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Background and Significance

With the rapidlygrowing volumeanddiversityofdata inhealth
care and biomedical research, traditional statistical methods
are often complemented by modern machine learning techni-
ques.1 Such techniques are applied to gain valuable insights

from ever-growing biomedical databases, leading, example, to
patient stratification and personalized predictive models.2,3

However, researchers in medical information systems devel-
opment have pointed out, that applying predictive models for
clinical decision support not only involves the model develop-
ment process, but even more important the deployment in
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Abstract Background The increasing availability of molecular and clinical data of cancer
patients combined with novel machine learning techniques has the potential to
enhance clinical decision support, example, for assessing a patient’s relapse risk.
While these prediction models often produce promising results, a deployment in
clinical settings is rarely pursued.
Objectives In this study, we demonstrate how prediction tools can be integrated
generically into a clinical setting and provide an exemplary use case for predicting
relapse risk in melanoma patients.
Methods Tomake thedecisionsupport architecture independentof theelectronic health
record (EHR)and transferable todifferent hospital environments, it wasbasedon thewidely
used Observational Medical Outcomes Partnership (OMOP) common data model (CDM)
rather than on a proprietary EHR data structure. The usability of our exemplary implemen-
tation was evaluated by means of conducting user interviews including the thinking-aloud
protocol and the system usability scale (SUS) questionnaire.
Results An extract-transform-load process was developed to extract relevant clinical
and molecular data from their original sources and map them to OMOP. Further, the
OMOP WebAPI was adapted to retrieve all data for a single patient and transfer them
into the decision support Web application for enabling physicians to easily consult the
prediction service including monitoring of transferred data. The evaluation of the
application resulted in a SUS score of 86.7.
Conclusion This work proposes an EHR-independent means of integrating prediction
models for deployment in clinical settings, utilizing the OMOP CDM. The usability
evaluation revealed that the application is generally suitable for routine use while also
illustrating small aspects for improvement.
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point-of-care settings. To achieve real clinical impact, research-
ers should thus also be concerned about the deployment and
dissemination of their algorithms and tools into day-to-day
clinical decision support.4 This typically challenges the devel-
opers to integrate their model into proprietary commercial
electronic health record (EHR) products.

Thisworkwas conductedwithin theMelEVIR project of the
Erlangen Dermatology Department, which aims to develop,
test, and deploy a diagnostics tool to assess the probability of a
tumor relapse in melanoma patients. The tool uses a machine
learning model to identify low- and high-risk patients based
ona combinationof clinical data elements aswell asmolecular
markers. Molecular markers consist of gene expression in
tumor samples, but especially also plasma-derived extracellu-
lar vesicles (pEVs) obtained from blood samples. The use of
pEVs has the potential tomake predictionsmore accurate and
sample collection simpler and possible regardless of the
presence of a solid tumor.5 This particular predictivemodeling
project, with its model being currently in development and
validation, was used to derive the general and generic concept
of this work for the integration of machine learning-based
decision support tools into clinical information technology
environments.

To use the resulting model in the clinical environment of
Erlangen University Hospital, it needed to be integrated both
with (1) the hospital’s EHR system and (2) a data source
providing the diagnostic results of the molecular analyses. To
keepthisdevelopmentgenericandadaptabletootherhospitals,
the representation of required clinical and molecular data in a
widely used common data model (CDM)—the Observational
Medical Outcomes Partnership (OMOP) CDM6—was chosen. To
further improve the universality of our approach, that is, the
ability to exchange the underlying predictionmodel, the archi-
tecture makes use of REST interfaces for communication.

Objectives

The objective of this article is to illustrate the architectural
design of this loosely EHR-coupled decision support tool and
the modeling work required for mapping the respective data
to OMOP. A major focus of the resulting application and
architecture is broad generalizability, that is, the ability to
not only be integrated with different EHRs, but also with
various prediction models. The benefits of this approach are
demonstrated by the prototypical development of such a
system within a specific use case and the evaluation thereof
by means of a usability analysis.

