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Abstract

Background: Patients with facial cancers can experience disfigurement as they may undergo considerable appearance

changes from their illness and its treatment. Individuals with difficulties adjusting to facial cancer are concerned about

how others perceive and evaluate their appearance. Therefore, it is important to understand how humans perceive

disfigured faces. We describe a new strategy that allows simulation of surgically plausible facial disfigurement on a novel

face for elucidating the human perception on facial disfigurement.

Method: Longitudinal 3D facial images of patients (N = 17) with facial disfigurement due to cancer treatment were

replicated using a facial mannequin model, by applying Thin-Plate Spline (TPS) warping and linear interpolation on the

facial mannequin model in polar coordinates. Principal Component Analysis (PCA) was used to capture longitudinal

structural and textural variations found within each patient with facial disfigurement arising from the treatment. We

treated such variations as disfigurement. Each disfigurement was smoothly stitched on a healthy face by seeking a

Poisson solution to guided interpolation using the gradient of the learned disfigurement as the guidance field vector.

The modeling technique was quantitatively evaluated. In addition, panel ratings of experienced medical professionals

on the plausibility of simulation were used to evaluate the proposed disfigurement model.

Results: The algorithm reproduced the given face effectively using a facial mannequin model with less than 4.4mm
maximum error for the validation fiducial points that were not used for the processing. Panel ratings of experienced

medical professionals on the plausibility of simulation showed that the disfigurement model (especially for peripheral

disfigurement) yielded predictions comparable to the real disfigurements.

Conclusions: The modeling technique of this study is able to capture facial disfigurements and its simulation represents

plausible outcomes of reconstructive surgery for facial cancers. Thus, our technique can be used to study human

perception on facial disfigurement.
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Background
Patients with facial cancers are at particular risk for ex-

periencing disfigurement as they may undergo consider-

able appearance changes from their illness and its

treatment. Individuals undergoing facial reconstruction

often have extensive tumors requiring radical surgical ab-

lation of the primary site, and are, therefore, at heightened

risk for experiencing facial disfigurement and functional

impairment.

Increasing attention is being given to evaluating the psy-

chosocial consequences of facial disfigurement, particu-

larly for patients with head and neck cancers. Although

individual reactions to disfigurement can vary consider-

ably, body image difficulties are well documented among

patients with head and neck cancer [1-3]. Many of

these patients report feeling discounted or stigmatized

due to their appearance following surgical treatment

[4]. Disfigurement related to head and neck cancer has

also been associated with worsened relationship with
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partners, impaired sexuality, depression, social isolation,

and anxiety [5-8].

Individuals with difficulties adjusting to facial cancer

are clearly concerned about how others perceive and

evaluate their appearance [9]. However, there is a signifi-

cant gap in knowledge regarding how others actually

perceive and process disfigured faces. Information about

the threshold at which disfigurement is noticeable and

which aspects of disfigurement are most salient would

benefit patients and healthcare providers alike. These

data could be used to inform psychological interventions

that help patients with facial disfigurement gain a more

accurate understanding of how they are perceived in so-

ciety, which has a strong potential to facilitate their psy-

chosocial adjustment.

The best way to study the human perception of facial

disfigurements is to show patients with facial disfigure-

ment to human observers directly, and asking them to

answer how they perceive the disfigurements. However,

it is not feasible to recruit real patients for such an ob-

server study. An alternative way is showing the ob-

servers 2D/3D photographs or videos of patients with

facial disfigurement. However, such approaches possess

critical weakness; we cannot control the degree and lo-

cation of facial disfigurement.

Therefore, it is crucial to have a mathematical model

to simulate facial disfigurement resulting from facial

cancer treatments. This will allow us to control the de-

gree and location of facial disfigurement, while removing

the effect of the natural variability in facial morphology.

For example, some patients may have more noticeable

disfigurement than others, even if they underwent the

same reconstructive procedure. Since we cannot control

these variations, it is evident that they will add uncer-

tainty to any model of the human perception of facial

disfigurement. Using a mathematical model to create

realistic simulations of disfigurement will enable control

over the location and level of disfigurement. Moreover,

such a model will make it possible to apply the same dis-

figurement to the faces of people of different ages and

genders.

