
Discrete Comput Geom (2008) 40: 365–376
DOI 10.1007/s00454-007-9002-5

Ehrhart Series and Lattice Triangulations

Sam Payne

Received: 13 February 2007 / Revised: 11 May 2007 /
Published online: 18 September 2007
© Springer Science+Business Media, LLC 2007

Abstract We express the generating function for lattice points in a rational poly-
hedral cone with a simplicial subdivision in terms of multivariate analogues of the
h-polynomials of the subdivision and “local contributions” of the links of its nonuni-
modular faces. We also compute new examples of nonunimodal h∗-vectors of reflex-
ive polytopes.

1 Introduction

Let N be a lattice and let σ be a strongly convex rational polyhedral cone in NR =
N ⊗Z R. The generating function for lattice points in σ ,

Gσ =
∑

v∈(σ∩N)

xv,

is a rational function, in the quotient field Q(N) of the multivariate Laurent polyno-
mial ring Z[N ]. For instance, if σ is unimodular, spanned by a subset {v1, . . . , vr} of
a basis for N , then Gσ is equal to 1/(1 − xv1) · · · (1 − xvr ).

Suppose � is a rational simplicial subdivision of σ , with v1, . . . , vs the primi-
tive generators of the rays of �. We define a multivariate analogue H� of the h-
polynomial h�(t) = ∑

τ∈� tdim τ · (1 − t)dimσ−dim τ , by

H� =
∑

τ∈�

( ∏

vi∈τ

xvi ·
∏

vj �∈τ

(1 − xvj )

)
.
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Every point in σ is in the relative interior of a unique cone in � and can be written
uniquely as a nonnegative integer linear combination of the primitive generators of
the rays of that cone plus a fractional part. The generating function for lattice points
in the relative interior of τ that have no fractional part is

∏
vi∈τ xvi /(1 − xvi ), so

the generating function for lattice points in σ with no fractional part (with respect
to the subdivision �) is H�/(1 − xv1) · · · (1 − xvs ). In particular, if every cone in
� is unimodular, spanned by part of a basis for the lattice, then every lattice point
has no fractional part, so this gives Gσ . Otherwise, the remaining lattice points with
nonzero fractional part, which necessarily lie in the nonunimodular cones of �, may
be accounted for as follows.

Say that a cone is singular if it is not unimodular, and let �sing be the set of singular
cones in �. After possibly renumbering, say τ ∈ �sing is spanned by {v1, . . . , vr}. Let
Box(τ ) be the open parallelepiped

Box(τ ) = {a1v1 + · · · + arvr | 0 < ai < 1},
and let Bτ be the generating function for lattice points in Box(τ ),

Bτ =
∑

v∈Box(τ )∩N

xv.

We write lk τ for the link of τ in �. In other words, lk τ is the union of the cones γ

in � such that γ ∩ τ = 0 and γ + τ is a cone in �. We define a multivariate analogue
Hlk τ of the h-polynomial of lk τ by

Hlk τ =
∑

γ∈lk τ

( ∏

vi∈γ

xvi ·
∏

vj ∈(lk τ�γ )

(1 − xvj )

)
.

Theorem 1.1 Let � be a rational simplicial subdivision of a strongly convex rational
polyhedral cone σ , and let v1, . . . , vs be the primitive generators of the rays of �.
Then

(1 − xv1) · · · (1 − xvs ) · Gσ = H� +
∑

τ∈�sing

(
Bτ · Hlk τ ·

∏

vi �∈Star τ

(1 − xvi )

)
.

Here Star τ is the union of the maximal cones in � that contain τ .
Recent work of Athanasiadis [1, 2], Bruns and Römer [9], and Ohsugi and Hibi

[18] has highlighted the usefulness of considering the effects of a “special simplex”
that is contained in all of the maximal faces of a triangulation. Our next result, which
is inspired by their work, is a generalization of Theorem 1.1 that takes into account the
effect of a special cone that is contained in all of the maximal cones of the subdivision.
For a cone over a triangulated polytope, the notion of special cone that we consider is
slightly more general than a cone over a special simplex in the sense of [1]; a special
cone is a cone over a special simplex if and only if it is not contained in the boundary
of the cone over the polytope.

