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2Faculty of Exact Sciences and Engineering, University of Madeira, Penteada Campus, 9020-105 Funchal, Madeira Is., Portugal 

Received August 7, 2019; Revised August 30, 2019; Accepted September 7, 2019

Copyright c©2019 by authors, all rights reserved. Authors agree that this article remains permanently

open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract There are many simultaneous iterative methods 
for approximating complex polynomial zeros, from more 
traditional numerical algorithms, such as the well-known third 
order Ehrlich–Aberth method, to the more recent ones. In this 
paper, we present a new family of combined iterative methods 
for the simultaneous determination of simple complex zeros of 
a polynomial, which uses the Ehrlich iteration and a correction 
based on King’s family of iterative methods for nonlinear 
equations. The use of King’s correction allows increasing 
the convergence order of the basic method from three to six. 
Some numerical examples are given to illustrate the 
convergence behaviour and effectiveness of the proposed sixth 
order Ehrlich-like family of combined iterative methods for the 
simultaneous approximation of simple complex polynomial 
zeros.

Keywords Polynomial Zeros, Simultaneous Iterative

Methods, Combined Methods, Ehrlich Method

1 Introduction

The importance of the problem of finding polynomial zeros

in the different branches of Science and Engineering has led

to the development of many different methods for their numer-

ical determination. There is also a significant interest in the

development of new and efficient numerical iterative methods

for determining the zeros of real and complex polynomials.

These methods can approximate the zeros of a polynomial

either in a sequential or simultaneous manner. However, the

determination of all zeros of a given polynomial by a sequential

method involves repeated deflations, which can lead to very

inaccurate results due to the problem of accumulating rounding

errors when using finite precision floating-point arithmetic.

In turn, the simultaneous methods for polynomial zeros have

the advantage of being inherently parallel and avoid the pro-

cess of deflation, although these iterative methods usually need

good initial approximations for all the zeros in order to con-

verge.

In this work, a new family of numerical methods for the si-

multaneous approximation of simple complex polynomial ze-

ros is presented. The proposed simultaneous methods are con-

structed on the basis of the well-known third order Ehrlich–

Aberth iteration [1, 6], combined with an iterative correction

from the optimal fourth order two-step King’s method for solv-

ing nonlinear equations [10].

2 A family of high order Ehrlich-type

simultaneous methods with King’s

correction

2.1 The third order Ehrlich method

Let P be a monic polynomial of degree n, with (real or com-

plex) simple zeros ζ1, . . . , ζn,

P (z) = zn+an−1z
n−1+· · ·+a1z+a0 =

n
∏

j=1

(z−ζj), ai ∈ C.

(1)

Considering the correction term N(z) = P (z)/P ′(z) from

the second order Newton’s method ẑ = z − N(z) (where,

for notation simplicity, ẑ represents a new approximation for

a zero ζ) and taking its logarithmic derivative with respect to

z, we obtain

N(z) =
P (z)

P ′(z)
=

[

d

dz
logP (z)

]−1

=





n
∑

j=1

1

z − ζj





−1

.

(2)
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But we have





n
∑

j=1

1

z − ζj





−1

=









1

z − ζi
+

n
∑

j=1
j 6=i

1

z − ζj









−1

, (3)

and then

N(z) =
1

1

z − ζi
+

n
∑

j=1
j 6=i

1

z − ζj

. (4)

From (4), we can easily derive the following fixed-point re-

lation:

ζi = z − 1

1

N(z)
−

n
∑

j=1
j 6=i

1

z − ζj

(i = 1, . . . , n). (5)

Now, let z1, . . . , zn be distinct approximations to the zeros

ζ1, . . . , ζn of the polynomial P .

Putting ζi ≃ ẑi in (5), where ẑi is a new approximation for

the zero ζi, setting z = zi, and substituting the zeros ζj by

their approximations zj (j 6= i) on the right-hand side of the

above identity, we obtain the well-known Ehrlich method (also

known as Ehrlich–Aberth method or Maehly–Ehrlich–Aberth

method) for the simultaneous approximation of simple polyno-

mial zeros.

