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Abstract. We use mock modular forms to compute generating functions for the critical values
of modular L-functions, and we answer a generalized form of a question of Kohnen and Zagier
by deriving the “extra relation” that is satisfied by even periods of weakly holomorphic cusp
forms. To obtain these results we derive an Eichler-Shimura theory for weakly holomorphic
modular forms and mock modular forms. This includes two “Eichler-Shimura isomorphisms”, a
“multiplicity two” Hecke theory, a correspondence between mock modular periods and classical
periods, and a “Haberland-type” formula which expresses Petersson’s inner product and a related
antisymmetric inner product on M !

k in terms of periods.

1. Introduction and statement of results

The recent works of Zwegers [32, 33] on Ramanujan’s mock theta functions, combined with
the important seminal paper of Bruinier and Funke [5], have catalyzed considerable research on
harmonic Maass forms (see § 2 for the definition and basic facts). This research is highlighted
by applications to a wide variety of subjects: additive number theory, algebraic number theory,
Borcherds products, knot theory, modular L-functions, mathematical physics, representation
theory, to name a few (for example, see [21, 22, 31] and the references therein). Here we
consider fundamental questions concerning periods and harmonic Maass forms.

Every harmonic Maass form F(z) has a unique natural decomposition

F(z) = F−(z) + F+(z),

where F− (resp. F+) is nonholomorphic (resp. holomorphic) on the upper-half of the complex
plane H. The holomorphic part F+ has a Fourier expansion

F+(z) =
∑

n�−∞

a+
F(n)qn

(q := e2πiz, z ∈ H throughout) which, following Zagier1, we call a mock modular form. The

differential operator ξw := 2iyw · ∂
∂z

, which plays a central role in the theory, only sees the
nonholomorphic parts of such forms. If F has weight 2− k, then ξ2−k(F) = ξ2−k(F−).
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1



2 KATHRIN BRINGMANN, PAVEL GUERZHOY, ZACHARY KENT, AND KEN ONO

The most important feature of ξ2−k is that it defines surjective maps

ξ2−k :

{
H2−k(N) �M !

k(N)

H∗2−k(N) � Sk(N),

where H∗2−k(N) ⊆ H2−k(N) are spaces of harmonic Maass forms, and where M !
k(N) (resp.

Sk(N)) denotes the weight k weakly holomorphic modular (resp. cusp) forms on Γ0(N).
Shimura’s work [26] on half-integral weight modular forms, for k ∈ 2Z+, provides further

maps which interrelate different spaces of modular forms. He defined maps

Sh : S k+1
2

(4N) −→ Sk(N),

which when combined with the preceding discussion, gives the following diagram:

(1.1) H∗3−k
2

(4N)
ξ 3−k

2 // S k+1
2

(4N) Sh // Sk(N)

H∗2−k(N)

ξ2−k

OO

It is natural to study the arithmetic of this diagram. Since ξ 3−k
2

and ξ2−k only use the non-

holomorphic parts of harmonic Maass forms, the main problem then is that of determining the
arithmetic content of the holomorphic parts of these forms. What do they encode?

For newforms f ∈ S2(N), Bruinier and the fourth author [6] investigated this problem for the
horizontal row of (1.1). Using important works of Gross and Zagier [9], of Kohnen and Zagier
[16, 17], and of Waldspurger [28], they essentially proved that there is a form F = F− + F+ ∈
H∗1

2

(4N), satisfying Sh(ξ 1
2
(F)) = f , which has the property that the coefficients of the mock

modular form F+ (resp. F−) determine the nonvanishing of the central derivatives (resp. values)
of the quadratic twist L-functions L(f, χD, s).

In this paper we study the vertical map in (1.1), and we show that forms2 F ∈ H∗2−k := H∗2−k(1)
beautifully encode the critical values of L-functions arising from Sk. This statement is very
simple to prove (we give two straightforward proofs), and it provides our inspiration for extending
Eichler-Shimura theory and work of Haberland to the setting of mock modular forms.

We begin by stating this elementary connection between mock modular forms and critical
values of modular L-functions. For each γ = ( a bc d ) ∈ SL2(Z), we define the γ-mock modular
period function for F+ by

(1.2) P
(
F+, γ; z

)
:=

(4π)k−1

Γ(k − 1)
·
(
F+ −F+|2−kγ

)
(z),

where for any function g, we let (g|wγ) (z) := (cz + d)−wg
(
az+b
cz+d

)
. The map

γ 7→ P
(
F+, γ; z

)
gives an element in the first cohomology group of SL2(Z) with polynomial coefficients, and we
shall see that they are intimately related to classical “period polynomials”.

2Throughout we omit the dependence on the level in the case of SL2(Z).
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For positive c, let ζc := e2πi/c, and for 0 ≤ d < c, let γc,d ∈ SL2(Z) be any matrix satisfying

γc,d := ( ∗ ∗c′ d′ ). Here the integers 0 ≤ d′ < c′ are chosen so that d
c

= d′

c′
in lowest terms.

Theorem 1.1. Suppose that 4 ≤ k ∈ 2Z, and suppose that F ∈ H∗2−k and f = ξ2−k(F). Then
we have that

P (F+, γ1,0; z) =
k−2∑
n=0

L(f, n+ 1)

(k − 2− n)!
· (2πiz)k−2−n.

Moreover, if χ (mod c) is a Dirichlet character, then

1

c

∑
m∈(Z/cZ)×

χ(m)
c−1∑
d=0

ζmdc · P
(
F+, γc,d; z −

d

c

)
=

k−2∑
n=0

L(f, χ, n+ 1)

(k − 2− n)!
· (2πiz)k−2−n.

Here L(f, s) (resp. L(f, χ, s)) is the usual L-function (resp. twisted by χ) for f .

Remark. In Theorem 1.1 and throughout the remainder of the paper we assume that k ≥ 4 is
even. Theorem 1.1, which can be generalized to arbitrary levels, is related to Manin’s observation
[20] that twisted L-values may be given as expressions involving periods. These expressions are
typically quite complicated. The theory underlying Theorem 1.1 relates the mock modular
periods to such periods, and then gives nice generating functions.

Our first proof of Theorem 1.1 follows from the fact that the non-holomorphic part F− can
be described in terms of a “period integral” of f (see Section 2). In particular, it then suffices
to consider the integral ∫ i∞

−z
f c(τ)(z + τ)k−2dτ.

Theorem 1.1 then follows from the standard fact, for 0 ≤ n ≤ k − 2, that

L(f, n+ 1) =
(2π)n+1

n!
·
∫ ∞

0

f(it)tndt.

We leave the details to the reader.
Theorem 1.1 also follows easily from the principle that the obstruction to modularity deter-

mines period functions, which, in turn, are generating functions for critical L-values (see Sec-
tion 5). This principle appears prominently in the framework of the “Eichler-Shimura theory”
of periods. The pioneering work of Eichler [8] and Shimura [25], expounded upon by Manin [20],
is fundamental in the theory of modular forms, and it has deep implications for elliptic curves
and critical values of L-functions. Therefore, in view of Theorem 1.1, we are motivated here
to extend this theory to the context of mock modular forms and weakly holomorphic modular
forms.

One of the main features of the theory is the Eichler-Shimura isomorphism, which relates
spaces of cusp forms to the first parabolic cohomology groups for SL2(Z) with polynomial
coefficients.

Remark. Knopp, and his collaborators (for example, see [14, 15]) have investigated Eichler
cohomology groups more generally, with a special emphasis on the automorphic properties of
various families of Poincaré series.
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We recall the Eichler-Shimura isomorphism following the discussion in [18, 30]. Define S, T ,
and U by

S :=

(
0 −1
1 0

)
, T :=

(
1 1
0 1

)
, and U :=

(
1 −1
1 0

)
,

and let

V := Vk−2(C) = Symk−2(C⊕ C)

be the linear space of polynomials of degree ≤ k − 2 in z. Let

(1.3) W :=
{
P ∈ V : P + P |2−kS = P + P |2−kU + P |2−kU2 = 0

}
.

The space V splits as a direct sum V = V+ ⊕ V− of even and odd polynomials. Putting
W± := W ∩V± one obtains the splitting W = W+ ⊕W−.

There are two period maps r± : Sk −→W±

r+(f ; z) :=
∑

0≤n≤ k−2
n even

(−1)
n
2

(
k − 2

n

)
· rn(f) · zk−2−n,

r−(f ; z) :=
∑

0≤n≤ k−2
n odd

(−1)
n−1
2

(
k − 2

n

)
· rn(f) · zk−2−n,

where, for each integer 0 ≤ n ≤ k − 2, the nth period of f is defined by

(1.4) rn(f) :=

∫ ∞
0

f(it)tndt.

Notice that if we let r(f ; z) := r−(f ; z) + ir+(f ; z), then

(1.5) r(f ; z) =
k−2∑
n=0

i−n+1

(
k − 2

n

)
· rn(f) · zk−2−n =

∫ i∞

0

f(τ)(z − τ)k−2dτ..