Suppose, as above, that τ is a cone in � spanned by v1, . . . , vr , and let λ be a face
of τ . After possibly renumbering, we may assume that λ is spanned by v1, . . . , vq,
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for some q ≤ r . We define a partially open parallelepiped Box(τ, λ), which we think
of as the Box of τ relative to λ, as

Box(τ, λ) = {a1v1 + · · · + arvr | 0 ≤ ai < 1 for all i, and ai �= 0 for i > q}.
Let the polynomial Bτ,λ be the relative analogue of Bτ ,

Bτ,λ =
∑

v∈Box(τ,λ)∩N

xv.

Theorem 1.2 Let � be a rational simplicial subdivision of a strongly convex rational
polyhedral cone σ , and let v1, . . . , vs be the primitive generators of the rays of �.
Suppose λ ∈ � is contained in every maximal cone of �. Then

(1 − xv1) · · · (1 − xvs ) · Gσ = Hlkλ +
∑

τ�λ

(
Bτ,λ · Hlk τ ·

∏

vj �∈Star τ

(1 − xvj )

)
.

Since the zero cone is contained in every cone of � and Bτ,0 = Bτ for all τ , Theo-
rem 1.1 is the special case of Theorem 1.2 where λ = 0.

Remark 1.3 There are many ways of computing the rational function Gσ and its
specializations, some of which are algorithmically efficient. The excellent survey ar-
ticles [3] and [10] may serve as introductions to the extensive literature on this topic.
Efficient algorithms have been implemented in the computer program LattE [11].
Theorems 1.1 and 1.2, and their specializations to lattice polytopes (Corollaries 3.1
and 3.3), seem to be useful in cases where it is especially easy to give subdivisions
that are close to unimodular, and in studying families of such examples in which the
contributions of the singular cones can be easily understood. See, for instance, the
examples in Sect. 4, which were computed by hand.

Theorems 1.1 and 1.2 specialize to give formulas for Ehrhart series of lattice poly-
topes. See Sect. 3 for details. We use these specializations to construct examples of
reflexive polytopes with interesting h∗-vectors, the results of which are summarized
as follows. Suppose N ′ is a lattice and P is a d-dimensional lattice polytope in N ′

R
.

Recall that the Ehrhart series of P is

EhrP (t) = 1 +
∑

m≥1

#{mP ∩ N ′} · tm,

and that (1 − t)d+1 EhrP (t) = h∗
0 + · · · + h∗

d td for some integers h∗
i . See [5, Chaps 3

and 4] for these and other basic facts about Ehrhart series. We say that h∗(P ) =
(h∗

0, . . . , h
∗
d) is the h∗-vector of P , and write h∗

P (t) for the polynomial
∑

h∗
i t

i .1

1There is unfortunately no standard notation for the numerator of the Ehrhart series of a lattice polytope
and its coefficients, despite the extensive literature on the topic. The relation between this polynomial and
the Ehrhart polynomial of a lattice polytope is analogous to the relation of the h-polynomial of a simplicial
polytope with the f -polynomial; some like to call its vector of coefficients the “Ehrhart h-vector” [9].
Others simply denote it by h [2, 5, 18] or δ [12–15]. Here we use the notation h∗, following Stanley [20]
and Athanasiadis [1], to emphasize the analogy with h-polynomials of simplicial polytopes while avoiding
any possible ambiguity.
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Recall that P is said to be reflexive if it contains 0 in its interior and its dual
polytope has vertices in the dual lattice. Suppose that P is reflexive. Then h∗

i = h∗
d−i

for all i [12]. Furthermore, if ∂P has a regular unimodular triangulation, given by
intersecting ∂P with the domains of linearity of a convex piecewise linear function on
N ′