Therefore, Ehrlich’s method for the simultaneous determi-

nation of polynomial zeros is given by

ẑi = zi −
1

1

N(zi)
−

n
∑

j=1
j 6=i

1

zi − zj

(i = 1, . . . , n). (6)

This important result was independently derived by several

different authors, including Maehly [11], Börsch-Supan [3],

Dochev and Byrnev [5], Ehrlich [6], Weißenhorn [15], Aberth

[1], and Farmer and Loizou [7].

The Ehrlich method is cubically convergent for simple roots

[2, 6].

2.2 Ehrlich-type simultaneous methods with King’s cor-

rection

It is evident from the fixed-point relation (5) that better ap-

proximations zj will produce more accurate approximations ẑi
for the zeros ζi.

In order to achieve this, and aiming to improve the conver-

gence rate and efficiency of the iterative scheme due to Ehrlich,

we propose a family of simultaneous iterative methods con-

structed on the basis of the third order Ehrlich iteration, com-

bined with a correction based on the optimal fourth order two-

step King’s method for nonlinear equations [10].

The well-known King’s family of fourth order multipoint it-

erative methods for determining a simple root of a nonlinear

equation f(x) = 0 requires only two evaluations of the func-

tion and one of its first derivative per full iteration, and is de-

fined by

yn = xn − f(xn)

f ′(xn)
,

xn+1 = yn − f(yn)

f ′(xn)

[

f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)

]

, (7)

where β ∈ C is a parameter.

The family of simultaneous iterative methods here proposed

is obtained by combining the scheme of the third order Ehrlich

iteration (6) with an iterative correction term obtained from

King’s fourth order iteration (7), given by

CK(zj) =
P (y(zj))

P ′(zj)

P (zj) + βP (y(zj))

P (zj) + (β − 2)P (y(zj))
, (8)

where

y(zj) = zj −
P (zj)

P ′(zj)
,

and β is a parameter.

Using the King approximation zj − CK(zj) in (6) instead

of zj , we obtain a new one-parameter family of Ehrlich-type

simultaneous iterative methods with King’s correction, defined

by

ẑi = zi −
1

1

N(zi)
−

n
∑

j=1
j 6=i

1

zi − zj + CK(zj)

(i = 1, . . . , n),

(9)

where CK(zj) is the iterative correction appearing in (8).

3 Order of convergence of the new fam-

ily of combined methods

In this section, we analyze the order of convergence of the

proposed family of Ehrlich-type simultaneous iterative meth-

ods with King’s correction, which is established in the follow-

ing theorem.

Theorem 1. Let z
(0)
1 , . . . , z

(0)
n be sufficiently close initial ap-

proximations to the simple zeros ζ1, . . . , ζn of the polynomial

P . Then, the order of convergence of the one-parameter family

of iterative methods defined in (9) is six.

Proof. Consider the abbreviations

λi,j = zi − zj + CK(zj), (10)

θi =

n
∑

j=1
j 6=i

zj − ζj − CK(zj)

(zi − ζj)λi,j

, (11)

and let ǫi and ǫ̂i be the errors of the numerical approximations

defined as follows:

ǫi = zi − ζi, (12)

ǫ̂i = ẑi − ζi. (13)
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Rearranging (9), we have

ẑi = zi −
N(zi)

1−N(zi)

n
∑

j=1
j 6=i

1

zi − zj + CK(zj)

(i = 1, . . . , n).

(14)

Substituting (2) into (14), we obtain

ẑi = zi −





n
∑

j=1

1

zi − ζj





−1

1−





n
∑

j=1

1

zi − ζj





−1
n
∑

j=1
j 6=i

1

zi − zj + CK(zj)

,

(15)

and expanding this equation and simplifying, we get

ẑi = zi −
1

n
∑

j=1

1

(zi − ζj)
−

n
∑

j=1
j 6=i

1

zi − zj + CK(zj)

. (16)

However, when i 6= j, we can write

n
∑

j=1

1

(zi − ζj)
=

1

(zi − ζi)
+

n
∑

j=1
j 6=i

1

(zi − ζj)
. (17)

Substituting (17) into (16) yields

ẑi = zi −
1

1

zi − ζi
+

n
∑

j=1
j 6=i

1

(zi − ζj)
−

n
∑

j=1
j 6=i

1

zi − zj + CK(zj)

,

(18)

and substituting (12) into this equation gives

ẑi = zi−
1

1

ǫi
+

n
∑

j=1
j 6=i

1

(zi − ζj)
−

n
∑

j=1
j 6=i

1

zi − zj + CK(zj)

. (19)

But, by (12) and (13), we have

ǫ̂i+ζi = ǫi+ζi−
1

1

ǫi
+

n
∑

j=1
j 6=i

1

zi − ζj
−

n
∑

j=1
j 6=i

1

zi − zj + CK(zj)

.