The Eichler-Shimura isomorphism theorem asserts that r− (resp. r+) is an isomorphism onto
W− (resp. W+

0 ⊆ W+, the codimension 1 subspace not containing zk−2 − 1). Therefore
W0 ⊆W, the corresponding codimension 1 subspace, represents two copies of Sk.

Concerning W0 and zk−2 − 1, Kohnen and Zagier ask (see p. 201 of [18]):

Question. What extra relation is satisfied by the even periods of cusp forms besides the relations
defining W?

In §4 of [18], they give formulas, involving Bernoulli numbers, which answer this question.
Here we clarify the nature of this problem by making explicit the roles of W and W0 in the

general theory of periods. It turns out that both naturally arise when considering periods of
weakly holomorphic modular forms. We derive Eichler-Shimura isomorphism theorems for both
W0 and W, ones which involve weakly holomorphic cusp forms. Let M !

k be the space of weight
k weakly holomorphic modular forms on SL2(Z), those meromorphic modular forms whose poles
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(if any) are supported at the cusp infinity. A form F ∈ M !
k is a weakly holomorphic cusp form

if its constant term vanishes. In other words, F has a Fourier expansion of the form

F (z) =
∑
n≥n0
n6=0

aF (n)qn.

Let S!
k denote the space of weakly holomorphic cusp forms.

Our work depends on an extension to M !
k of the map r = r− + ir+. Since the integrals in

(1.4) diverge for forms with poles, the extension must be obtained by other means. To define
it, suppose that F (z) =

∑
n�−∞ aF (n)qn ∈M !

k. Its Eichler integral [19] is

(1.6) EF (z) :=
∑

n�−∞
n6=0

aF (n)n1−kqn.

We define the period function for F by

(1.7) r(F ; z) := ck (EF − EF |2−kS) (z),

where ck := − Γ(k−1)
(2πi)k−1 . If F is a cusp form, then one easily sees that

(1.8) EF (z) =
1

ck
·
∫ i∞

z

F (τ)(z − τ)k−2dτ,

and so, by a change of variable, (1.5) implies that (1.7) indeed extends the classical period map
r = r− + ir+.

Remark. We have that r(F ; z) = α(zk−2 − 1) if and only if EF (z) + α
ck

is in M !
2−k.

The period functions r(F ; z) are essentially polynomials in z with degree ≤ k − 2. The
contribution from the constant term aF (0), which is a multiple of zk−1 + 1

z
, poses the only

obstruction. Therefore, in analogy with (1.5), we define rn(F ), the periods of F , by

(1.9) r(F ; z) :=
aF (0)

k − 1
·
(
zk−1 +

1

z

)
+

k−2∑
n=0

i−n+1

(
k − 2

n

)
· rn(F ) · zk−2−n.

The extended period function r, restricted to S!
k, defines the maps:

r : S!
k →W and r̃ : S!

k →W0

where the second map is the composition of r and the projection from W to W0. Furthermore,
there are maps r± : S!

k →W± which extend the classical even and odd period maps on Sk. We
obtain “Eichler-Shimura” isomorphisms for these two maps. To compute their kernels, we use
the differential operator D := 1

2πi
· d
dz

which, by a well known (extended) identity of Bol (see
Theorem 1.2 of [7]), satisfies

Dk−1 : M !
2−k −→ S!

k and Dk−1 : H∗2−k −→ S!
k.

We prove the following isomorphisms.
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Theorem 1.2. The following sequences are exact

0 −→ Dk−1(M !
2−k) −→ S!

k
r̃−→W0 −→ 0

and
0 −→ Dk−1(S!

2−k) −→ S!
k

r−→W −→ 0.

The first exact sequence from Theorem 1.2 tells us that

(1.10) S!
k/D

k−1(M !
2−k)
∼= W0,

and the second exact sequence explains the role of the codimension one subspace W0 in the
classical setting. The presence of non-zero constant terms of (cf. Proposition 3.5 below) weight
2− k weakly holomorphic modular forms gives

r : Dk−1(M !
2−k)/D

k−1(S!
2−k) →̃W/W0

∼=
〈
zk−2 − 1

〉
.

Theorem 1.2 sheds further light on the classical Eichler-Shimura isomorphism, where the maps

(1.11) r± : Sk −→W0

each give one copy of Sk inside W0 so that W0
∼= Sk ⊕ Sk. Equations (1.10) and (1.11) tell us

that S!
k/D

k−1(M !
2−k)
∼= Sk⊕Sk. We directly explain this isomorphism. We have that Dk−1 only

sees the holomorphic parts F+ of harmonic Maass forms F ∈ H∗2−k (i.e. Dk−1(F) = Dk−1(F+)),
and we shall show that the two copies of Sk arise from the quotient space H∗2−k/M

!
2−k and the

inclusion of Sk ⊆ S!
k. In particular, we will show that

W0
∼= r̃(Dk−1(H∗2−k))⊕ r̃(ξ2−k(H

∗
2−k)).

We also revisit the question of Kohnen and Zagier on the “extra relation” satisfied by even
periods of cusp forms. The second exact sequence in Theorem 1.2,

S!
k/D

k−1(S!
2−k)
∼= W,

shows that there are no extra relations in the setting of weakly holomorphic cusp forms. There-
fore, it is natural to ask the following reformulation of the question of Kohnen and Zagier.

Question. If F ∈ S!
k, then (as a function of its principal part) what extra relation is satisfied

by the even periods of F?

Remark. The original question pertains to forms in S!
k with trivial principal part.

The following theorem answers this question in terms of Bernoulli numbers Bk and divisor
functions σk−1(n) :=

∑
d|n d

k−1.

Theorem 1.3. Define rational numbers λk,n (k ≥ 4 even, 0 ≤ n ≤ k − 2, n even) by

λk,n := Bk ·
(

1 +

(
k − 1

n

)
−
(
k − 1

n+ 1

))
+ 2

k/2∑
r=1

(
2r − 1

n

)(
k

2r

)
B2rBk−2r.

If F ∈ S!
k has principal part

Fprin(q) :=
∑
n>0

a(n)q−n,
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then

(1.12)
∑

0≤n≤k−2
even

(−1)
n
2 λk,n · rn(F ) = −6(2i)k

k!

(4π)k−1

∑
n>0

a(n)σk−1(n)

nk−1
.

Three remarks

1) We note that here a(n) in the principal part is the coefficient of q−n, instead of qn, which is
a departure from the convention adopted throughout this paper.
2) If F is a cusp form, then we have that Fprin(q) = 0. The relation in Theorem 1.3 then reduces
to the solution offered by Kohnen and Zagier on the extra relation satisfied by the even periods
of cusp forms.
3) The work of Kohnen and Zagier [18] is largely about cusp forms with rational periods (see
also the forthcoming paper by Popa [23]). Theorem 1.3 implies that if a weakly holomorphic
cusp form has rational even periods, then

1

πk−1

∑
n>0

a(n)σk−1(n)

nk−1
∈ Q.

To obtain Theorems 1.2 and 1.3, we must understand the interrelationships between the
three period functions r(ξ2−k(F−); z), r(Dk−1(F+); z), and P(F+, γ1,0; z). We show that these
functions are essentially equal up to complex conjugation and the change of variable z →
z. Strictly speaking, our functions are not defined for z̄. However, since we apply complex
conjugation these period functions are well defined. We obtain the following period relations on
H2−k.

Theorem 1.4. If F ∈ H2−k, then we have that

r (ξ2−k(F); z) ≡ − (4π)k−1

Γ(k − 1)
· r (Dk−1(F); z) (mod zk−2 − 1)

where equivalence modulo zk−2 − 1 means that the difference of the two functions is a constant

multiple of zk−2 − 1. Moreover, there is a function F̂ ∈ H2−k for which ξ2−k(F̂) = ξ2−k(F) and

r (ξ2−k(F); z) = − (4π)k−1

Γ(k − 1)
· r
(
Dk−1

(
F̂
)

; z
)
.

Three remarks

1) If F ∈ H∗2−k has constant term 0, then we have the following mock modular period identity:

(1.13) r(Dk−1(F); z) = r(Dk−1(F+); z) = ck
Γ(k − 1)

(4π)k−1
· P(F+, γ1,0; z).

This follows from (1.2) and (1.7). Moreover, we shall show in Proposition 3.5 that there always
are forms F ∈M !

2−k for which F + F ∈ H∗2−k has constant term zero.

2) Since Dk−1 annihilates constants, one cannot avoid the zk−2 − 1 ambiguity in Theorem 1.4.

3) Many of the technical difficulties in this paper arise from the need to carefully take into
account the constant terms of Maass-Poincaré series and their corresponding Eisenstein series.
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This issue is even more complicated in the setting of congruence subgroups. This is why we are
content to work in the setting of the full modular group SL2(Z).