Simulating surgical outcomes on the human face has

been extensively studied. In the field of computer-

assisted surgery, its main focus has been on simulating

the possible changes that arise from craniofacial surgery

using volumetric reconstruction of patients’ CT data

and/or 3D surface facial images. Most previous studies

have tried to estimate soft tissue changes after the cor-

rection (such as osteotomy) of bony parts of the face

[10-16] by using modeling techniques, including physics

based models such as the Finite Element Model (FEM).

Within the field of plastic surgery, much effort has

been expended toward predicting the outcomes of facial

aesthetic surgery. For example, many algorithms have

been proposed to predict outcomes of rhinoplasty by

using computer graphic and image processing tech-

niques on the patients’ 3D surface facial images or 3D

rendering of volumetric reconstructions of their CT im-

ages [17-21].

Recently, Bottino et al. [22] introduced a simulation

tool for facial aesthetic surgery. In their work, once a 3D

surface facial image with a selected target region (e.g.

nose, chin, mouth) for the aesthetic surgery is submitted,

their system searches the k most similar faces in their

face database using the entire face area except the target

region. Then the facial target regions of the k most simi-

lar faces suggested by the system as well as their average

are used to morph the original target region of the pa-

tient. They evaluated their system using panel ratings of

laypersons and reported that the simulation with the

mathematically averaged facial target region obtained

the best panel attractiveness rating for most of their

simulation cases. In addition, Claes et al. [23] recently

introduced a simulation method to objectively assess the

discordance of a given face of oral and maxillofacial sur-

gery patients. In their method, a face space was con-

structed from 3D surface facial images of normal

controls using Principal Component Analysis (PCA).

Similar to the work of Bottino et al. [22], they utilized

the normal (unaffected) part of a patient’s face to search

a synthetic face from the face space. The resulting syn-

thetic face can be seen as the face of patient’s identical

twin without facial abnormality, which can be directly

compared to the patient’s face to assess his/her facial ab-

normality for planning appropriate surgical actions.

However, no prior studies considered the facial disfig-

urement that remains after reconstructive surgery. From

the results of previous work, there exists a limitation on

helping patients who have to live with permanent facial

disfigurement. This implies a significant need for devel-

oping a modeling strategy such as our disfigurement

modeling technique.

Moreover, previous studies do not account for any tex-

tural appearance changes that arise from surgical treat-

ment. This is because prior methods focus on overall

structural changes, and not on any disfigurement

remaining after the surgery. However, some reconstruct-

ive surgeries on patients with facial cancer (e.g., recon-

struction of the orbit using his/her own tissue) can

entirely change the textural appearance of the face.

Hence, modeling strategies that can incorporate textural

aspects of disfigurement are also worthy of study and

implementation.

Here we present a new strategy that enables realistic

modeling of the types of disfigurement that persist fol-

lowing facial cancer treatment and reconstructive sur-

gery. Our approach employs 3D surface facial images of

patients with facial disfigurement. This tool can be
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applied to other faces to provide control of the location

and degree of disfigurement. We utilize PCA to capture

longitudinal structural and textural variations found

within each patient with facial disfigurement over the

treatment. We treat such variations as disfigurement. Each

disfigurement is smoothly stitched on a healthy face by

seeking a Poisson solution to guided interpolation using

the gradient of the learned disfigurement as the guidance

field vector. To show the usefulness of the proposed dis-

figurement model, we quantitatively evaluated the model-

ing technique and also conducted an observer study using

experienced medical professionals in which they evaluated

the appearances of the simulated facial disfigurement.

Methods
Dataset: disfigured faces

In order to develop surgically plausible models of facial

disfigurement, it is crucial to have 3D facial images of pa-

tients who have had excisions of facial tumors and recon-

struction of structures in the face. This study employed

3D facial images acquired using a 3dMDcranial System

(3dMD, Atlanta, GA) under an IRB (Institutional Review

Board) approved protocol of The University of Texas MD

Anderson Cancer Center, Houston, Texas, USA (Protocol

ID of 2009–0784). There exists a companion IRB protocol

approved by The University of Texas at Austin, Austin,

Texas, USA (Protocol ID of 2010-02-0027) for data

analysis.