(20)

Simplifying and replacing the denominator of the second

summation by (10), we get

ǫ̂i = ǫi −
1

1

ǫi
+

n
∑

j=1
j 6=i

1

zi − ζj
−

n
∑

j=1
j 6=i

1

λi,j

. (21)

Multiplying and dividing the last equation by ǫi, we have

ǫ̂i = ǫi −
ǫi

1 + ǫi









n
∑

j=1
j 6=i

1

zi − ζj
−

n
∑

j=1
j 6=i

1

λi,j









, (22)

and joining the two summations together, we obtain

ǫ̂i = ǫi −
ǫi

1 + ǫi









n
∑

j=1
j 6=i

λi,j − (zi − ζj)

(zi − ζj)λi,j









. (23)

Considering (10) again, we have

ǫ̂i = ǫi −
ǫi

1 + ǫi









n
∑

j=1
j 6=i

zi − zj + CK(zj)− zi + ζj
(zi − ζj)λi,j









, (24)

and simplifying, we obtain

ǫ̂i = ǫi −
ǫi

1 + ǫi









n
∑

j=1
j 6=i

CK(zj)− zj + ζj
(zi − ζj)λi,j









, (25)

where the summation that appears within parentheses in this

equation is, according to (11), equal to −θi.
By making the proper substitution in (25), we get

ǫ̂i = ǫi −
ǫi

1 + ǫi(−θi)
. (26)

Reducing to the common denominator and simplifying, we

finally obtain

ǫ̂i =
−ǫ2i θi
1− ǫiθi

. (27)

By the assumption of the theorem, the errors are small

enough in modulus, and thus it can be assumed that ǫi =
Om(ǫj) and ǫ̂i = Om(ǫ̂j) for i, j ∈ {1, . . . , n}, where this

notation means that the moduli of the pairs of complex num-

bers involved have the same order, that is, |ǫi| = O(|ǫj |) and

|ǫ̂i| = O(|ǫ̂j |), where the symbol O indicates the order of mag-

nitude.

Analyzing (10) and (11), we observe that, for sufficiently

close approximations to the corresponding zeros, the expres-

sion in the denominator of (11) is bounded and tends to

(ζi − ζj)
2, for i 6= j.

Considering this, and taking into account that each method

of the family of King’s methods is of fourth order of conver-

gence [10], i.e., for these methods, ẑ − ζ = Om((z − ζ)4), we

find that

θi = Om(ǫ4). (28)

Using this result with (27), we conclude that

ǫ̂ = Om(ǫ6). (29)
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Thus, the order of convergence of the family of Ehrlich-type

simultaneous iterative methods with King’s correction (9) is

six.

4 Numerical examples

In this section, some numerical examples are presented to

illustrate the convergence behaviour and effectiveness of the

proposed family of simultaneous iterative methods.

It is important to note here that not all values of the parame-

ter β lead to convergence of the fourth order King’s method

(7) [4]. Some convenient values of this parameter can be

found in the literature, including β = −1/2 [10], β = −9/2,

β = 3.9 + 0.1i [4] and β = 3− 2
√
2i [12].

In the three examples here considered, we have adopted the

value β = −7/10 for this parameter, which was determined

through a computational parameter optimization.

In the examples presented, the initial approximations were

chosen by using Aberth’s approach [1]. The starting approx-

imations to the zeros of each polynomial calculated by the

Aberth’s initialization procedure are equidistantly distributed

along the circumference |z + a1/n| = r0, where a1 is the co-

efficient of the second leading term of the monic polynomial

considered, n is the polynomial degree, and r0 is the radius of

a disk centered at the origin of the complex plane containing all

the zeros of the polynomial, obtained as usual (see, e.g., [13])

by applying the Guggenheimer’s upper bound for the zeros [9].