R
, then h∗(P ) is equal to the h-vector of this triangulation, which is combinatorially

equivalent to the boundary complex of a simplicial polytope. In particular, if ∂P has
a regular unimodular triangulation then h∗(P ) is unimodal, in the sense that h∗

0 ≤
h∗

1 ≤ · · · ≤ h∗[d/2], and furthermore the vector of successive differences

g∗(P ) = (h∗
0, h

∗
1 − h∗

0, . . . , h
∗[d/2] − h∗[d/2]−1)

is a Macaulay vector, i.e. the Hilbert sequence of a graded algebra generated in degree
one. For an arbitrary reflexive polytope, Hibi showed that h∗

0 ≤ h∗
1 ≤ h∗

i for 2 ≤ i < d ,
so h∗(P ) is unimodal if d ≤ 5 and g∗(P ) is a Macaulay vector if d ≤ 3 [13].

First examples of reflexive polytopes with nonunimodal h∗-vectors were given in
[16] in even dimensions d ≥ 6. These examples were nonsimplicial, the depth of
the “valleys” in h∗(P ) was never more than two, and the construction did not yield
nonunimodal examples in odd dimensions. Also, it remained unclear, in the cases
where h∗(P ) is unimodal, whether g∗(P ) is necessarily a Macaulay vector.

Theorem 1.4 For every d ≥ 6, there exists a d-dimensional reflexive simplex P such
that h∗(P ) is not unimodal.

Theorem 1.5 For every d ≥ 4, there exists a d-dimensional reflexive simplex P such
that h∗(P ) is unimodal, but g∗(P ) is not a Macaulay vector.

Theorem 1.6 For any positive integers m and n, there exists a reflexive polytope P

and indices i1 < j1 < i2 < j2 < · · · < im < jm < im+1 such that

h∗
i	

− h∗
j	

≥ n and h∗
i	+1

− h∗
j	

≥ n,

for 1 ≤ 	 ≤ m. Furthermore, P can be chosen so that dim(P ) = O(m log logn).

In other words, for any positive integers m and n, there exists a reflexive polytope
P of dimension O(m log logn) such that h∗(P ) has at least m valleys of depth at
least n.

Remark 1.7 None of the examples of reflexive polytopes with nonunimodal h∗-
vectors constructed here are normal, in the sense where a lattice polytope P is normal
if every lattice point in mP is a sum of m lattice points in P , for all positive integers
m. For normal reflexive polytopes P , the questions of whether h∗(P ) is unimodal
and whether g∗(P ) is a Macaulay vector remain open and interesting [18].

We conclude the introduction with an example illustrating Theorem 1.2.

Example 1.8 Suppose N = Z
3, v = (0,0,1) and

v1 = (1,0,1), v2 = (0,1,1), v3 = (0,−1,1), v4 = (−1,0,1).
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Let σ be the cone spanned by v1, v2, v3, and v4, with � the simplicial subdivision of
σ whose maximal cones are

σ1 = 〈v1, v2, v3〉 and σ2 = 〈v2, v3, v4〉.
Then σ1 and σ2 are not unimodular; the lattice points with no fractional part are
exactly those (a, b, c) such that a + b + c is even. The remaining lattice points may
be written uniquely as v plus a lattice point with no fractional part. We compute the
generating function Gσ as follows, using Theorem 1.2 with λ = 〈v2, v3〉.

There are exactly three cones in lkλ: 0, 〈v1〉, and 〈v4〉. Therefore

Hlkλ = (1 − xv1)(1 − xv4) + xv1(1 − xv4) + xv4(1 − xv1),

= 1 − xv1xv4 .

Since Boxλ,λ contains a unique lattice point v and Boxσ1,λ and Boxσ2,λ contain no
lattice points, it follows that

Gσ = (1 + xv)(1 − xv1xv4)

(1 − xv1)(1 − xv2)(1 − xv3)(1 − xv4)
.