The dataset consists of 3D facial images of patients aged

18 or older who had facial cancer and underwent or were

scheduled for reconstructive surgery at The University of

Texas MD Anderson Cancer Center. Informed consent

(written) was obtained from all patients who participated

in this research study. Additional consent was obtained

for their images to be published in scientific papers. The

dataset included the pre-operative (viz., prior to recon-

structive surgery) 3D facial images and up to 4 post-

operative 3D images (after initial reconstructive surgery)

of patients’ faces obtained at 1, 3, 6, and 12 month(s) post

reconstruction clinic appointments. These images were

used to study the different types of facial disfigurement

and their structural and textural changes over time.

To date, a total of 150 patients were recruited to the

ongoing study. To learn structural and textural changes

over time due to the reconstruction process, we utilized

images of patients who had completed pre-op and at

least 3 post-op visits (i.e., any three of 1, 3, 6, and

12 month post-op visits) (N = 72) to develop a model to

simulate disfigurement on other faces. Among those pa-

tients, we removed any patients whose 3D images

showed no visible disfigurement (N = 31), who did not

have their 3D facial images taken (N = 8), or whose 3D

images contained substantial artifacts introduced by

problems in the acquisition process (e.g., calibration

errors) (N = 16). After that, a total of 17 patients (3 fe-

males and 14 males, 79 images in total) were included in

this analysis. Their ages ranged from 50 to 83 (mean:

64). Among 17 patients, 7 patients had visible disfigure-

ment in their mid-face area only (eye, nose, or mouth

area), while 10 patients had visible disfigurement in the

periphery (forehead, cheek, chin, or neck area). We

tabulate the information regarding each disfigured face

region, the disease characteristics, and its location for

those patients in Table 1 (Reconstruction procedure de-

tails for each patient are tabulated in Additional file 1).

All 3D images were cropped to remove unnecessary

regions (e.g., clothes and back of the head) when devel-

oping the facial disfigurement models. The number of

vertices in the 3D images after cropping ranged from

50,000 to 70,000. Although such number of vertices is

enough to show the morphology of the face, it is not

enough to adequately capture the texture. There is still a

lack of texture detail when we rendered the face inter-

polating the color information at each vertex. To solve

this problem, we increased the resolution of 3D images

by subdividing the 3D images linearly. Each triangle was

divided into 4 triangles using a new vertex that is

linearly interpolated. Color information (RGB) at the

newly identified vertices was extracted from the corre-

sponding location of the original 2D texture image. The

final number of vertices after the subdivision process

ranged from 150,000 to 200,000. Figure 1 depicts an ex-

ample of pre- and post-operative 3D facial images of a

patient who underwent oncologic and reconstructive

surgery.

Dataset: non-disfigured faces

The surgically plausible disfigurement models are added

to 3D facial images of non-disfigured individuals to evalu-

ate the quality of the model. We used the Binghamton

University 3D Facial Expression (BU-3DFE) Database as a

source of non-disfigured individuals [24]. It is a publically

available 3D face database of 3D facial images acquired

using the 3dMDface system manufactured by 3dMD

(Atlanta, GA). With the agreement of the technology

transfer office of the SUNY at Binghamton, the database

is available for use by external parties [25]. Analysis of

this kind of dataset does not meet the definition of hu-

man subjects research and does not require IRB review

at The University of Texas at Austin. As BU-3DFE data-

base is a publicly available resource there was no need

to obtain consent for their faces to be published in sci-

entific papers.

The BU-3DFE database consists of 2500 3D facial ex-

pression models of 100 adult human subjects. The data-

base contains 56 female and 44 male subjects, ranging age

from 18 to 70 years, and includes the major ethnic groups

White, Black, East-Asian, Middle-east Asian, Indian, and
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Hispanic Latino. Each subject performed seven different

expressions which are neutral, happiness, disgust, fear,

angry, surprise, and sadness, all captured using the

3dMD face system. Among the available 2500 facial im-

ages, we utilized only the raw 3D images (i.e., without

cropping) of neutral expression faces. A total of 91 raw

3D images were used after removing 9 images having a

missing neck area. Just as with the dataset of disfigured

faces, all 91 images were cropped to remove unneces-

sary regions and their resolution linearly increased to

150,000 – 200,000 vertices.