Methods

Thefirst step of our work was to develop an extract-transform-
load (ETL) process to map the clinical and demographic data
from the EHR as well as the molecular data to the OMOP CDM.
The ETL process consists of extracting the needed attributes
from the data sources, mapping them to corresponding con-
cepts of the standardized vocabulary Systematized Nomencla-
ture of Medicine – Clinical Terms (SNOMED CT), which is used
in OMOP, and loading them to the OMOP database. As of now

OMOP does not use a standardized vocabulary for omics data.
Therefore,we created a newvocabularywithin theOMOPCDM
using the HUGO Gene Nomenclature Committee (HGNC)7 to
enable themapping of genomic data. For an in-depth overview
of how to add custom vocabularies, refer to Maier et al.8

To retrieve the input data for the prediction model from
the OMOP database, we decided to not access the database
directly via SQL statements, but rather use an abstraction
layer, that is, the REST WebAPI, built on top of the OMOP
CDM. For its application within the OHDSI ATLAS tool, the
existing REST GET path /person/id only retrieves stored
observation and measurement concepts with their respec-
tive start and end date, but not their actual stored values.
Thus, we extended this WebAPI to also provide the actual
observation and measurement values.

This extended WebAPI was then called from the newly
developed Web application which first loads all relevant
input data, display those to the physician, allows to revise
and complete the data if necessary (accounting for data
quality issues9), and then consults the prediction model.
The findings of the model—in this case the patient’s relapse
risk—is then presented to the physician, thus supporting his
therapeutic decision-making process. All such steps are
completely independent from the underlying EHR.

To evaluate the practicability of our application in the
point-of-care setting, we performed a usability analysis with
physicians. Theywere asked to perform a real-world use case
consisting of loading the patient data, revising them where
necessary, and querying the decision support tool. For this
they were given a manual for the major steps involved and a
mocked pathology report for data reconciliation. This was
accompanied by a thinking-aloud protocol. Afterwards the
participants were interviewed for additional feedback on the
application and were requested to complete the system
usability scale (SUS)10 questionnaire.

Results

The demographic and clinical data of the patient as well as a
reference to a molecular analysis are exported via a comma-
separated values (CSV) file from the EHR. The gene expression
values are provided via a second CSV file and can be merged
with the patient data file using the aforementioned reference,
creating a single combined file to be further processed.

The observation type of all observations is the OMOP stan-
dard concept “Observation recorded fromEHR (38000280).” For
an overview of the mapped data elements and their corre-
sponding concepts see ►Table 1. As it is a commonly used
standardized vocabulary for gene names, we used the HGNC to
map the analyzed genes to the corresponding HGNC-IDs. For
storing the type of expression data measurement, we added a
newconcept called “RT-qPCRMeasurement,”which represents
the used technique for quantifying gene expression levels. The
data are then loaded in the OMOP database. The demographic
data are stored in the person table, clinical data in the observa-
tion table, and gene expression data in the measurement table.

There are three different ways to store values of observa-
tions and measurements in OMOP, namely valueAsString,
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valueAsNumber, and valueAsConceptId. While the first two
ways are used for storing (α)numerical values, valueAsCon-
ceptId is used for categorical data, which can be represented
using concept identifiers (e.g., the standard OMOP concepts
for gender). The adapted WebAPI request getPerson11 now
additionally retrieves the three-valuefields for all tableswith
relevant patient data. For our use case only the tables
measurement and observation are used, but for a generalized
approach all other tables can be read out as well (drug,

drug_era, condition, condition_era, visit, death, device, pro-
cedure, specimen).

As measurements and observations generally do not have
a start and end date, but just one date, we added the field
timestamp for retrieving the stored timestamp in its original
format. This also prevents an issue we encountered with the
original implementation, which used the only date of those
attributes both for the start and the end date and tried to
parse them to the Java Datetime format. This was not
guaranteed to be successful and led to multiple null values
in the date fields of the generated JSON. The returned
demographic data originally included only the gender and
year of birth of the patient and was therefore extended to
additionally retrieve the month and day of birth for a more
precise calculation of the age at primary diagnosis, which is
needed as an input for the prediction model.