2 Proof of Theorems 1.1 and 1.2

As observed in the introduction, Theorem 1.1 is a special case of Theorem 1.2. We
will begin by showing the converse, that Theorem 1.2 is a consequence of Theo-
rem 1.1, using the following lemma. The lemma is a multivariate analogue of the
familiar fact that, for any simplicial complex �′, the h-polynomial of the join of �′
with a simplex is equal to the h-polynomial of �′.

Lemma 2.1 If λ is a face of every maximal cone of � then H� = Hlkλ and

Hlkγ = Hlk(γ+λ),

for every γ ∈ �.

Proof We show that H� = Hlkλ. The proof of the second claim is similar. Every
maximal face of � contains λ if and only if � is the join of λ with lkλ. Since λ is the
join of its rays, it will suffice to consider the case where λ is one-dimensional, with
primitive generator v1. In this case, the required identity may be seen by regrouping
the terms in the summation defining H� as

H� =
∑

v1 �∈γ

( ∏

vi∈γ

xvi ·
∏

vj �∈γ

(1 − xvj )

)
+

∑

v1∈τ

( ∏

vk∈τ

xvk ·
∏

v	 �∈τ

(1 − xv	)

)
.

Since the cones not containing v1 are exactly the γ ∈ lkλ, and since the cones con-
taining v1 are exactly those τ = (γ + λ) for γ ∈ lkλ, the above equation gives

H� = (1 − xv1) · Hlkλ + xv1 · Hlkλ,

so H� = Hlkλ, as required. �
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Suppose λ is contained in every maximal cone. Then, for any cone τ containing λ,

Bτ,λ =
∑

(γ+λ)=τ

Bγ .

Futhermore, for each γ such that (γ + λ) = τ , we have Starγ = Star τ , and Hlkγ =
Hlk τ , by Lemma 2.1. Therefore, Theorem 1.2 follows from Theorem 1.1, which we
now prove.

Proof of Theorem 1.1 Let v be a lattice point in σ . Then v is contained in the relative
interior of a unique cone γ ∈ �. If v1, . . . , vr are the primitive generators of the rays
of γ , then v can be written uniquely as

v = a1v1 + · · · + arvr + {v},
where each ai is a nonnegative integer and {v}, which we call the fractional part of
v, is either zero or lies in Box(τ ) for some unique singular cone τ 
 γ . Since v

lies in the relative interior of γ , ai must be strictly positive for each vi in (γ � τ).
Conversely, if v′ is a lattice point in Box(τ ), and v = a1v1 + · · · + arvr + v′, where
the ai are nonnegative integers that are strictly positive for vi ∈ (γ � τ), then v is in
the relative interior of γ and {v} = v′. Therefore,

xv′ · Hlk τ∏
vi∈Star τ (1 − xvi )

is the generating function for lattice points v ∈ σ such that {v} = v′. Then Bτ ·
Hlk τ /

∏
vi∈Star τ (1−xvi ) is the generating function for lattice points in σ whose frac-

tional part is in Box(τ ), and the theorem follows. �

3 Specialization to Lattice Triangulations of Polytopes

Let N ′ be a lattice, and let P be a d-dimensional lattice polytope in N ′
R

. Suppose
N = N ′ ×Z, with σ the cone over P ×{1} in NR, and let u : N → Z be the projection
to the second factor. Since

#{mP ∩ N ′} = #{v ∈ (σ ∩ N) | u(v) = m}
for all positive integers m, the specialization

ϕ : Q(N) → Q(t), xv �→ tu(v)

maps Gσ to EhrP (t).
Suppose T is a lattice triangulation of P , and let � be the subdivision of σ con-

sisting of the cones τF over F × {1} for all faces F ∈ T . Then each of the primitive
generators v1, . . . , vs of the rays of � is a lattice point in P × {1}, so u(vi) = 1 for
all i. It follows that

ϕ(H�) = (1 − t)(s−d−1) · hT (t),
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where hT (t) is the h-polynomial of the simplicial complex T . Similarly,

ϕ(Hlk τF
) = (1 − t)(s

′−d ′−1) · hlkF (t),

where s′ is the number of vertices in lkF , and d ′ = dim lkF . Let T sing denote the set
of nonunimodular simplices of T . For F ∈ T sing, let BF (t) = ϕ(BτF

), so

BF (t) =
∑

v∈Box(τF )∩N

tu(v).