Preprocessing

Establishing full correspondence of examples

In order to model both structural and textural disfigure-

ments, it is necessary to establish full correspondence of

all faces. This is a difficult problem as: 1) each face has a

different number of vertices and 2) 3D images obtained

from the 3dMD system contain various types of noise,

such as holes (missing data). The 3dMD system projects

a random speckle pattern on the face, and uses that pat-

tern to create the 3D images of subjects using triangula-

tion. Oily areas of the face (e.g., foreheads or cheeks) or

facial hair (e.g., mustaches) often result in reflecting the

speckle pattern from the 3dMD system. As a result,

holes remain in such areas since there is no pattern to

match by triangulation. To solve these issues and to

achieve a good correspondence between all of the faces,

a mannequin facial model was used (Figure 2A). This fa-

cial model was treated as a reference that was warped to

reproduce each patient’s facial morphology. This is simi-

lar to the seminal work of Cootes et al. [26], except the

direction of modeling; they warped each 2D face image

to the mean shape, while our method warps the reference

to each 3D surface facial images. We set the number of

vertices of the mannequin facial model to be 150,000. We

placed denser vertices on the mid-face area than on per-

ipheral areas since the mid-face has more complex struc-

tures than do peripheral areas. Note that there exist

algorithms for establishing dense correspondences between

Figure 1 3D facial images of one patient. Example pre-operative

(A) and post-operative (B) 3D facial images of one patient who underwent

right neck composite resection followed by reconstructive surgery using

the anterolateral thigh free flap.

Table 1 Disease characteristics and location of disfigurement on the faces

Patient ID Disfigured region # of images Histology Disease site

Periphery P1 M, LC, LN 5 SCC Oral cavity, mandible

P2 RC, RN, LN 5 SCC Oral cavity

P3 LC, LN 5 SCC Cheek

P4 FH, LC 5 Sarcoma Forehead/Scalp

P5 M, LC, LN 5 SCC Mandible

P6 M, RC, RN 4 SCC Mandible

P7 RC, RN 5 SCC Ear

P8 M, RC, RN 4 SCC Oral cavity

P9 M 5 SCC Oral cavity

P10 M, LC, RC, LN, RN 4 SCC Oral cavity, mandible

Mid-Face M1 FH, LE, N, RE 4 SCC Orbit

M2 N, M, RC 5 SCC Maxilla

M3 RE, N, RC 5 BCC Orbit

M4 N, LE, LC 5 Sarcoma Nose

M5 LE, LC 5 Sarcoma Maxilla

M6 LE 4 ACC Maxilla

M7 N 4 Melanoma Nose

Abbreviations: FH Forehead, LE Left Eye, N Nose, RE Right Eye, LC Left Cheek, MMouth, RC Right Cheek, LN Left Neck, RN Right Neck, SCC Squamous Cell Carcinoma,

BCC Basal Cell Carcinoma, ACC Adenoid Cystic Carcinoma.
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healthy faces (e.g., [27,28]) as well as dysmorphic faces

(e.g., [23,29-33]). Among those previous works for dys-

morphic faces, some [23,29,30] utilized pre-computed

spatially dense mask to establish the correspondence be-

tween the faces, while the others [28,31-33] used manually

annotated fiducial points. The former can be a good alter-

native for our application. However, it has not been thor-

oughly validated for our patient samples. Thus, similar to

the latter, we used the method described below to establish

dense correspondence between the faces.

The first step taken was to manually annotate (by J.L.)

a set of 61 fiducial points on the 3D surface images. The

fiducial points used are shown in Figure 2A-B. The point

set consists of: 1) 45 key fiducial points defined accord-

ing to the rich literature on human facial anthropometry

[34], for which there are established specifications of

their locations, 2) 16 additional points outlining facial

structures (e.g., eye, nose, and lips) and the entire facial

boundary. It has been shown that most facial fiducial

points can be identified reliably by human observers [35].

In practice, annotating these fiducial points for most faces

can be done in approximately 5 minutes. After the an-

notation, we roughly aligned all faces (including the

mannequin facial model) by translating the tip of the

nose of each face to the point at (x y z) = (0, 0, 5) cm, to

cause the centroid of the vertices of the face to be lo-

cated near the origin.

The second step is to conform the size and location of

the reference face model M to a given 3D surface image

M* using the Procrustes method [36]. The fiducial points

of M and M*, L, and L*, respectively, are used to find an

affine transformation matrix to fit M to M*.

The third step is transforming both M and M* (as well

as L and L*) to a frontal orientation with the forehead ti-

tled back by 10 degrees relative to the vertical axis, then

transforming the representation to a cylindrical coordin-

ate system (ρ, ϕ, z), where ρ, ϕ, and z represent the ra-

dial, the azimuth, and the height, respectively.