The decision support user interface comprises three main
components (see ►Fig. 1). At the top the user can input the
patient ID (when the application is directly called from an
EHRmodule, the IDwould be provided automatically) which
triggers the call of the REST GET path /person/id service to
load the patient’s data from OMOP. Another option is filling
in the data fields manually. The middle part is split between
the display of the patient’s demographic and clinical data, as
well as a table view for the expression data of all genes or in
general the overview of levels of genomic markers. The
bottom part consists of an HTML iframe which displays the
findings of the prediction model to the user.

All fields are validated after data loading and inputting
new data to provide a consistent data format to the predic-
tion model, which means that the physician may need to
revise incorrect or missing data. Validation of fields includes
checking format and correctness of date fields, validating
numerical input format on number fields, and verifying that
categorical input fields hold appropriate values (e.g., the
Clark level must be a Roman or Arabic numeral between 1
and 5). Additionally, the form is checked for completeness
before enabling the submit button to send the data via a REST
POST request to the prediction model service.

Table 1 Overview of the data elements required by the
prediction model and mapped to the OMOP CDM, including
corresponding concepts in the SNOMED CT or applied
transformation rules

Category Attribute Concept (SCTID) or
transformation rule

Demographic
data

Birth date Split in year, month,
and day

Gender M and F expanded to
MALE and FEMALE
gender (263495000)

Clinical
data

Date of
primary
diagnosis

Used as the date of all
other attributes

Location Tumor location after
sectioning (396985003)

Clark level Clark level (260763001)

pT pT category finding
(385385001)

Breslow
level

Breslow depth staging
for melanoma (394648007)

Omics data Gene
expression
(770 genes)

Custom vocabulary
and concepts based
on HGNC

Abbreviations: CDM, common data model; HGNC, HUGO Gene No-
menclature Committee; OMOP, Observational Medical Outcomes
Partnership; SCTID, SNOMED CT Identifier; SNOMED CT, Systematized
Nomenclature of Medicine – Clinical Terms.

Fig. 1 Architectural overview of the data sources and the integration.
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For now, thefindings of the predictionmodel are rendered
as a textual message and displayed as they are provided by
the model, but it would be also possible to display custom
visualizations or statistics.

In total six physicians were recruited for the usability
evaluation. While all participants could complete the given
task without help, the thinking-aloud protocol revealed
some small issues for improvement in the application. One
example is the data field “age at primary diagnosis.” There
may be occasions where based on transposition errors in
data entry of the date fields (either originating from the EHR
or bymanual input) the age becomes negative or implausibly
high. The fact that this field is not fetched from an external
data source but instead calculated on the fly using the
patient’s birth date and date of primary diagnosis (and
thus cannot by edited itself) was not obvious enough (gray
background) for half of the participants. The dependency of
this field from the two fields birth date and date of primary
diagnosis (which both could be modified) needs to be
illustrated more clearly. Other features of the application
like the visual hints of the validation, that is, red and green
borders around the field including a cross respectively a
checkmark, were given a mixed reception (►Fig. 2). One half
of the participants did not notice them at first or at all while
the other half commended them greatly during the inter-
view. All participants commented positively on the simple
and responsive design. Five of the six physicians stated,
however, that they would require some form of an explana-
tory component for the model or at least links to the backing
literature or documentation. The evaluation of the SUS
questionnaire resulted in an overall SUS score of 86.7 (num-
ber of participants 6, standard deviation 8.6, individual
scores [70, 85, 85, 90, 92.5, 97.5]).