The following specialization of Theorem 1.1 is due to Betke and McMullen [7, The-
orem 1] and was rediscovered by Batyrev and Dais in the context of stringy algebraic
geometry [4, Theorem 6.10].

Corollary 3.1 Let P be a lattice polytope, and let T be a lattice triangulation of P .
Then

h∗
P (t) = hT (t) +

∑

F∈T sing

BF (t) · hlkF (t).

Note that BF (t) and hlkF (t) have nonnegative integer coefficients, so the theorem
of Stanley that h∗

P (t) has nonnegative integer coefficients [19, Theorem 2.1] follows
immediately. Another interesting proof of this nonnegativity, using “irrational de-
compositions,” recently appeared in work of Beck and Sottile [6].

Furthermore, hlkF (t) is always nonzero, and BF (t) must be nonzero for some F

if T is not unimodular. Therefore, from Corollary 3.1, we deduce the following.

Corollary 3.2 [7, Theorem 2] Let P be a lattice polytope, and let T be a lattice
triangulation of P . Then

h∗
i (P ) ≥ hi(T )

for all i. Furthermore, equality holds for all i if and only if T is unimodular.

If the triangulation T contains a special simplex F ′ that is a face of every maximal
simplex of T , then we can take this into account using Theorem 1.2. For F ≥ F ′, let
BF,F ′(t) = ϕ(BτF ,τF ′ ).

Corollary 3.3 Let P be a lattice polytope, and let T be a triangulation of P with a
special simplex F ′. Then

h∗
P (t) = hlkF ′(t) +

∑

F≥F ′
BF,F ′(t) · hlkF (t).

Recall that a lattice polytope P is called reflexive if it contains 0 in its interior
and the polar dual polytope of P has vertices in the dual lattice of N ′. In the special
case where P is reflexive and 0 = F ′ is a special simplex of the triangulation T , then
T is the join of {0} with a triangulation of the boundary of P , and we recover [16,
Theorem 1.3].
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Remark 3.4 In [9], Bruns and Römer use techniques from commutative algebra to
show that if mP is a translate of a reflexive polytope for some positive integer m,
and if P has any regular unimodular triangulation, then P has a regular unimodular
triangulation with an (m − 1)-dimensional special simplex F ′ such that lkF ′ is com-
binatorially equivalent to the boundary complex of a simplicial polytope. From this
they deduce that h∗(P ) = h(lkF ′) is unimodal and that g∗(P ) is a Macaulay vector.

Remark 3.5 These specializations to lattice polytopes are closely related to stringy
invariants of toric varieties. See [4] and [16] for details on this connection. Special
simplices have also appeared in the stringy geometry literature, where they have been
called the “core” of a triangulation [21].

4 Examples of Reflexive Polytopes with Nonunimodal h∗-Vectors

Let N ′ be a lattice and let M ′ = Hom(N ′,Z) be its dual lattice. Let P be a d-
dimensional lattice polytope in N ′

R
. Recall that P is reflexive if and only if it contains

0 in its interior and the dual polytope

P ◦ = {u ∈ M ′
R

| 〈u,v〉 ≥ −1 for all v ∈ P }
has vertices in M ′.

Proposition 4.1 Let a1, . . . , ad, and b be positive integers, and let

f = 1

b
(a1, . . . , ad).

Then the simplex P = conv{e1, . . . , ed,−f } in R
d is reflexive with respect to the

lattice N ′ = Z
d + Z · f if and only if a1 + · · · + ad = bc for some integer c and each

ai divides b(c + 1).