There is a theory of Hecke operators on S!
k/D

k−1(M !
2−k). For any positive integer m ≥ 2, let

T (m) be the usual weight k index m Hecke operator. We say that F ∈ S!
k is a Hecke eigenform

with respect to S!
k/D

k−1(M !
2−k) if for every Hecke operator T (m) there is a complex number

b(m) for which

(F |k T (m)− b(m)F ) (z) ∈ Dk−1
(
M !

2−k
)
.

This definition includes the usual notion of Hecke eigenforms for (holomorphic) cusp forms.
Indeed, in this case we simply have

(F |k T (m)− b(m)F ) (z) = 0.

It is natural to determine the dimension of those subspaces which correspond to a system of
Hecke eigenvalues. We prove the following “multiplicity two” theorem.

Theorem 1.5. Let d = dimSk, and let fi(z) =
∑
bi(n)qn ∈ Sk (1 ≤ i ≤ d) be a basis consisting

of normalized Hecke eigenforms. The 2d-dimensional space S!
k/D

k−1(M !
2−k) splits into a direct

sum

S!
k/D

k−1(M !
2−k) =

d⊕
i=1

Ti

of two-dimensional spaces Ti such that fi ∈ Ti, and every element of Ti is a Hecke eigenform
with respect to S!

k/D
k−1(M !

2−k) with the same Hecke eigenvalues as fi.

Two remarks
1) This multiplicity two phenomenon first appeared in a paper by the second author [10].

2) To clarify the results proved in this paper, we offer the following commutative diagram which
clearly illustrates the relationships between the various spaces of modular forms and period
polynomials, and describes the multiplicity two phenomenon.

0 0

Sk ⊕ Sk

OO

r−+ir+ // W0

OO

0 // Dk−1(S!
2−k)

// S!
k

r //

OO

W //

OO

0

0 // Dk−1(S!
2−k)

//

=

OO

Dk−1(M !
2−k)

r //

OO

〈zk−2 − 1〉 //

OO

0

0

OO

0

OO
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We conclude with a study of Petersson’s inner product, and a related inner product of Bruinier
and Funke [5]. The Petersson inner product of cusp forms f1, f2 ∈ Sk is the hermitian (i.e.

(f1, f2) = (f2, f1)) scalar product defined by (z = x+ iy)

(1.14) (f1, f2) :=

∫
H/SL2(Z)

f1(z)f2(z)yk · dxdy
y2

.

It is natural to seek an extension of this inner product to M !
k. Obviously, one faces problems

related to the convergence of the defining integral. Zagier [29, 30] extended the product to
Eisenstein series using Rankin’s method. More generally, Borcherds [1] (see [7] for a discussion)
defined an extension to M !

k using regularized integrals, when at least one of the forms is holo-
morphic at the cusps. Here we give a closed formula for Borcherds’s extension using periods of
weakly holomorphic modular forms.

We relate Petersson’s inner product to the “inner product” {•, •} on M !
k which is defined as

follows (also see discussions in [5, 7]). If F,G ∈M !
k have expansions

F (z) =
∑

n�−∞

aF (n)qn and G(z) =
∑

n�−∞

aG(n)qn,

then define {F,G} by

(1.15) {F,G} :=
∑
n∈Z
n 6=0

aF (−n)aG(n)

nk−1
.

This pairing is antisymmetric (i.e. {F,G} = −{G,F}), bilinear, and is Hecke equivariant (i.e.
{F |k T (m), G} = {F,G |k T (m)} ). We show that it dissects Dk−1(M !

2−k) from S!
k.

Theorem 1.6. Let F ∈ S!
k. The following conditions are equivalent:

(i) F ∈ Dk−1(M !
2−k),

(ii) r(F ; z) ≡ 0 (mod zk−2 − 1),
(iii) {F,G} = 0, for every G ∈ S!

k.

We now explain how to compute the extended (•, •) in terms of {•, •}. Suppose that F,G ∈
M !

k, and that G ∈ H2−k has the property that ξ2−k(G) = G. As a consequence of Proposition
4.1 in § 4 it follows that

(1.16) (F,G) = {F,Dk−1(G)}+ aF (0) · a+
G (0),

whenever one of the forms F or G is holomorphic and where a+
G (0) is the constant term of the

mock modular form G+. Computing (F,G) then reduces to the task of computing {•, •} on M !
k.

Two Remarks.
1) Formula (1.16) gives an extension of the Petersson scalar product, one which works even
when other “regularizations” fail.
2) Although there is ambiguity in the choice of G ∈ H2−k such that ξ2−k(G) = G, we stress that
the right-hand side of (1.16) does not depend on this choice.

Generalizing an argument of Kohnen and Zagier [18], we obtain the following closed formula
for these products, which is an analog of a classical result of Haberland [11, 18].
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Theorem 1.7. For F,G ∈M !
k we have

{F,G} =
(2π)k−1

3 · (k − 2)!

∑
0≤m<n≤k−2
m6≡n (mod 2)

i(n+1+m)

(
k − 2

n

)(
n

m

)
rn(F )rk−2−m(G)

+
2 · (2π)k−1

3 · (k − 2)!

∑
0≤n≤k−2

n≡0 (mod 2)

i(k−n)

(
k − 1

n+ 1

)(
rn(G)

aF (0)

k − 1
− rn(F ) · aG(0)

k − 1

)
.

Remark. In a recent paper [13], the third author extended many of the results in this paper to
include Eisenstein series.

In § 2 we recall definitions and basic facts about harmonic Maass forms, and we construct
harmonic Maass-Poincaré series which map to the holomorphic Eisenstein series under ξ2−k and
Dk−1. In § 3 we derive some fundamental properties of the period functions and certain auxiliary
integrals, and we conclude with a proof of Theorem 1.4. In § 4, we study Borcherds’s extension
of the Petersson inner product, and we conclude with proofs of Theorems 1.2, 1.3, 1.5, 1.6, and
1.7. In § 5 we recall some crucial analytic number theory which relates Eichler integrals to
critical values of L-functions, and we prove Theorem 1.1.
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2. Harmonic Maass forms

Here we briefly recall basic facts about harmonic (weak) Maass forms (see [3, 5, 7, 21] for
more details), we decompose S!

k (see Proposition 2.3), and we construct Maass-Poincaré series
which naturally correspond to the classical Eisenstein series.

2.1. Basic facts. We let z = x + iy ∈ H, the complex upper-half plane, with x, y ∈ R, and
suppose throughout that k ≥ 4 is even. The weight 2− k hyperbolic Laplacian is defined by

∆2−k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ i(2− k)y

(
∂

∂x
+ i

∂

∂y

)
.

A harmonic Maass form of weight 2− k is any smooth function F : H→ C satisfying:

(i) F(z) = (F|2−kγ)(z) for all γ = ( a bc d ) ∈ SL2(Z);
(ii) ∆2−k(F) = 0;

(iii) The function F(z) has at most linear exponential growth at infinity.

We denote the space of such forms by H2−k. We also require the subspace H∗2−k of H2−k, which
consists of those F ∈ H2−k with the property that if F 6= 0, then there is a nonzero polynomial
PF ∈ C[q−1] for which F(z)− PF(q) = O(e−εy), as y → +∞, for some ε > 0.

The following describes the Fourier expansions of harmonic Maass forms (see [5]).
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Proposition 2.1. If F ∈ H2−k, then

F(z) = a−F(0)yk−1 +
∑
n�∞
n6=0

a−F(n)h2−k(2πny)e(nx) +
∑

n�−∞

a+
F(n)qn,

where e(α) := e2πiα and h2−k(w) := e−w
∫∞
−2w

e−ttk−2dt.

Therefore, we have that F = F− +F+, where the nonholomorphic part F− (resp. holomorphic
part F+) is defined by

F−(z) := a−F(0)yk−1 +
∑
n�∞
n6=0

a−F(n)h2−k(2πny)e(nx),

F+(z) :=
∑

n�−∞

a+
F(n)qn.

(2.1)

Remark. If n < 0 and Γ(α, β) :=
∫∞
β
e−ttα−1dt is the incomplete Gamma-function, then we have

h2−k(2πny)e(nx) = Γ(k − 1, 4π|n|y)qn.

The following proposition (see [5, 7]) gives the main features of the differential operators

ξ2−k := 2iy2−k ∂
∂z̄

and D := 1
2πi
· d
dz

.

Proposition 2.2. The following are true:

(1) The operator ξ2−k defines the surjective maps

ξ2−k : H∗2−k � Sk,

ξ2−k : H2−k �M !
k.

(2) The operator Dk−1 defines maps

Dk−1 : H∗2−k → S!
k,

Dk−1 : H2−k →M !
k.

Moreover, the map Dk−1 : H2−k �M !
k is surjective.