The fourth step is to warp M to M* using the fiducial

points L and L* as control points. L and L* are used to

create a deformation function that warps M to M*. This

study used the Thin-Plate Spline method [36], which

minimizes a bending energy (or distortion) while maxi-

mizing the fit of M to M*, to compute the deformation

function. The resulting deformation function was used

to warp M.

The last step is to fully reproduce the given face model

M* using the set of 3D vertices associated with the refer-

ence face model M. This is done by linearly interpolating

ρ for each point (ϕ, z) of M using the values (ρ, ϕ, z) of M*

as interpolants. Likewise, the RGB color values at each

vertex of M were interpolated using these of M*. After this

step, full correspondence of the resulting reproduced faces

can be automatically achieved as they are generated from

the same reference face model M (Figure 2C). Note that

some vertices in the face can have the same ϕ and z value

to that of others. This mostly happens in the ear area. As

our method is applied to the facial area only (after remov-

ing ear area as described in the Eigen-disfigurement: surgi-

cally plausible disfigurement model section), the effect on

this issue is not significant for our modeling technique.

Post-operative images with missing fiducial points

As previously mentioned, a patient may lose large por-

tions of his/her face to disease and require a recon-

structive surgery that substantially changes his/her facial

morphology. In particular, he/she may need a recon-

structive surgery in which a “flap”, a unit of tissue, usu-

ally comprised of skin, fat, muscle, bone or some

combination of these types of tissue, is transplanted

from another part of the body, such as the arm, leg, or

trunk, and vascularized by an arterial input and venous

output. For example, patients who underwent orbital ex-

enteration followed by reconstructive surgery using an

autologous flap are missing a substantial amount of the

eye region of their faces and so do not have associated

Figure 2 Establishing full correspondence between samples. A total 61 fiducial points (white dots) are used to establish full correspondences

between samples. The fiducial points are manually annotated on both a 3D mannequin facial model (A) and a 3D facial image of a patient (B).

After completing all correspondence steps, his original 3D face was fully reproduced using the 3D mannequin facial model (C). Note that the

algorithm fills any holes on the original 3D facial image of the patient.
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fiducial points available. To allocate fiducial points on

the missing facial portion, we used the fiducial points of

the same patient’s pre-operative image. To do so, we first

aligned the pre-operative and post-operative images

using the unaffected fiducial points. Then, the missing

fiducial points can be found by projecting the corre-

sponding fiducial points of the pre-operative image to

the surface of the post-operative image (Figure 3).

Color normalization of 3D images

In many cases, the color statistics of 3D images of the same

patient change over time; the changes include not only

image brightness but also color temperature (Figure 4A).

Such color changes may be viewed as artifacts that arise as

the disfigurement model is developed. To reduce such

color changes, we stretched the contrast of each color

channel of the image such that only 1% of the data is satu-

rated at low and high intensities of the image. Figure 4B

shows the effectiveness of the contrast-stretching algorithm

for the images of one patient over different time points. Al-

though some illumination variations still exist, it compen-

sated the color temperature difference among examples.

There exist more sophisticated color alignment methods

than contrast stretching (e.g., histogram equalization,

Retinex algorithms [37,38], and DCT based algorithm

[39]). However, visual inspection of the results of these

algorithms on our data suggests that none of them is su-

perior to the others (Figure 5). The Retinex algorithms

and the DCT based algorithm were able to compensate

for the brightness difference but lost variations in color,

which is important for our application. Further studies

of finding the best color alignment algorithms for this

application are required, but it is out of the scope of this

paper. In addition, we found contrast stretching to be

simple and computationally efficient for this application.

Eigen-disfigurement: surgically plausible disfigurement

model

Defining a surgically plausible disfigurement model

Facial reconstruction for facial cancer patients cannot be

achieved by a single operation. Multiple surgical opera-

tions are typically required until the patients complete

the facial reconstruction. The best reconstruction strat-

egy for each facial cancer patient is highly personalized

since cancer can happen anywhere on the face, resulting

in different reconstruction outcomes. Thus, this study

focuses on modeling the unique disfigurement of each

patient, and learning how such disfigurements change

over the reconstruction process using a statistical model-

ing technique. It should be noted that patients can have

more than one disfigurement; hence, we model each of

them separately.