Proof Let u = −e∗
1 − · · · − e∗

d . Then P ◦ is the simplex in (Rd)∗ with vertices u and

ui = u + a1 + · · · + ad + b

ai

e∗
i ,

for 1 ≤ i ≤ d . Now u lies in M ′ if and only if 〈u,f 〉 = (a1 + · · · + ad)/b is some
integer c. If this is the case, then ui lies in M ′ if and only if 〈ui, ei〉 = b(c + 1)/ai − 1
is an integer. �

In the following examples, we use Proposition 4.1 to construct a reflexive simplex
P , and then apply Corollary 3.3 with respect to the triangulation T obtained by taking
the join of {0} with the boundary of P , and the special simplex F ′ = 0, to compute
h∗(P ). The link of a (d − r)-dimensional face F ∈ T that contains 0 is the boundary
complex of an r simplex, so h∗

lkF (t) = 1 + t + · · · + t r . We write ṽ = (v,1) for the
lift of a point v ∈ R

d to height one in R
d × R.



Discrete Comput Geom (2008) 40: 365–376 373

Example 4.2 Suppose d = bk + r for some positive integers b and k and some non-
negative integer r . Let f be the following vector in R

d ,

f = 1

b
(1, . . . ,1︸ ︷︷ ︸

bk

, b, . . . , b︸ ︷︷ ︸
r

).

By Proposition 4.1, P = conv{e1, . . . , ed,−f } is reflexive with respect to the lattice
N ′ = Z

d + Z · f . The only nonunimodular face F of T such that Box(τF ,0) con-
tains lattice points is F = conv{0, e1, . . . , ebk}. Let f ′ = f − ebk+1 − · · · − ed . Then
Box(F,0) ∩ (N ′ × Z) consists of the lattice points

1

b
(̃e1 + · · · + ẽbk),

2

b
(̃e1 + · · · + ẽbk), . . . ,

b − 1

b
(̃e1 + · · · + ẽbk),

which have final coordinates k,2k, . . . , (b − 1)k, respectively. Therefore BF,0(t) =
tk + · · · + t (b−1)k , and

h∗
P (t) = (1 + · · · + td ) + (1 + · · · + t r )(tk + · · · + t (b−1)k).

Example 4.3 Suppose d = 7, and

f = 1

7
(1,2,2,4,4,4,4).

By Proposition 4.1, P = conv{e1, . . . , e7,−f } is reflexive with respect to the lat-
tice N ′ = Z

7 + Z · f . Let F1, F2, and F3 be the faces of T with vertex sets
{0, e1, . . . , e7}, {0, e1, e2, e3,−f }, and {0, e1,−f }, respectively. Then the lattice
points in Box(F1,0) ∩ (N ′ × Z) are

(1/7)(̃e1 + 2̃e2 + 2̃e3 + 4̃e4 + 4̃e5 + 4̃e6 + 4̃e7),

(1/7)(̃2e1 + 4̃e2 + 4̃e3 + ẽ4 + ẽ5 + ẽ6 + ẽ7),

(1/7)(̃3e1 + 6̃e2 + 6̃e3 + 5̃e4 + 5̃e5 + 5̃e6 + 5̃e7),

(1/7)(4̃e1 + ẽ2 + ẽ3 + 2̃e4 + 2̃e5 + 2̃e6 + 2̃e7),

(1/7)(5̃e1 + 3̃e2 + 3̃e3 + 6̃e4 + 6̃e5 + 6̃e6 + 6̃e7),

(1/7)(6̃e1 + 5̃e2 + 5̃e3 + 3̃e4 + 3̃e5 + 3̃e6 + 3̃e7),

which have final coordinates 3, 2, 5, 2, 5, and 4, respectively. So BF1,0(t) = 2t2 +
t3 + t4 + 2t5. Similarly, the lattice points in Box(F2,0) ∩ (N ′ × Z) are

(1/4)(−3f̃ + ẽ1 + 2̃e2 + 2̃e3),

(1/4)(−f̃ + 3̃e1 + 2̃e2 + 2̃e3),

which both have final coordinate 2, so BF2,0(t) = 2t2. Finally, the unique lattice point
in Box(F3,0) ∩ (N ′ × Z) is (1/2)(−f̃ + e1), so BF3,0(t) = t .

