 

Methods Head Kne. Hip Wri. Elb. Sho. Ank. PCKh 

PCKh@0.5 

HRNet 97.1 87.1 89.1 86.5 90.3 95.5 83.3 90.3 

DARK 97.2 86.7 89.7 86.7 91.2 95.9 84.0 90.6 

UDP 97.4 86.5 89.1 86.5 90.8 96.1 83.3 90.4 

EHPE 97.4 86.8 90.0 86.8 91.4 96.0 84.2 90.8 

PCKh@0.1 

HRNet 51.1 29.9 17.9 41.6 42.0 42.7 31.0 37.7 

DARK 55.2 33.4 20.1 45.2 47.4 47.8 35.4 42.0 

UDP 55.3 33.3 20.2 45.4 47.5 47.9 35.6 42.1 

EHPE 55.5 33.2 20.3 46.1 47.8 48.2 36.3 42.3 

 

1) Module 

In Table III, we conducted ablation experiments on each 

module in EHPE. In this set of experiments, the size of the input 

image is fixed to 384×288, and then the CFE module is 

removed and the multi-loss is replaced with MSE. It is not 

difficult to see that the accuracy of the model is gradually 

decreasing. The model reached the highest accuracy when it 

was fully equipped with the method we proposed. We first 

demonstrate the importance of the skeleton direction cues-

aware in the location interference problem. For comparison, the 

CFE module is removed, and the quantitative results compared 

between row 1 and 2 in Table III show the considerable boost 

by involving the CFE module into EHPE. Then, the multiloss 

is replaced with MSE. Meanwhile, we eliminate the 

regularization learning strategy. The accuracy of the model 

gradually decreases to a certain extent. The reasons should be 

attributed to the strategy that uses KL divergence as supervised 

learning method and the adopted regularization learning. 

Training with the main loss of KL divergence instead of a single 

loss can make the output more closely approximate the label we 

constructed. Furthermore, the strategy of regularization 

learning prevents the network from overfitting and converging 

to a lower accuracy. λ is obtained in a data-driven manner. 

Lastly, except for the modification of the backbone network, all 

other modules have been removed. Nevertheless, our method is 

still working at their best. The effectiveness of each module in 

EHPE is verified. In the revised architecture, we remove or add 

the module in EHPE, and the corresponding variants are named 

as “w/o module” and “w/ module”, respectively. 

TABLE III. Results of ablation experiments on each module. 

Methods 
Input 

size 
AP AP50 AP75 APm APl 

w/o CFE+multi-
loss 

384288 75.5 91.0 82.6 71.5 81.0 

w/o multi-loss 384288 76.1 91.3 82.9 72.0 81.8 

w/o CFE 384288 77.2 92.1 83.5 73.6 82.1 

EHPE 384288 79.1 93.6 85.8 76.3 84.0 

2) Effect of the Image Resolution 

In vision community, image resolution is a major factor 

affecting the final prediction results. Under normal 

circumstances, the accuracy of keypoint positioning shows a 

downward trend as the image resolution decreases. Therefore, 

the output results of different input image sizes are discussed. 

Three different resolutions of images are used as model inputs, 

including 128×96, 256×192, and 384×288. Table IV shows 

the comparison results of our model and state-of-art method 

under different resolution conditions. The results show the 

robustness of our proposed method under the influence of 

image resolution. The EHPE method outperformed the existing 

models from high-resolution to low-resolution. 

Moreover, we also discuss the effect of model accuracy 

reduction with the decreasing of the image resolution. As 

shown in Fig. 6, when the image size is reduced from 384×288 

to 256×192, the AP is only reduced by 0.8%, which is more 

stable than UDP, DARK and HRNet; when the image 

resolution continues to decrease to 128×96, the AP of EHPE 

decreases by 4.6 %, which is lower than the AP accuracy 

reduction of UDP (4.9%), DARK (5.0%) and HRNet (7.9%), 

respectively. In Table IV, experiments have proven that our 

model has less performance loss on low-resolution images, thus 

providing support for deploying human pose estimators on low-

resource devices. 