The following proposition, whose proof uses Theorem 1.4, allows us to decompose a form
F ∈ S!

k uniquely into a cusp form and an element in Dk−1(H∗2−k).

Proposition 2.3. Each F ∈ S!
k has a unique representation of the form

F (z) = φ(z) + ψ(z),

where φ ∈ Sk and ψ ∈ Dk−1(H∗2−k).

Proof. First we show that such a representation, if it exists, is unique. Suppose on the contrary

that ψ̂1, ψ̂2 ∈ H∗2−k have the property that

F (z) = φ1(z) +Dk−1
(
ψ̂1(z)

)
= φ2(z) +Dk−1

(
ψ̂2(z)

)
,
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where φ1, φ2 ∈ Sk. Then Dk−1
(
ψ̂1 − ψ̂2

)
is a cusp form, thus the holomorphic part of the

function ψ̂1 − ψ̂2 has (up to the constant term) no principal part. Since this function is also in
H∗2−k it must be 0.

Now we establish the existence of the desired representation. By the modularity of F , it
follows that r(F ; z) = r−(F ; z) + ir+(F ; z) ∈ W. The classical Eichler-Shimura isomorphism
guarantees the existence of cusp forms g1, g2 ∈ Sk such that

r−(F ; z) = r−(g1; z) and r+(F ; z) ≡ r+(g2; z) (mod zk−2 − 1).

By Proposition 2.2 (1), the operator ξ2−k maps H∗2−k onto Sk. Therefore there are harmonic
Maass forms G1,G2 ∈ H∗2−k for which ξ2−k(Gi) = (2i)k−1gci , which one checks are also in Sk. Here
we define for G ∈M !

k, the involution Gc as

(2.2) Gc(z) := G(−z̄).

We find that that EGc(z) = EG(−z̄), which in turn implies that

(2.3) r(Gc; z) = −r(G;−z̄).

The fundamental theorem of calculus (with respect to z̄) then implies that

Gi(z) = G+
i (z) +

∫ i∞

−z̄
gi(τ)(τ + z)k−2 dτ,

where the G+
i are holomorphic functions on H.

The proof of Theorem 1.4 (see expression (3.8)) then implies that

r
(
Dk−1(Gi);−z

)
≡ −ck · r(gi; z) (mod zk−2 − 1).

We let

φ(z) :=
g1(z) + g2(z)

2
and Ψ(z) :=

Dk−1(G1)(z)−Dk−1(G2)(z)

2ck
,

and obtain that

(2.4) r(F ; z) ≡ r(φ+ Ψ; z) (mod zk−2 − 1).

Now define

h(z) := F (z)− φ(z)−Ψ(z) ∈ S!
k,

and observe that by (2.4), we have that r(h; z) = α(zk−2 − 1) for some α ∈ C. Of course, this
then means that Eh(z) + α

ck
∈M !

2−k. Consequently, we then have that

h = Dk−1(Eh) = Dk−1

(
Eh +

α

ck

)
∈ Dk−1(M !

2−k).

Letting ψ = Ψ + h we obtain the desired decomposition. �
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2.2. Maass-Poincaré series and Eisenstein series. To obtain our results on the extended
Petersson inner product, we must pay careful attention to constant terms of harmonic Maass
forms and weakly holomorphic modular forms. To this end, we require weight 2 − k harmonic
Maass forms whose image under ξ2−k are the classical Eisenstein series

(2.5) Ek(z) :=
∑

γ∈Γ∞\SL2(Z)

(1|kγ) (z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z}, Bk is the kth Bernoulli number, and σk−1(n) :=

∑
d|n d

k−1.

Remark. The Maass-Poincaré series PEk(z) constructed below should not be confused with the
Maass-Poincaré series which have been employed to study H∗2−k (for example, see [3, 7, 21]).
Those harmonic Maass forms project to cusp forms under ξ2−k.

We define PEk by

(2.6) PEk(z) :=
∑

γ∈Γ∞\SL2(Z)

(
yk−1|2−kγ

)
(z).

The following theorem provides the main properties of these Poincaré series.

Theorem 2.4. If k ≥ 4 is even, then the following are true:

(1) The function PEk is a harmonic Maass form of weight 2− k which satisfies

Dk−1 (PEk) (z) = −(k − 1)!

(4π)k−1
Ek(z),

ξ2−k (PEk) (z) = (k − 1)Ek(z).

(2) The Fourier expansion of PEk is given by

PEk(z) =
2 · k!

Bk

· ζ(k − 1)

(4π)k−1
+ yk−1 +

(k − 1)!

(4π)k−1

2k

Bk

∑
n>0

σk−1(n)

nk−1
qn,

+
(k − 1)

(4π)k−1

2k

Bk

∑
n>0

σk−1(n)

nk−1
Γ(k − 1, 4πny)q−n.

Remark. Theorem 1.4 for PEk and Ek follows immediately from Theorem 2.4 (1).

Proof. We first consider (1). By the standard theory of Poincaré series, one easily checks that
PEk is a harmonic Maass form. The claimed images under ξ2−k and Dk−1 are obtained by
applying these operators summand by summand. Straightforward calculations, combined with
(2.5), gives (1).

We now consider (2). By Proposition 2.1 and part (1), we have that PEk has a Fourier
expansion of the form

PEk(z) = a+(0) + a−(0)yk−1 +
∑
n>0

a+(n)qn +
∑
n>0

a−(n)Γ(k − 1, 4πny)q−n.

The exact values for all Fourier coefficients but a+(0) can be determined by computing the
action of Dk−1 and ξ2−k on PEk and comparing coefficients using (1).



14 KATHRIN BRINGMANN, PAVEL GUERZHOY, ZACHARY KENT, AND KEN ONO

The constant term a+(0) is then computed in a standard manner, but for the reader’s
convenience we add the proof. Using the notation γ = ( a bc d ) ∈ SL2(Z), and the fact that
Im(γ(z)) = y

|cz+d|2 , we obtain

(2.7) PEk(z) = yk−1
∑

γ∈Γ∞\SL2(Z)

(cz+d)−1(cz+d)1−k = yk−1 +yk−1
∑
c≥1

c−k
c−1∑
d=0

gcd(c,d)=1

V

(
z +

d

c

)
,

where

V (z) :=
∑
n∈Z

v(z + n) with v(z) := z−1z1−k.

The sum V (z) is now explicitly evaluated on page 84 of [27], and has the term π
(2i)k−2y

1−k. Using

(2.7), it follows that the constant term a+(0) of PEk(z) is given by

a+(0) =
π

(2i)k−2

∑
c≥1

φ(c)

ck
=

π

(2i)k−2

ζ(k − 1)

ζ(k)
,

where φ is Euler’s totient function and we used that it is multiplicative. Finally, we may simplify

further using the classical evaluation ζ(k) = − (2πi)kBk
2·k!

to obtain the desired form of the constant
term. �

3. Properties of period functions

Here we consider auxiliary functions related to period functions, and we then give some
consequences for the period functions of harmonic Maass forms and weakly holomorphic modular
forms. We then conclude with the proof of Theorem 1.4.

3.1. Some auxiliary functions related to periods. Here we define auxiliary functions which
relate period functions of weakly holomorphic modular forms to Eichler integrals.

Recall again that if g ∈ Sk, then

ckEg(z) =

∫ i∞

z

g(τ)(τ − z)k−2 dτ.

Although such integrals do not converge for G ∈ S!
k with a pole at infinity, for ρ := 1+

√
−3

2
we

have the convergent integral

(3.1) EρG(z) :=

∫ ρ

z

G(τ)(τ − z)k−2 dτ.

An induction argument shows that, for any integer n ≥ 0,∫ ρ

z

G(τ)(τ − z)n dτ = n!

∫ ρ

z

∫ ρ

zn

· · ·
∫ ρ

z1

G(z0) dz0 · · · dzn−1 dzn.

It follows that

Dk−1 (EρG(z)) = ckG(z),
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and by (1.6) we have that

(3.2) EρG(z) = ckEG(z) + qG(z),

where qG(z) is a polynomial of degree ≤ k − 2.

Remark. The discussion above holds if ρ is replaced by any point in H. However, the subsequent
discussion will make important use of the fact that ρ is an elliptic fixed point. We could have
chosen ρ2 or i in its place.

We also require the auxiliary function

(3.3) HG(z) :=

∫ ρ

ρ2
G(τ)(z − τ)k−2 dτ.

We note that z in this setting is not required to be an element of H. In the next proposition we
record some properties of the functions r(G; z), qG, and HG involving the action of the matrices
S and T .

Proposition 3.1. Suppose that G ∈ S!
k. Then the following are true:

(1) We have that

HG(z) = (EρG|2−k(1− S)) (z) = (EρG|2−k(1− T )) (z).

(2) We have that
(HG|2−k(1 + S)) (z) = 0.