The numerical tolerance was set to 1×10−12 and the maxi-

mum number of iterations was fixed to 50.

Example 1. The first example considered is that of a complex

polynominal of degree 10, extracted from [8], with zeros ±1,

±i, ±
√
2/2(1± i), 2i, and 3i:

P1(z) = z10 − 5iz9 − 6z8 − z2 + 5iz + 6.

Figure 1 presents the trajectories of approximations for

the polynomial P1(z) generated by the simultaneous iterative

method (9) with a1 = −5i, r0 = 10 and β = −7/10.

The requested accuracy of 10−12 was achieved in eigth it-

erations, while Ehrlich’s method (6), on which the proposed

method is based, required 14 iterations.

Example 2. In the second example, the proposed method (9),

with β = −7/10, was applied to a real polynomial of degree

15, extracted from [14], which has only a real zero:

P2(z) = z15 + z14 + 1.

The trajectories of approximations for the polynomial P2(z),
generated by the method (9) with a1 = 1, r0 = 2 and β =
−7/10, are presented in Figure 2.

In this case, the proposed combined iterative method re-

quired five iterations to obtain approximations to the zeros of

the given polynomial with the requested accuracy.

For comparison, Ehrlich’s method needed nine iterations to

achieve the same accuracy.

Figure 1. Trajectories of approximations for Example 1.

Figure 2. Trajectories of approximations for Example 2.
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Example 3. The last example here considered is a real poly-

nomial of degree 20, extracted from [16], known as the scaled

Wilkinson polynomial:

P3(z) =

20
∏

k=1

(z − k

20
).

Figure 3 shows the trajectories of approximations for the

scaled Wilkinson polynomial generated by the method (9) with

a1 = −10.5, r0 = 21 and β = −7/10.

Figure 3. Trajectories of approximations for Example 3.

A more detailed view of the trajectories of approximations

for the same polynomial corresponding to the last 11 iterations

generated by the proposed simultaneous method is shown in

Figure 4.

The third order Ehrlich method needed 45 iterations to reach

the required accuracy, whereas the proposed method (9), with

β = −7/10, performed only 15 iterations to reach the same

desired accuracy.

Table 1 contains a summary of the results obtained, showing

the number of iterations required by the simultaneous iterative

methods (6) and (9) to produce approximations to the zeros of

the polynomials of Examples 1 to 3 with the requested accu-

racy of 10−12.

Table 1. Number of iterations necessary to obtain approximations accurate to

within 10
−12.

Method Eq. No. of iterations

P1 P2 P3

Ehrlich (6) 14 9 45

Ehrlich-King (β = −7/10) (9) 8 5 15

Figure 4. Detail of the trajectories of approximations for Example 3.

5 Conclusion

In this paper, a new sixth order family of combined iterative

methods for the simultaneous approximation of simple com-

plex zeros of a polynomial was introduced and discussed.

The proposed one-parameter family of simultaneous meth-

ods was constructed on the basis of the third order Ehrlich iter-

ation, combined with an iterative correction based on King’s

family of optimal fourth order iterative methods for solving

nonlinear equations.

It was proved that the use of King’s correction allows to

increase the order of convergence of the basic simultaneous

method from three to six.

The results of some numerical examples corroborate the the-

oretical analysis and illustrate the effectiveness and rapid con-

vergence of the proposed Ehrlich-type methods with King’s

correction for the simultaneous approximation of polynomial

complex zeros.
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[3] W. Börsch-Supan. A posteriori error bounds for the zeros of

polynomials, Numerische Mathematik, Vol. 5, No. 1, 380–398,

1963. doi:10.1007/BF01385904.

[4] A. Cordero, J. Garcı́a-Maimó, J. R. Torregrosa, M. P. Vas-
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Übertragungstechnik, Vol. 24, 372–378, 1970.

[16] H. Zhang. Numerical condition of polynomials in different

forms, Electronic Transactions on Numerical Analysis, Vol. 12,

66–87, 2001.