Discussion

Inmany cases the statistical validation of a trained predictive
model on a test data set marks the end of a machine learning
project with no attempt to deploy those models into real

practice.12 To achieve real impact, researchers in the field of
artificial intelligence should however be concerned about
the deployment and dissemination of their algorithms and
tools into day-to-day routine processes of clinicians and to
directly apply such models as decision support tools at the
point of care. This work proposes methods toward overcom-
ing this issue by providing a simple and generic architecture
for integrating prediction models into clinical settings.
Therefore, the designing of the architecture was completely
independent of developing the underlying predictive model.
Validating the model in clinical routine and describing its
implementation in detail remains subject of future work.

Using an EHR-independent integration based onOMOP has
several advantages. First, it can be easily reintegrated when
migrating to a different EHR, either as an embedded frame in
the EHRor as a standalone application. Second, it can be easily
transferred to another hospital with a different EHR. Third,
there are already efforts to integrate prediction models using
theOMOPCDM,4whichcouldbetransferredmoreeasily toour
approach. And finally, even the prediction model itself can be
changed easily given the simple REST interface (although it
may be necessary to adjust the provided data elements). Using
techniques like OMOP, originating from a data warehousing
background, has also disadvantages. Usually, these databases
are updated via scheduled (e.g., nightly) ETL jobs, which can
introduce substantial data latency for point-of-care decision
support.However,whenusingmolecularmarkers as input, the
consequences of this delay are diminished by the prolonged
process of molecular data acquisition. Additionally, the user
interface of the tool was therefor designed to enable input of
not yet mapped and revision of outdated data. Although, this
introduces a limitation to the used approach, as there is no
feasible technical solution for the generic tool to feed back
inputted data into the EHR.

The exemplary implementation of our design presented in
this article relies on a small subset of patient data, which
although being limited, should illustrate the generic concept
of providing EHR data in combination with molecular data
(which are typically not yet included in the EHR) to predic-
tion models utilizing the OMOP CDM. The ETL process of
additional data items to OMOP can constitute a nontrivial
task; however, there are multiple efforts to map EHR data to
OMOP and institutions that already implement the CDM for
other projects can start using the applicationwithout further
work.8,13–17 While other data models such as from i2b218

would have been conceivable, we decided for the use of the
OMOP CDM for the integration of clinical and genomic data.
We found this approach preferable because it naturally
extended our previous local developments of established
and well-maintained ETL processes to OMOP, as well as the
standardized and yet easily extendable vocabularies and
REST API. To further improve long-term interoperability, it
is planned to introduce Health Level Seven Fast Healthcare
Interoperability Resources (FHIR)19 for exchanging clinical
data with our application. While this would facilitate the
integration on the EHR side (granted the EHR supports FHIR,
which is not the case in our current setup), it would not
replace OMOP as a means for integrating the data.

Fig. 2 Display of the visual hints for revising input data. The depicted
field represents the stage of primary tumor (pT) as an example.
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In terms of molecular markers, this study demonstrates
how gene expression levels can be loaded to an OMOP
database. The pEVs will also be integrated in OMOP when
the set of usedmarkers has been finalized. The pEVs could be
loaded to OMOP the same way as the expression levels using
a customvocabulary, but it is also possible that some of them
are already present in terminologies like the SNOMED CT
which would further increase the generalizability of our
approach.

There are currently efforts to integrate genomic data with
the OMOP CDM using an extension called the genomic CDM
(G-CDM).20 While this approach would provide the HGNC as
the standardized vocabulary for omics data required by us, it
is still work in progress and does currently only provide a
uniform solution for sequencing and not for gene expression
data.

While our usability analysis conductedwith six participants
was not an extensive evaluation of a final application, it
produced valuable feedback from real end-users on our proto-
type and passed the often cited threshold of five subjects
to detect themost severe usability problems.21 This also applies
to theuseof theSUSquestionnaire,whose resultingSUSscoreof
86.7 is well beyond the limit of acceptable on the acceptability
scale and translates to an adjective rating of “excellent.”22

Although these, in relative terms, very positive findings are
probably also due to the simplicity of the application, they
provide a good indication of the usability of the EHR-integrated
prototype. Even though this shouldbefurtherconfirmedusinga
more detailed analysis with the final application, we currently
did not follow-up on this, since our current research focus was
moreon the generic EHR-independent application architecture,
than on the decision support tool itself.