(3) We have that

HG(z) = (qG|2−k(1− T )) (z) = r(G; z) + (qG|2−k(1− S)) (z).

(4) We have that
r(G; z) = (qG|2−k(S − T )) (z).

Proof. Claim (1) follows from the fact that −ρ−1 = ρ − 1 = ρ2, and claim (2) follows by (1).
Claim (3) is obtained by applying (1 − S) and (1 − T ) to (3.2), and (4) follows immediately
from (3). �

We also require a nonholomorphic analog of EρG, namely the function

(3.4) ΦG(z) :=

∫ ρ

−z̄
G(τ)(τ + z)k−2 dτ.

Proposition 3.2. Suppose that G ∈ S!
k. Then the following are true:

(1) We have that(
ΦG|2−kT−1

)
(z) = (ΦG|2−kS) (z) =

∫ ρ2

−z
G(τ)(τ + z)k−2dτ.

(2) We have that

HG(−z) =
(
ΦG|2−k(1− T−1)

)
(z) = (ΦG|2−k(1− S)) (z).

Proof. Claim (1), which follows by substitution, immediately implies (2). �
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3.2. The role of harmonic Maass forms. Here we obtain relations between ΦG and harmonic
Maass forms. As in the proof of Proposition 2.3, we make use of the involution (2.2) on M !

k which
preserves the space S!

k. Suppose that G ∈ S!
k is fixed. By Proposition 2.2 (1), let F ∈ H2−k

be a harmonic Maass form for which ξ2−k(F)(z) = (2i)k−1Gc(z). The fundamental theorem of
calculus (with respect to z̄), then implies that

(3.5) F(z) =

∫ ρ2

−z̄
G(τ)(τ + z)k−2 dτ + CG(z),

where CG is holomorphic on H. The next proposition relates ΦG and CG.

Proposition 3.3. Assume the notation and hypotheses above. Then the following are true:

(1) We have that

ΦG(z) = F(z)− (CG|2−kT ) (z) = F(z)− (CG|2−kS) (z).

(2) We have that
(CG|2−kT ) (z) = (CG|2−kS) (z).

Proof. By (3.5) and Proposition 3.2 (1), we have that(
ΦG|2−kT−1

)
(z) = (ΦG|2−kS) (z) = F(z)− CG(z).

We obtain (1) by applying T and S to F , and (2) follows immediately from (1). �

To prove Theorem 1.4, we shall make use of the following elementary proposition.

Proposition 3.4. For polynomials p(z) of degree at most −` ∈ 2N, let p̃(z) := p(−z). Then(
p̃|lS

)
(z) = (p̃|lS) (z) and

(
p̃|lT

)
(z) =

(
p̃|lT−1

)
(z).

3.3. The proof of Theorem 1.4. We require the following proposition.

Proposition 3.5. There are forms in M !
2−k with nonzero constant terms.

Proof. Suppose that f1 and f2 are holomorphic modular forms with leading coefficient 1 for
which f1/f2 has weight 2− k. One easily finds a polynomial (in variable x and dependent upon
f1 and f2), say M(f1, f2;x), for which

(3.6) M̂(f1, f2; z) :=
f1(z)

f2(z)
·M(f1, f2; j(z))

is in M !
2−k. Here j(z) = q−1 + 744 +

∑∞
n=1 c(n)qn is the usual Hauptmodul for SL2(Z). This

polynomial is chosen to cancel poles in H. For convenience, suppose that

M̂(f1, f2; z) =
∞∑

n=−m

a(n)qn.

For every prime p, let jp(z) be the modular function

jp(z) := p ((j(z)− 744)|T (p)) = q−p +
∞∑
n=1

cp(n)qn,
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where T (p) is the usual Hecke operator. Define a weight 2− k form in M !
2−k by

M̂p(f1, f2; z) := M̂(f1, f2; z) · jp(z) =
∞∑

n=−m−p

ap(n)qn.

Obviously, we have that the constant term is given by

ap(0) = a(p) + cp(m) +
m−1∑
n=1

a(−n)cp(n).

Using the definition of the Hecke operators, for primes p > m, we have that ap(0) vanishes if
and only if

(3.7) a(p) = −pc(pm)− p
m−1∑
n=1

a(−n)c(pn).

Using the “circle method”, or the method of Poincaré series (for example, see [4]), it follows
that there are nonzero constants κ1, κ2 such that, for 1 ≤ n ≤ m, we have

a(p) ∼ κ1p
k−1
2 · Ik−1(4π

√
mp),

pc(pn) ∼ κ2

√
p

n
· I1(4π

√
np).

Here Iα(x) is the usual I-Bessel function of order α. Using the asymptotics for I1(x), the right
hand side of (3.7) satisfies

−pc(pm)− p
m−1∑
n=1

a(−n)c(pn) ∼ κ2

√
p

m
· I1(4π

√
mp),

as p→ +∞ among primes. Since limx→+∞
Ik−1(x)

I1(x)
= 1, and since k ≥ 4 is even, this asymptotic

and the one for a(p) are not compatible with (3.7). Therefore, the constant terms of M̂p(f1, f2; z)
are nonvanishing for all large primes p. �

We now prove Theorem 1.4.

Proof of Theorem 1.4. We begin by proving the first claim in Theorem 1.4. We continue using
the notation and hypotheses on F and G from the previous subsection. For the case when G is
a constant multiple Ek, the result follows easily from the work in §2.2. Otherwise, we fix G ∈ S!

k

and assume that F ∈ H2−k satisfies

ξ2−k(F) = (2i)k−1Gc(z).

Now let F := Dk−1(F).
Making use of (2.3), we find that it suffices to prove that

(3.8) r̃(F ; z) ≡ −ck · r(G; z) (mod zk−2 − 1).
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Let pG be the holomorphic function given by

pG(z) := CG(z)− EF (z).

Since we have that

Dk−1(pG(z)) = Dk−1(CG(z))−Dk−1(EF (z)) = F (z)− F (z) = 0,

it follows that pG is a polynomial of degree ≤ k− 2. By definition (1.7), we obtain, by applying
S to the definition of pG, that

(pG|2−k(1− S)) (z) = (CG|2−k(1− S)) (z)− 1

ck
r(F ; z).

Moreover, applying T to the definition of pG gives

(3.9) (pG|2−k(1− T )) (z) = (CG|2−k(1− T )) (z).

By Proposition 3.3 (2), we then find that

(3.10)
1

ck
r(F ; z) = (pG|2−k(S − T )) (z).

We now relate the polynomials HG and pG. Combining Proposition 3.2 (2) and Proposition 3.3
(1) with the modularity of F and (3.9), we find that

H̃G(z) =
(
ΦG|2−k(1− T−1)

)
(z) = (CG|2−k(1− T )) (z) = (pG|2−k(1− T )) (z).

Proposition 3.4 then implies that

HG(z) =
(
p̃G|2−k(1− T−1)

)
(z) = −

(
p̃G|2−kT−1(1− T )

)
(z),

and Proposition 3.1 (3) in turn implies that((
qG + p̃G|2−kT−1

)
|2−k(1− T )

)
(z) = 0.

This means that the polynomial (qG + p̃G|2−kT−1) (z) is a constant, say α. Applying TS to the
resulting identity

(3.11) qG(z) = −
(
p̃G|2−kT−1

)
(z) + α,

we obtain

(3.12) (qG|2−kTS) (z) = − (p̃G|2−kS) (z) + αzk−2.

We now compare ck · r(G; z) and r̃(F ; z). By (3.10) and Proposition 3.4, we have

1

ck
r̃(F ; z) =

(
p̃G|2−k(S − T−1)

)
(z).

Combining this with Proposition 3.1 (4), and making use of (3.11) and (3.12), we then obtain

1

ck
r̃(F ; z) + r(G; z) = (p̃G|2−kS) (z)−

(
p̃G|2−kT−1

)
(z) + (qG|2−kS) (z)− (qG|2−kT ) (z)

= − (qG|2−kTS) (z) + αzk−2 + qG(z)− α + (qG|2−kS) (z)− (qG|2−kT ) (z)

= (qG|2−k(1− T )(1 + S)) (z) + α
(
zk−2 − 1

)
.
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Since Proposition 3.1 gives the identities

(qG|2−k(1− T )) (z) = HG(z) and (HG|2−k(1 + S)) (z) = 0,

we conclude that
1

ck
r̃(F ; z) + r(G; z) = α

(
zk−2 − 1

)
.

This proves (3.8), and it completes the proof of the first claim of the theorem.
To prove the second claim, it suffices to produce a weakly holomorphic form W ∈M !

2−k with
nonzero constant term β. It is easy to see that r(Dk−1(W); z) = βck(z

k−2− 1) by modularity of
W . Since ξ2−k(W) = 0 and r(Dk−1(F); z)−r(Dk−1(F+W); z) is a nonzero constant multiple of
zk−2 − 1, the claimed second identity follows easily. The existence of such a form is guaranteed
by Proposition 3.5. �

4. The extended Petersson inner product

We now apply the results of the last section to prove Theorems 1.2, 1.3, 1.5, 1.6, and 1.7.