TABLE IV. Comparison results by several state-of-the-art models with the 

image resolution increasing.  

Methods Resolution AP AP50 AP75 APm APl 

HRNet-W32 [15] 12896 66.1 86.2 77.4 64.6 64.5 

DARK[34] 12896 69.6 87.1 76.2 67.0 72.9 

UDP[35] 12896 69.8 88.5 78.2 67.5 72.6 

EHPE (ours) 12896 73.7 91.5 80.2 72.1 76.8 

HRNet-W32[15] 256192 74.0 88.0 81.2 70.1 70.5 

DARK[34] 256192 74.5 88.8 81.2 71.0 78.1 

UDP[35] 256192 74.7 90.2 82.1 71.5 78.0 

EHPE(ours) 256192 78.3 93.0 84.9 75.9 81.8 

HRNet-W32 [15] 384288 75.3 89.3 82.6 71.4 80.5 

DARK[34] 384288 75.5 91.0 82.6 71.5 81.0 

UDP[35] 384288 75.8 91.2 83.3 72.1 81.3 

EHPE (ours) 384288 79.1 93.6 85.8 76.3 84.0 
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3) Effect of Backbone 

To verify the network structure independence of the model, 

experiments were conducted on different CNN architectures. 

As shown in Table V, we combined the model with HRNet [15], 

ResNet, and Hourglass, respectively. We conducted it with 

different evaluation dimensions on different input sizes. The 

obtained accuracy is higher than the existing excellent methods. 

It demonstrates that the proposed EHPE method can be 

seamlessly integrated into any existing backbones. 
 

TABLE V. Comparison results with different backbone networks, such as 
HRNet and ResNet. The underlining indicates the second-best effect. “cp” 

denotes the covariance pooling. “Taylor” is the Taylor distribution perception 

in the decoding stage. 

Methods Resolution AP AP50 AP75 APm APl 

Hourglass 12896 66.2 87.6 75.1 63.8 71.4 

Hourglass+DARK 12896 69.6 87.8 77.0 67.0 75.4 

Hourglass+EHPE 12896 70.1 88.2 77.2 69.3 75.2 

ResNet 12896 59.3 85.5 67.4 57.8 63.8 

ResNet+DARK 12896 62.6 86.1 70.4 60.4 67.9 

ResNet + EHPE 12896 62.8 88.3 70.5 61.3 65.5 

HRNet 12896 66.1 86.2 77.4 64.6 64.5 

HRNet+DARK 12896 69.6 87.1 76.2 67.0 72.9 

HRNet(cp)+DARK 12896 72.6 90.2 77.6 70.1 74.5 

HRNet(cp)+  

EHPE (Taylor) 
12896 73.7 91.5 80.2 72.1 76.8 

 
Fig. 7. Effect of standard deviation ratio σ1/σ2 and limb angle threshold T on 

model performance. (a) MS COCO database. (b) MPII database. 

 

4)Standard deviation ratio and angle threshold 

To solve the problem of model parameter selection, a series 

of investigations were conducted on the ratio of standard 

deviation of model performance and the limb angle threshold T 

on MS COCO and MPII, respectively. The former is the ratio 

of standard deviation of the x- and y-directions in the image 

coordinate system when the multi-Gaussian coordinate 

generation scheme was executed. The threshold value of the 

limb angle describes the degree of joint flexion. We used the 

method of control variables, setting the standard deviation ratio 

at [1.5, 2, 3, 4] while letting the limb angle threshold fluctuate 

between 90° and 150°. During this period, the other 

hyperparameters were kept unchanged. As shown in Fig. 7(a), 

when the standard deviation ratio equals 2 and the limb 

threshold is 110°, the model shows the optimal performance on 

the MSCOCO dataset. Meanwhile, in the MPII dataset 

indicated in Fig. 7(b), the model has the highest accuracy when 

the standard deviation ratio and extremity angle threshold are 2 

(same as in MSCOCO) and 130°, respectively. 