Onemajor (usability) issueof theprototypewas themissing
of an explanatory component of the underlying prediction
model. It is reported that one of the key factors in user
acceptance of clinical decision support systems is providing
an explanation on how the model internally computes its
outcome,23whichwas supported by our evaluation. Providing
such information is possible with our application; however, it
needed tobe suppliedby theusedpredictionmodel. In favor of
being able to generically support arbitrarymodels, the display
of the findings and also possibly its detailed explanation is
presented without further processing and in the case of our
exemplary implementation the used predictionmodel did not
yet supply an explanatory component.

Based on the users’ feedback, implementing the user inter-
face as simple as possible with a special focus on a responsive
design was well received. This observation coincides with
studies reporting that the speed of a decision support applica-
tion determines a large portion of the users’ perception.24

Conclusion

This work proposes a method for integrating decision sup-
port tools generically, regardless of the underlying EHR,
using the OMOP CDM. Together with the efforts on the G-
CDM it can provide an approach to simplify the deployment
and dissemination of prediction models in clinical environ-

ments. The evaluation of the application showed an excellent
usability, while also revealing valuable user feedback for
future refinement.

Clinical Relevance Statement

This study demonstrates a generic solution for the integra-
tion of prediction models in clinical settings. This facilitates
the deployment of such decision support tools and therefore
promotes their dissemination and use in clinical routine use.

Multiple Choice Questions

1. How is patient data loaded into the application?
a. Data loading is not possible and data can only be

inputted manually.
b. The application sends SQL queries to an OMOP

database.
c. The REST GET path from a WebAPI is called.
d. The data can be uploaded via a CSV file.

Correct Answer: The correct answer is option c. The
application uses the REST GET path /person/id/ of the
extendedWebAPI. TheWebAPI was extended to addition-
ally provide the values of observations andmeasurements
and acts as an abstraction layer on top of the OMOP
database.

2. Which component(s) of the architecture can be easily
replaced?
a. The EHR and the prediction model.
b. Only the EHR.
c. Only the underlying prediction model.
d. None of the integrated components can be easily

replaced.

Correct Answer: The correct answer is option a. The
architecture is designed generically. Using OMOP for
storing the patient data allows for the use with different
EHRs and given the simple REST interface the used
prediction model can be exchanged as well.

Note
The present workwasperformed in (partial) fulfillment of
the requirements for obtaining the degree “Dr. rer. biol.
hum.” from the Friedrich-Alexander-Universität Erlan-
gen-Nürnberg (P.U.).

Protection of Human and Animal Subjects
Ethical approval was not required.

Funding
This research has been conducted within the MelEVIR
project. MelEVIR is funded by the German Federal Minis-
try of Education and Research (BMBF) under the Funding
Number FKZ 031L0073A.

Conflict of Interest
None declared.

Applied Clinical Informatics Vol. 11 No. 3/2020

EHR-Independent Predictive Decision Support Architecture Based on OMOP Unberath et al. 403



References
1 Luo W, Phung D, Tran T, et al. Guidelines for developing and

reporting machine learning predictive models in biomedical
research: a multidisciplinary view. J Med Internet Res 2016;18
(12):e323

2 Ayaru L, Ypsilantis PP, Nanapragasam A, et al. Prediction of
outcome in acute lower gastrointestinal bleeding using gradient
boosting. PLoS One 2015;10(07):e0132485

3 Ogutu JO, Schulz-Streeck T, Piepho HP. Genomic selection using
regularized linear regression models: ridge regression, lasso,
elastic net and their extensions. BMC Proc 2012;6(Suppl 2):S10

4 Khalilia M, Choi M, Henderson A, Iyengar S, Braunstein M, Sun J.
Clinical predictive modeling development and deployment
through FHIR web services. AMIA Annu Symp Proc 2015;
2015:717–726