4.1. General considerations. We first recall the extension of (•, •) to M !
k, and we obtain a

closed formula for it in terms of periods. Denote by DT the truncated fundamental domain
(τ = x+ iy)

(4.1) DT :=

{
τ ∈ H : |τ | ≥ 1, |x| ≤ 1

2
, y ≤ T

}
.

Write F,G ∈M !
k as

F (z) =
∑

n�−∞

aF (n)qn and G(z) =
∑

n�−∞

aG(n)qn.

Then we may define an extension of Petersson’s inner product as

(4.2) (F,G) := lim
T→∞

(∫
DT

F (τ)G(τ)yk−2 dx dy − aF (0)aG(0)

k − 1
T k−1

)
when the limit exists.
Identity (1.16) is an immediate consequence of the following proposition.

Proposition 4.1. In the following cases

(i) F ∈Mk and G ∈M !
k

(ii) F ∈M !
k and G ∈Mk

the extended Petersson product is well defined, and is given by

(F,G) = constant term of FG+,
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where G ∈ H2−k such that ξ2−k(G) = G. Moreover, we have that

(F,G) =
1

3 · 2k−1

∑
0≤m<n≤k−2
m6≡n (mod 2)

i(n+1−m)

(
k − 2

n

)(
n

m

)
rn(F )rk−2−m(G)

+
2

3 · 2k−1

∑
0≤n≤k−2

n≡0 (mod 2)

i(k−n)

(
k − 1

n+ 1

)(
rn(G)

aF (0)

k − 1
+ rn(F )

aG(0)

k − 1

)
.

(4.3)

Proof. The existence of an appropriate harmonic Maass form G in every case follows from Propo-
sition 2.2 (1). That (4.2) is well defined can be proved using an argument of Bruinier and Funke
(see Proposition 3.5 of [5]). It is easy to see that the restrictions imposed in their work may be
relaxed to obtain

(F,G) = lim
T→∞

(∫
DT

F (τ)G(τ)yk−2 dx dy − aF (0)aG(0)

k − 1
T k−1

)
= constant term of FG+.

To complete the proof, we need to prove formula (4.3). Due to the Hermitian properties of the
extended Petersson scalar product, it suffices to consider the following three cases:

Case (1): F = G = Ek.
Case (2): F ∈ S!

k and G ∈ Sk.
Case (3): F ∈ S!

k and G = Ek.

For Case (1), we begin by recalling the values of the periods for Ek (see page 240 of [18]):

r0(Ek) =
k

Bk

(−1)
k
2 (k − 2)!

(2π)k−1
· ζ(k − 1),

rk−2(Ek) =
k

Bk

(k − 2)!

(2π)k−1
· ζ(k − 1),

rn(Ek) = 0 ( for 0 < n < k − 2, n even),

rn(Ek) = − k

Bk

(−1)
n+1
2
Bn+1

n+ 1

Bk−1−n

k − 1− n
( for 0 < n < k − 2, n odd).

(4.4)

We substitute these values into the right hand side of (4.3), and make use of Euler’s identity for
Bernoulli numbers

(4.5)
k−2∑
m=2

(
k

m

)
BmBk−m = −(k + 1)Bk

(for integers k ≥ 4). Noting that G =
PEk
k−1

now easily gives the claim computing the constant

term of EkG+ using Theorem 2.4. We note that this result matches Zagier’s calculation [29] for
(Ek, Ek).

Case (2) is proven by modifying an argument of Kohnen and Zagier (see pp. 244-246 of [18])
which they used to prove the Haberland identity for cusp forms. We begin by considering the
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given contour integral, and recall the well known fact (i.e. Stokes’ Theorem) that

(F,G) = − lim
T→∞

∫
∂DT

F (τ)G(τ) dτ = − lim
T→∞

∫
∂DT

F (τ)G−(τ) dτ,

since the function FG+ is holomorphic on DT . Therefore we have that
∫
∂DT

F (τ)G+(τ) dτ = 0.

The function FG− is periodic with period 1 in x, because both F and G− are. Thus the integrals
along the vertical lines cancel. Moreover, as in the proof of Proposition 3.5 in [5], we can show
that

lim
T→∞

∫ 1/2

−1/2

F (x+ iT )G−(x+ iT ) dx = 0,

and so

(F,G) = −
∫
C

F (τ)G−(τ) dτ,

where C is the arc of the unit circle from ρ2 to ρ which bounds the fundamental domain from
the bottom. Note that FG− dτ is not invariant under S, so this integral may be non-zero. Also,
S maps C into itself with orientation reversed, so we have

2(F,G) = −
∫
C

F (τ)(G−|2−k(1− S))(τ) dτ.

Now, because G = G+ + G− is of weight 2− k, by Theorem 1.4 and (1.7) we have(
G−|2−k(1− S)

)
(z) =

(
−G+|2−k(1− S)

)
(z) ≡ − 1

ck
r(Dk−1(G); z)

≡ 1

ck

(k − 2)!

(4π)k−1
r(G; z̄) (mod zk−2 − 1).

Thus we have that

2(2i)k−1(F,G) = −(2i)k−1

∫
C

F (τ)(G−|2−k(1− S))(τ) dτ

= −(2i)k−1 1

ck

(k − 2)!

(4π)k−1

∫
C

F (τ)r(G; τ̄) dτ = −
∫
C

F (τ)r(G; τ̄) dτ.

(4.6)

Equality holds in each of the above steps since∫ ρ

ρ2
F (τ)(τ k−2 − 1) dτ = 0,

which in turn follows since F is modular of weight k without a constant term.
We now proceed as in [18] and define a pairing on polynomials in V (degree at most k − 2)

as follows 〈
k−2∑
n=0

anz
n,

k−2∑
n=0

bnz
n

〉
:=

k−2∑
n=0

(−1)n
(
k − 2

n

)−1

anbk−2−n.
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By a straightforward but lengthy calculation, this pairing is symmetric and SL2(Z)-invariant
(i.e. for all p, q ∈ V and γ ∈ SL2(Z) we have 〈p|2−kγ, q|2−kγ〉 = 〈p, q〉). We may rewrite (4.6) as

(4.7) 2(2i)k−1(F,G) = −
〈
HF (z), r(G; z)

〉
where HF was defined in (3.3). Making use of Proposition 3.1 (2), (3), and (4), along with the
relations defining the space W, and the properties of the pairing 〈•, •〉, we have the following:〈

HF (z), r(G; z)
〉

=
〈

(qF |2−k (1− T )) (z), r(G; z)
〉

=
〈
qF (z), r(G; z) |2−k

(
1− T−1

)〉
=
〈
qF (z), r(G; z) |2−k

(
1 + ST−1

)〉
=
〈
qF (z), r(G; z) |2−k

(
1 + U2

)〉
=

1

3

〈
qF (z), r(G; z) |2−k

(
U2 − U

) (
1− U−1

)〉
=

1

3

〈
(qF |2−k (1− U)) (z), r(G; z) |2−k

(
U2 − U

)〉
=

1

3

〈
−r(F ; z), r(G; z) |2−k

(
ST−1 − TS

)〉
=

1

3

〈
r(F ; z)|2−k

(
T − T−1

)
, r(G; z)

〉
.

Note that we used the fact that r(G; z) ∈W. This follows by conjugating the period relations
(see page 199 of [18]) defining r(G; z) ∈ W. Identity (4.3) follows by combining the above
calculation with (4.7) to obtain

−6(2i)k−1(F,G) =
〈
r(F ; z)|2−k(T − T−1), r(G; z)

〉
.

Case (3) may be broken into three subcases by making use of the Hermitian properties of the
extended Petersson product along with Propositions 2.3 and 3.5, i.e.

Case (3a): F ∈ Sk.
Case (3b): F = Dk−1(Ψ) with Ψ ∈ H∗2−k whose constant term vanishes.
Case (3c): F = Dk−1(Ψ) with Ψ ∈M !

2−k.

Case (3a) is proven in [18], so we focus instead of cases (3b) and (3c). In both cases, we let

G =
PEk
k−1

.
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For case (3b), we make use of the Fourier expansion of G as given in Theorem 2.6 to obtain

(Dk−1(Ψ), G) = constant term of Dk−1(Ψ)G+

=
Γ(k − 1)

(4π)k−1
constant term of GΨ+

=
Γ(k − 1)

(4π)k−1
· (G, ξ2−k(Ψ))

We must then show that the right hand side of (4.3) is the same. Using Theorem 1.4 and the
fact that the constant term of Ψ vanishes, we are able to deduce that

r(ξ2−k(Ψ); z) = − (4π)k−1

Γ(k − 1)
· r(Dk−1(Ψ); z),

from which it then follows that for integers 0 ≤ n ≤ k − 2, we have

rn(Dk−1(Ψ)) = (−1)n
Γ(k − 1)

(4π)k−1
· rn(ξ2−k(Ψ)).