Let F be the 3D surface of the face. F consists of two

components: 1) a structural component

s ¼ x1; y1; z1; x2; y2; z2; ::::; xn; yn; znð Þ∈ℜ3n ð1Þ

where x, y, and z are the coordinates of the vertices of

the 3D facial image, and 2) a textural component

t ¼ r1; g1; b1; r2; g2; b2;…; rn; gn; bn
� �

∈ℜ3n ð2Þ

where r, g, and b represent the red, green, blue color

components at the vertices of the 3D facial image.

Then, define the surgically plausible disfigurement

model to be a function that alters the given face F to the

simulated one ~F :

D F ; i; λð Þ ¼
Ds s; i; λð Þ
Dt t; i; λð Þ

� �
¼

~s
~t

� �
¼ ~F ð3Þ

where i and λ are parameters that change the type (and

therefore the location) and the degree of the disfigure-

ment, respectively. The index i indicates the different

types of disfigurements.

To take the local characteristics of facial disfigure-

ments into account, we restrict our model to be learned

and applied within specific facial regions of interest

(ROIs): the forehead, the eyes (left and right), the nose,

the cheeks (left and right), the mouth, the chin, and the

neck (left and right). These 9 ROIs in total are depicted

in Figure 6. We used a subset of the fiducial points

(white dots in Figure 6) to determine the ROIs. The se-

lection of the facial segment is based on a typical loca-

tion where a given surgical treatment for facial cancer

might cause facial disfigurement.

Now define the set φi = {v|v ∈ F} consisting of one or

combinations of the aforementioned 9 ROIs, which is

Figure 3 Allocating missing fiducial points on the post-operative

facial images. Missing fiducial points on the post-operative facial image

are allocated by projecting (red lines) the corresponding fiducial points

of the pre-operative facial image of the same patient. White dots on

both images, which indicate fiducial points unaffected by the surgery,

are used to align the two images.
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assumed to be affected by the ith disfigurement. Then

the disfigurement model for the ith disfigurement can

be further formulated as:

Ds s; i; λð Þ ¼
~s if v∈φi
s if v∉φi

; Dt t; i; λð Þ ¼
~t if v∈φi
t if v∉φi

��

ð4Þ

where v are vertices in an target face F. Further define ~s

and ~t as the results of stitching functions fs and ft:

f s s; ŝð Þ ¼ ~s; f t t; t̂
� �

¼ ~t ; ð5Þ

where ŝ and t̂ denote the structural and textural disfig-

urements learned from the patient images, respectively.

Thus, the surgically plausible disfigurement model is a

function that stitches the learned disfigurement within

the corresponding ROI of the target face.

Eigen-disfigurement

As a first step toward developing the surgically plausible

disfigurement model, we next describe how to learn the

structural and textural disfigurement ŝ and t̂ from the

patient images.

We utilized a common dimension reduction tech-

nique, PCA, to capture the ŝ and t̂ on patients’ faces.

This is based on the fact that the appearance of the dis-

figured areas of patients’ faces will show high variations

across his/her reconstruction process, since a facial dis-

figurement may imply major structural and textural

Figure 4 Color normalization of 3D images. A: Images of a patient showing high variation in color. B: Images of the same patient after contrast

stretching each color channel, showing improvement of the color consistency.

Figure 5 Comparison of different color normalization techniques. This figure provides visual comparison between different color normalization

technique results. Although some illumination variations still exist, the contrast stretching compensated the color temperature difference among examples.

Retinex algorithms (single and multi scale) and DCT based algorithm were able to compensate the brightness difference but lose variations in color, which

is important for our application.
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changes on the face. Thus, we hypothesize that eigenvectors

found from the faces of the same patient across the recon-

struction process can capture for his/her facial disfigure-

ment. We call these eigenvectors Eigen-disfigurements and

used them to model ŝ and t̂ .