5 Lee JH, Dindorf J, Eberhardt M, et al. Innate extracellular vesicles
from melanoma patients suppress β-catenin in tumor cells by
miRNA-34a. Life Sci Alliance 2019;2(02):e201800205

6 Hripcsak G, Duke JD, Shah NH, et al. Observational Health Data
Sciences and Informatics (OHDSI): opportunities for observation-
al researchers. Stud Health Technol Inform 2015;216:574–578

7 Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H. The
HUGOGene Nomenclature Committee (HGNC). HumGenet 2001;
109(06):678–680

8 Maier C, Lang L, Storf H, et al. Towards implementation of OMOP in
aGermanUniversityHospital Consortium. Appl Clin Inform2018;
9(01):54–61

9 McCormack JL, Ash JS. Clinician perspectives on the quality of
patient data used for clinical decision support: a qualitative study.
In, AMIA Annual Symposium Proceedings: American Medical
Informatics Association; 2012:1302

10 Brooke J. SUS-A quick and dirty usability scale. Usabil Eval Ind
1996;189:4–7

11 Unberath P. 2019. Available at: https://github.com/Unberath/
WebAPI/tree/v2.4.0-custom. Accessed April 16, 2020

12 Bellazzi R, Zupan B. Predictive data mining in clinical medicine:
current issues and guidelines. Int J Med Inform 2008;77(02):81–97

13 Yoon D, Ahn EK, Park MY, et al. Conversion and data quality
assessment of electronic health record data at a Korean tertiary

teaching hospital to a common data model for distributed net-
work research. Healthc Inform Res 2016;22(01):54–58

14 Zhou X, Murugesan S, Bhullar H, et al. An evaluation of the THIN
database in the OMOP Common Data Model for active drug safety
surveillance. Drug Saf 2013;36(02):119–134

15 Lamer A, Depas N, Doutreligne M, et al. Transforming French
electronic health records into the Observational Medical Out-
come Partnership’s common data model: a feasibility study. Appl
Clin Inform 2020;11(01):13–22

16 Lynch KE, Deppen SA, DuVall SL, et al. Incrementally transforming
electronic medical records into the Observational Medical Out-
comes Partnership common data model: a multidimensional
quality assurance approach. Appl Clin Inform 2019;10(05):
794–803

17 FitzHenry F, Resnic FS, Robbins SL, et al. Creating a common data
model for comparative effectiveness with the observational med-
ical outcomes partnership. Appl Clin Inform 2015;6(03):536–547

18 Murphy SN, Weber G, Mendis M, et al. Serving the enterprise and
beyond with informatics for integrating biology and the bedside
(i2b2). J Am Med Inform Assoc 2010;17(02):124–130

19 Bender D, Sartipi K. HL7 FHIR: an agile and RESTful approach to
healthcare information exchange. In, Proceedings of the 26th
IEEE international symposium on computer-based medical sys-
tems: IEEE; 2013:326–331

20 Shin SJ, You SC, Park YR, et al. Genomic common data model for
seamless interoperation of biomedical data in clinical practice:
retrospective study. J Med Internet Res 2019;21(03):e13249

21 Virzi RA. Refining the test phase of usability evaluation: how
many subjects is enough? Hum Factors 1992;34:457–468

22 Bangor A, Kortum P, Miller J. Determining what individual SUS
scores mean: adding an adjective rating scale. J Usability Stud
2009;4:114–123

23 O’Sullivan D, Fraccaro P, Carson E, Weller P. Decision time for
clinical decision support systems. Clin Med (Lond) 2014;14(04):
338–341

24 Bates DW, Kuperman GJ, Wang S, et al. Ten commandments for
effective clinical decision support: making the practice of evi-
dence-based medicine a reality. J Am Med Inform Assoc 2003;10
(06):523–530

Applied Clinical Informatics Vol. 11 No. 3/2020

EHR-Independent Predictive Decision Support Architecture Based on OMOP Unberath et al.404

https://github.com/Unberath/WebAPI/tree/v2.4.0-custom
https://github.com/Unberath/WebAPI/tree/v2.4.0-custom