Using these period relations and the periods of G in (4.4), we find that the right hand side of

(4.3) is also equal to Γ(k−1)
(4π)k−1 (G, ξ2−k(Ψ)), which completes this case.

For case (3c), we let Ψ =
∑

n�−∞ bnq
n ∈ M !

2−k. We begin by noting that ΨG ∈ M !
2 has a

vanishing constant term since it is a derivative of a polynomial in the j-function. Combining
this fact with the Fourier expansion of G in Theorem 2.6, we find that

b0 = − 2k

Bk

∑
n≥1

σk−1(n)b−n.

It then follows that

(Dk−1(Ψ), G) = constant term of Dk−1(Ψ)G+

= −Γ(k − 1)

(4π)k−1
b0.

To show that the right hand side of (4.3) coincides with this, we begin by noting that since
Ψ ∈ M !

2−k we have r(Dk−1(Ψ); z) = ckb0

(
zk−2 − 1

)
. ¿From this and (1.9), it follows that

r0(Dk−1(Ψ)) = ickb0 and rn(Dk−1(Ψ)) = ik−1ckb0. Finally, we substitute these values and the
periods of G given in (4.4) into the right hand side of (4.3), and make use of (4.5) to obtain the
result. �

4.2. Proof of Theorem 1.3. Let F ∈ S!
k and G = Ek. Then we may use Proposition 4.1 and

simplify (4.3). For even 0 < m < k − 2, we have rm(Ek) = 0 by (4.4), so the summation over
even m reduces to case when m = 0. For m = 0, we have that

(4.8)
∑

1≤n≤k−1
n odd

i(n+1)

(
k − 2

n

)
rn(F ) = 0.
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The last equality follows from r−(F )|(1 + U + U2) = 0 (see [18, p.199]). Making use of the fact
that aF (0) = 0 and the formulas for the odd-indexed periods of the Eisenstein series Ek in (4.4),
we reduce (4.3) to

(F,Ek) = − 1

3Bk(k − 1)(2i)k

∑
0≤n≤k−2
n even

inΛk,nrn(F ),

with

Λk,n := Bk

[(
k − 1

n

)
−
(
k − 1

n+ 1

)]
+

k/2∑
r=1

(
k

2r

)[(
2r − 1

n

)
−
(

2r − 1

k − 2− n

)]
B2rBk−2r.

Let G := 1
k−1

PEk so that ξ2−k(G) = G. By Theorem 2.4, the constant term of the product

FG+ is equal to the right side of (1.12). The theorem now follows from Proposition 4.1 and the
following equality for even n:

Λk,n = λk,n.

In order to prove the latter identity, we observe by [18, Theorem 9(i)] that, for even n,

λk,n − Λk,n = Bk +
k∑
r=2
even

(
k

r

)[(
r − 1

n

)
+

(
r − 1

k − 2− n

)]
Bk−rBr =

1

2
(λk,n + λk,k−2−n) = 0.

4.3. Proof of Theorem 1.6. Let F ∈ S!
k be given.

To prove (i) → (ii), we assume that F = Dk−1(F) where F ∈ M !
2−k has constant term

α ∈ C. Then by (1.6) we have F − α = EF and it follows by modularity of F and (1.7) that
r(F ; z) = αck(z

k−2 − 1).
For the implication (ii) → (iii), we have that r(F ; z) = α(zk−2− 1) for some α ∈ C. By (1.7),
EF +α/ck ∈M !

2−k. This implies that for G ∈ S!
k, the scalar product {F,G} equals the constant

term of the weight 2 weakly holomorphic modular form −(EF + α/ck)G, and vanishes, because
every such form is a derivative of a polynomial in the j-function.

We now prove (iii) → (i). By Proposition 2.3, we may write

F = φ+ ψ

with φ ∈ Sk and ψ = Dk−1(G) where G ∈ H∗2−k. By our hypothesis and Proposition 4.1 (i), for
every h ∈ Sk,

0 = {h, F} = {h, ψ} = (h, ξ2−k(G)).

We conclude that ξ2−k(G) = 0. Therefore G ∈M !
2−k and ψ ∈ Dk−1(M !

2−k). Now for every h ∈ Sk
there exists Gh ∈ H∗2−k such that ξ2−k(Gh) = h. Since Dk−1(Gh) ∈ S!

k, we can use our hypothesis
and Proposition 4.1 (i) again to conclude that for every h ∈ Sk,

0 = {F,Dk−1(Gh)} = {φ,Dk−1(Gh)}+ {ψ,Dk−1(Gh)} = {φ,Dk−1(Gh)} = (φ, h).

The third equality holds by following the proofs of implications (i) → (ii) → (iii). Therefore
φ = 0 and so F = ψ ∈ Dk−1(M !

2−k) as required.
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4.4. Proof of Theorem 1.2. The injectivity of the embedding Dk−1(M !
2−k) → S!

k is obvious,
and the exactness in S!

k, for the first sequence, follows immediately from Theorem 1.6. Therefore,
it suffices to establish surjectivity.

The argument closely follows our proof of Proposition 2.3. The Eichler-Shimura isomorphism
allows us to write an arbitrary polynomial r ∈W0 as

r = r−(g1) + ir+(g2)

with g1, g2 ∈ Sk. Using the notation from the proof of Proposition 2.3, we then find that
F (z) := φ(z) + Ψ(z) ∈ S!

k, and r(F ; z) = r ∈W0, which establishes surjectivity.
The exactness of the second sequence now easily follows from

r : Dk−1(M !
2−k)/D

k−1(S!
2−k)→̃W/W0

∼=
〈
zk−2 − 1

〉
.

This is an immediate consequence of Proposition 3.5, the definition (1.7), and the fact that for
a form h ∈M !

2−k the constant term of h equals h− EDk−1(h).

4.5. Proof of Theorem 1.5. Let d = dim(Sk), and for 1 ≤ i ≤ d, let

fi(z) =
∑
n>0

bi(n)qn ∈ Sk

be a basis of normalized Hecke eigenforms for Sk. For each i, {bi(n)}n>0 is a system of Hecke
eigenvalues, and fi ∈ S!

k/D
k−1(M !

2−k).
Let Fi ∈ H∗2−k such that ξ2−k(Fi) = fi. The differential operator ξ2−k and the Hecke operator

T (m) obey the following commutation relation

(ξ2−k (Fi |2−k T (m))) (z) = m1−k (ξ2−k (Fi) |k T (m)) (z).

Because ξ2−k
(
Fi |2−k T (m)−m1−kbi(m)Fi

)
= 0, it follows that there is some rm(z) ∈ M !

2−k
such that

(Fi |2−k T (m))(z) = m1−kbi(m)Fi(z) + rm(z).

We apply the operator D to this identity k − 1 times and use Bol’s identity to find that(
Dk−1(Fi) |k T (m)

)
(z) = bi(m)Dk−1(Fi)(z) +mk−1Dk−1(rm)(z).

Therefore Fi = Dk−1(Fi) ∈ S!
k is a weakly holomorphic Hecke eigenform in S!

k/D
k−1(M !

2−k).
To complete the proof, we show that the forms Fi are linearly independent. Assume that∑d
i=0 ciFi = 0. Then for each j such that 0 ≤ j ≤ d, we make use of Proposition 4.1 to obtain

0 =

{
fj,

d∑
i=0

ciFi

}
=

d∑
i=0

ci {fj, Fi} =
d∑
i=0

ci (fj, fi) .

Because each fi is a Hecke eigenform, we know that (fj, fi) 6= 0 if and only if i = j. Therefore
each ci = 0 and the forms Fi are linearly independent.

Now, we may use a dimension argument by combining Proposition 2.3 and Theorem 1.2. This
shows that the set of forms fi together with the set of forms Fi form a basis of S!

k/D
k−1(M !

2−k),
proving the theorem.
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4.6. Proof of Theorem 1.7. We make use of Proposition 2.3 to obtain the decomposition

G = aG(0)Ek + φG + ψG,

with φG ∈ Sk, and ψG ∈ Dk−1(H∗2−k). Also, let F0 := F − aF (0)Ek and G0 := G− aG(0)Ek. By
the obvious linearity we obtain

{F,G} = aF (0)aG(0){Ek, Ek}+ aF (0){Ek, G0}+ aG(0){F0, Ek}+ {F0, φG}+ {F0, ψG},
and we now need to prove the required identity for each of the five terms separately.