Second, the color changes of the two heatmaps reveals that 

the variation of the standard deviation ratio of multi-Gaussian 

coordinates has a great influence on the model effect of 

keypoint encoding. The standard deviation affects the 

distribution of the encoded multivariate Gaussian distribution. 

The standard deviation of the limb direction and that 

perpendicular to the limb direction should present a reasonable 

ratio range. On the one hand, if the ratio is too large, the model 

is likely to produce arbitrary judgment when neighboring 

interference occurs; on the other hand, when the ratio is too 

small, the network cannot adequately learn the structure of the 

human body. However, when the standard deviation ratio is 

fixed, the fluctuation of the edge angle threshold within a 

reasonable range has minimal effect on the performance of the 

model. The proposed coding scheme will achieve the maximum 

benefit when the threshold is between 110° and 130°. 

5)Visualization of keypoint detections 

We selected a human-dominated image that is challenging to 

recognize, and used a model equipped with optimal parameters 

to perform a positioning test of human keypoints. The 

visualized result is shown in Fig. 8. The human body is 

occluded by objects (such as in Figs. 8(d), 8(e), 8(i)), adjacent 

keypoint interference (Figs. 8(a), 8(f)), background confusions 

(such as Figs. 8(c), 8(f)), and other issues, and our positioning 

shows amazing robustness. Meanwhile, the above test 

experiments also concretely show that our model have the 

ability to solve the common interference problems in HPE tasks 

that cannot be ignored. Since the proposed EHPE model is not 

a lightweight architecture, it does not have much advantage at 

the time-consuming aspect while comparing with the state-of-

the-art methods. For instance, the parsing takes 34ms for 9 

people while the OpenPose [42] takes 0.58 ms. In future, we 

will introduce the knowledge distillation and pruning 

technologies to reduce inference time. 

E. Expansion Experiments on the Infrared Images 

In this section, an extended experiment based on the infrared 

images we captured is presented, as shown in Fig. 9. We 

gathered more than 20 volunteers and collected infrared images 

of 1,500 deputy classroom behavior, including individual and  

multi-person images. Infrared images have low resolution and 

low contrast with the absence of color and texture information 

compared with visible light-sufficient images. At the same time, 

their visual effects are blurred, and the grayscale distribution 

has a wireless relationship with the target reflection 

characteristics. However, infrared images are widely used in 

night vision, public security and other fields. The attitude 

estimation technology in infrared scenes is also in urgent need 

of development. Figures 9(a), 9(c), 9(d) and 9(e) are the original 

infrared images captured. The corresponding images show the 

test results estimated by our trained model. Experimental results 

show the proposed EHPE method can even work well in the 

infrared scenarios. 

 

 

(a) MS COCO (b) MPII

Best

Best
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Fig. 8. Visualization results of human pose estimation in the light sufficient environment on MS COCO dataset. 

 

 
Fig. 9. HPE experimental results on the infrared images. (a),(c),(d),(e) Original 

HPE,(b),(f),(g),(h) Output image 

V. .CONCLUSION 

In this study, we propose an efficient human pose estimation 

model (EHPE) with skeleton cues-based Gaussian coordinate 

encoding. We consider extracting the relationship between 

adjacent joint points and describe them by the anisotropic 

Gaussian coordinate encoding. To the best of our knowledge, 

this study is the first to introduce the skeleton direction cues to 

heatmap distribution of HPE task. Then, the robust skeleton 

direction cues-aware architecture, which can learn the 

probability distribution we efficiently constructed and can 

explore keypoint information complementarity, is proposed. 

Furthermore, a multi-loss function is proposed to constrain the 

output to prevent overfitting. The KL divergence and Euclidean 

distance are selected to measure the predication label and 

ground truth one. We test EHPE on two HPE datasets. 

Experimental results demonstrate that EHPE can address the 

problems of ambiguity and occlusion in HPE and obtains a 

state-of-the-art performance compared with that of the existing 

methods. Furthermore, the success of EHPE demonstrates the 

importance of the skeleton direction cues in the HPE task, 

which is ignored by the previous researches. 
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