For all other faces F , Box(F,0) contains no lattice points. It follows that

h∗(P ) = (1,2,6,5,5,6,2,1).
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Example 4.4 Suppose d = 11, and

f = 1

11
(1,1,1,2,4,4,4,4,4,4,4).

By Proposition 4.1, P is reflexive with respect to the lattice N ′ = Z
11 +Z ·f . Let F1,

F2, and F3 be the faces of T with vertex sets {0, e1, . . . , e11}, {0, e1, e2, e3, e4,−f },
and {0, e1, e2, e3,−f }, respectively. Then, by computations similar to those in Ex-
ample 4.3,

BF1,0(t) = t2 + 2t3 + 2t5 + 2t6 + 2t8 + t9,

BF2,0(t) = t2 + t3,

BF3,0(t) = t2,

and BF,0(t) = 0 for all other F . It follows that

h∗(P ) = (1,1,4,6,4,6,6,4,6,4,1,1).

Proof of Theorem 1.4 If b ≥ 3 and k > r + 1 in Example 4.2, then h∗(P ) is not
unimodal. In particular, taking b = 3 and r = 0,1, or 2, produces reflexive simplices
with nonunimodal h∗-vectors in all dimensions d ≥ 6 except for d = 7, 8, or 11. For
d = 8, one may take b = 4 and k = 2. For dimensions 7 and 11, reflexive simplices
with nonunimodal h∗-vectors are given by Examples 4.3 and 4.4, respectively. �

Proof of Theorem 1.5 If b = 2 and k ≥ 2 in Example 4.2, then h∗(P ) is unimodal, but
h∗

1 −h∗
0 = 0 and h∗

k −h∗
k−1 = 1, so g∗(P ) is not a Macaulay vector. Taking b = k = 2

produces such examples in all dimensions d ≥ 4. �

One key ingredient in the proof of Theorem 1.6 is the following special case of
Braun’s formula [8], which gives the h∗-polynomial of the free sum of two reflexive
polytopes. Recall that if Q and Q′ are polytopes in vector spaces V and V ′, respec-
tively, each containing 0 in its interior, then the free sum Q ⊕ Q′ is the convex hull
of Q × {0} and {0} × Q′ in V × V ′.

Braun’s Formula Let Q and Q′ be reflexive polytopes. Then

h∗
Q⊕Q′(t) = h∗

Q(t) · h∗
Q′(t).

Note that the dual of the free sum of two polytopes is the product of their respective
duals, so the free sum of two reflexive polytopes is reflexive.

Proof of Theorem 1.6 Nill has constructed a sequence of reflexive simplices Qj such
that dimQj = j and the normalized volume

volQj = h∗
0(Qj ) + · · · + h∗

j (Qj )

grows doubly exponentially with j [17]. Therefore, there exists a reflexive simplex Q

such that h∗
i (Q) ≥ n for some i, and dim(Q) = O(log logn). Let Q′ be the reflexive
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simplex constructed by taking b = m + 1, k = dim(Q) + 2, and d = bk in Exam-
ple 4.2. Then dim(Q′) = (m + 1)(dim(Q) + 2), so dim(Q ⊕ Q′) = O(m log logn),
and

h∗
Q′(t) = (1 + t + · · · + td ) + (tk + t2k + · · · + t (b−1)k).

Let P = Q ⊕ Q′. Then P is reflexive and, by Braun’s Formula, h∗
P (t) = h∗

Q(t) ·
h∗

Q′(t). It follows easily that

h∗
k	+i (P ) = vol(Q) + h∗

i (Q),

for 1 ≤ 	 ≤ m + 1, and

h∗
k(	+1)−1(P ) = vol(Q),

for 1 ≤ 	 ≤ m. In particular, setting i	 = k	 + i and j	 = k(	 + 1) − 1, we have
h∗

i	
− h∗

j	
≥ n and h∗

i	+1
− h∗

j	
≥ n, for 1 ≤ 	 ≤ m, as required. �
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