We begin by letting Ek = − (4π)k−1

(k−1)!
PEk ∈ H2−k, F ∈ H2−k, and G ∈ H∗2−k so that Ek =

Dk−1(Ek), F0 = Dk−1(F), and ψG = Dk−1(G). It follows that

{Ek, Ek} = 0 = (Ek, ξ(Ek))− constant term of EkE+
k ,

{Ek, G0} = −{G0, Ek} = −constant term of G0E+
k = −(G0, ξ(Ek)),

{F0, Ek} = constant term of F0E+
k = (F0, ξ(Ek)),

{F0, φG} = −{φG, F0} = −constant term of φGF+ = −(φG, ξ(F)), and

{F0, ψG} = constant term of F0G+ = (F0, ξ(G)).

In each of these cases, one of the conditions of Proposition 4.1 holds. The desired identity now
almost immediately follows from (4.3) and Theorem 1.4. The only difficulty is that Theorem 1.4
leaves ambiguity in the 0th and (k− 2)nd periods. However, this ambiguity vanishes in (4.3) by
making use of (4.8).

5. The period polynomial principle and the proof of Theorem 1.1

Here we prove Theorem 1.1 using the principle that “period polynomials” encode critical values
of L-functions. We choose this perspective, instead of working directly with period integrals of
cusp forms, to highlight the role that Bol’s identity plays in relating pairs of functional equations.
This is the analytic process by which one obtains critical L-values (see [24] for similar results).

5.1. Period polynomials and critical values of L-functions. If f is a weight k cusp form,
then its critical values are the numbers

C(f) := {L(f, 1), L(f, 2), . . . , L(f, k − 1)},
where L(f, s) is the usual analytically continued L-function. Here we show that such values
arise naturally as the coefficients of “period polynomials”, functions in z which measure the
obstruction to modularity.

Theorem 5.1. Suppose that

A(z) =
∞∑
n=1

α(n)q
n
λ ,

B(z) =
∞∑
n=1

β(n)q
n
λ
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are holomorphic functions on H where |α(n)|, |β(n)| = O(nδ), where λ, δ > 0. If

A(z) = z−kB(−1/z),

where k ≥ 2 is even, then

EA,k(z)− zk−2EB,k (−1/z) =
k−2∑
j=0

L (A, k − 1− j)
j!

·
(

2πiz

λ

)j
.

Here L(A, s) is the analytic continuation of

L(A, s) :=
∞∑
n=1

α(n)

ns
,

and

Eφ,k(z) :=
∞∑
n=1

ν(n)n1−kq
n
λ ,

when φ(z) =
∑∞

n=1 ν(n)q
n
λ .

Sketch of the proof. The proof depends on the relationship between functional equations for L-
functions, Mellin transforms, and inverse Mellin transforms. Since these notions are standard
(for example, see §7.2 of [12]) here we provide just a brief sketch of the proof.

Since A(z) = z−kB(−1/z), the analytically continued Dirichlet series for A(z) and B(z), say
L(A, s) and L(B, s), satisfy the functional equation

(5.1) ΛA(s) = ikΛB(k − s).

As usual, we have that

ΛA(s) :=

(
2π

λ

)−s
Γ(s)L(A, s),

ΛB(s) :=

(
2π

λ

)−s
Γ(s)L(B, s).

Moreover, we have that ΛA and ΛB are entire and are bounded in vertical strips.
Differentiating a function Φ(z) has the effect of taking L(Φ, s) to L(Φ, s− 1). Such differenti-

ation typically gives more complicated functional equations. However, by Bol’s identity we find
that (5.1) is naturally linked to the following functional equation for Eichler integrals:

(5.2) Λ̂A(s) = −ik · Λ̂B(2− k − s),

where

Λ̂A(s) :=

(
2π

λ

)−s
Γ(s)L(A, s+ k − 1),

Λ̂B(s) :=

(
2π

λ

)−s
Γ(s)L(B, s+ k − 1).
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By the assumptions on A and B, there is a rational function Ψ̂(s) for which Λ̂A−Ψ̂ is holomorphic
and bounded in vertical strips. Using the Mellin inversion formula, we have that for c1 > 0 (which
we will choose sufficiently small)

EA,k(z) =
1

2πi

∫ c1+i∞

c1−i∞
Λ̂A(s)

(z
i

)−s
ds,

EB,k(z) =
1

2πi

∫ c1+i∞

c1−i∞
Λ̂B(s)

(z
i

)−s
ds.

By shifting the line of integration to the left of the line Re(s) = 2 − k − c1, Cauchy’s Residue
Theorem, combined with (5.2) (after letting s→ 2− k − s), implies that

EA,k(z) = zk−2EB,k(−1/z) +

(
2πi

λ

)k−1

·
∑

Res
(

Ψ̂(s)
)
·
(z
i

)−s
,

where the sum is over the poles of Ψ̂(s), namely s = 0,−1, . . . ,−(k − 2). A residue calculation
then shows that

EA,k(z)− zk−2EB,k (−1/z) =
k−2∑
j=0

L(A, k − 1− j)
j!

·
(

2πiz

λ

)j
.

�

We now apply Theorem 5.1 to modular forms. Throughout this subsection, we suppose that
f(z) =

∑∞
n=1 a(n)qn ∈ Sk. A direct calculation for 0 ≤ n ≤ k − 2 gives that

(5.3) L(f, n+ 1) =
(2π)n+1

n!
· rn(f).

These are the critical values. The following immediate application of Theorem 5.1 provides a
proof of (5.3), and it also motivates the definition of the period function r(f ; z) in (1.9).

Corollary 5.2. We have that

Ef (z)− zk−2Ef (−1/z) =
k−2∑
n=0

L(f, n+ 1)

(k − 2− n)!
· (2πiz)k−2−n

=
1

ck
·
k−2∑
n=0

i1−n
(
k − 2

n

)
· rn(f) · zk−2−n =

1

ck
· r(f ; z).

If 1 ≤ d, c are coprime integers, then define the twisted L-function

(5.4) L
(
f, ζ−dc , s

)
:=

∞∑
n=1

a(n)ζ−dnc

ns
.

Corollary 5.2 has the following generalization for these L-functions.
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Corollary 5.3. If 1 ≤ d < c are coprime, then let γ = ( ∗ ∗c d ) ∈ SL2(Z). Then we have that

Ef (z)− (Ef |2−kγ) (z) =
k−2∑
n=0

L(f, ζ−dc , n+ 1)

(k − 2− n)!
· (2πi)k−2−n ·

(
z +

d

c

)k−2−n

.

Proof. If η = ( A B
C D ) ∈ SL2(Z) is a matrix with C 6= 0, then let

f(η; z) := f

(
z

|C|
− D

C

)
.

By modularity, it follows that

f(γ; z) = z−kf

(
γ−1;−1

z

)
.

We now apply Theorem 5.1 with

A(z) := f(γ; z) =
∞∑
n=1

a(n)ζ−dnc q
n
c ,

B(z) := f
(
γ−1; z

)
= f

(z
c

+
a

c

)
=
∞∑
n=1

a(n)ζanc q
n
c .

Letting z → cz + d in the conclusion of Theorem 5.1 gives

EA,k(cz + d)− (cz + d)k−2EB,k
(
− 1

cz + d

)
=

k−2∑
j=0

L(A, k − 1− j)
j!

·
(

2πi(cz + d)

c

)j

=
k−2∑
n=0

L(f, ζ−dc , n+ 1)

(k − 2− n)!
· (2πi)k−2−n ·

(
z +

d

c

)k−2−n

.

The claim now follows, using the following two identities

EA,k(cz + d) = Ef (z),

(Ef |2−kγ) (z) = (cz + d)k−2 · EB,k
(
− 1

cz + d

)
.

�

5.2. Proof of Theorem 1.1. We prove Theorem 1.1 using Corollaries 5.2 and 5.3. Suppose
that f ∈ Sk and F ∈ H∗2−k have the property that ξ2−k(F) = f . In Theorem 1.4, the constant
term of F is the only obstacle which keeps us from obtaining equality between the two period
polynomials. The problem is that both polynomials depend upon F after differentiation, but
this operation annihilates the constant term and there is no way to recover it. By working with
F before differentation, Theorem 1.4 actually implies that

(5.5) ck · P(F+, γ1,0; z) = r(f ; z).

The first claim in Theorem 1.1 now follows from Corollary 5.2.
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To prove the second claim, we apply Corollary 5.3 using the fact that similarly to (5.5) we
have, for any matrix γ = ( a bc d ) ∈ SL2(Z), the identity

P (F+, γc,d; z̄) = (Ef − Ef |2−kγ) (z).

We require the standard orthogonality relation for roots of unity which asserts that

c−1∑
d=0

ζ−m1d
c · ζm2d

c =

{
c if m1 ≡ m2 (mod c),

0 otherwise.

Therefore, if gcd(m, c) = 1, we have that

1

c

c−1∑
d=0

ζmdc · L(f, ζ−dc , s) =
∑
n≥1

n≡m (mod c)

a(n)

ns
.

Summing in m, combined with the discussion above, gives the second claim in the theorem.
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