Let sij be the structural face component of the patient

exhibiting the ith type of disfigurement at the jth temporal

moment of the reconstruction process. The variable j is an

integer falling in the range 0 to p, where 0 represents the

pre-operative visit, and p indicates the last post-operative

visit. We compute the sample mean �S i of the shape com-

ponents of a single patient with the ith type of disfigure-

ment at different time instants, i.e., �S i ¼
Xp

j¼0

Sij . We can

obtain the structural eigen-disfigurement uik of the pa-

tient’s face by computing the eigenvector of the covariance

matrix given as

Q ¼
1

p

Xp

j¼1

ΦijΦ
T
ij ; ð6Þ

where Φij ¼ sij−�S i . Since solving Qi directly is infeasible,

we first obtain the eigenvectors ûk of Q
T, then compute

the structural eigen-disfigurement

uik ¼
Xp

j¼1

σkjΦij; k ¼ 1;…; p: ð7Þ

The textural eigen-disfigurement vik of the patients’

face can be obtained similarly.

Once both the structural and the textural eigen-

disfigurements are found, we can model ŝ and t̂ : Since

the disfigurement is the major change in the face, the

first few eigen-disfigurements should capture such change.

We assumed that the first eigen-disfigurement is sufficient

to capture the facial disfigurement. In fact, the first eigen-

disfigurements (for both structural and textural disfigure-

ment) are responsible for 50% of the total variation found

from each patient’s data. Hence, the structural and textural

disfigurements ŝ and t̂ for the ith disfigurement are

ŝ ¼ �S i þ λ⋅uik
t̂ ¼ �T i þ λ⋅vik

withv∈φi;−1≤λ≤1; and k ¼ 1; ð8Þ

where λ is a variable that modifies the degree of disfig-

urement and (uik, vik)|k = 1 refers to the first eigen-

disfigurement (having the largest eigen-value). Note that

we can assign different parameters to control the struc-

tural and textural components separately and many face

synthesis systems allow users to do so. However, this is

not appropriate for simulating facial disfigurements of

facial cancer patients. Surgical actions or radiation ther-

apies affect both the structural and textural component

of the face, and therefore, we need to consider them

simultaneously. We also found statistically significant

correlations between structural changes and textural

changes arising from reconstruction surgery [40], which

support our rationale. Figure 7 illustrates the concept of

our eigen-disfigurement model; it captures the disfigure-

ment from the patient’s longitudinal images.

Stitching a surgically plausible disfigurement on a target

face

We have now defined all of the parameters of the disfig-

urement model. Given proper stitching functions fs and ft,

we can simulate disfigurements of varying types, locations,

and severities by adjusting the parameters i and λ.

The stitching functions should satisfy two conditions: 1)

the simulated ROI should be smoothly connected to its

boundary, and 2) the simulated ROI should capture the

key characteristics of the learned disfigurement. We solved

the problem by finding the interpolation functions that

best fit the pre-defined guidance vector field from the

boundary, thereby reconstructing the simulated structural

and textural components within the ROI of the target face.

We let the gradients of the learned disfigurements (∇ŝ and

∇t̂ ) be the guidance vector fields. The formulation of the

above problem is identical to that of the seamless-cloning

feature of Poisson Image Editing [41], which was devel-

oped for 2D image editing, whereas our application is di-

rected towards 3D surface images.

For each ith disfigurement, let ∂φi be the boundary of

φi and let fs
* and ft

* be the known functions that deter-

mines the structural and textural components of the

given face F excluding the φi, respectively. Also let αs
and αt be vector fields that guide the corresponding

interpolation functions fs and ft, to display the key char-

acteristics of the disfigurement.

Figure 6 Nine facial segments used in this study. This figure

illustrates a total of 9 facial segments (i.e., ROI) used in this study.

The list of segments is: forehead (FH), right & left eye (RE & LE), nose

(N), right & left cheek (RC & LC), mouth (M), right & left neck (RN &

LN). Other areas were removed before further processing. A subset

of 61 fiducial points (white dots) is used to determine the ROIs.
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Considering the structural component first (as the tex-

tural component can be computed similarly), the function

fs achieving the above two conditions can be found by

solving the following minimization problem:

min
fs

∬
φi

∇f s−as
2with f s ∂φi ¼ f �s ∂φi

�������� ð9Þ

where ∇ represents the gradient operator. Its solution

can be obtained by solving the following Poisson equa-

tion with Dirichlet boundary condition:

Δf s ¼ div αsð Þ φiwith f s ∂φi ¼ f �s ∂φi

������ ð10Þ

where Δ and div(⋅) represent the Laplacian operator and

divergence, respectively.

To apply the above minimization to our application,

we discretized the problem and solved it numerically.

Let Ω be the set of vertices that defines each triangu-

lated mesh on the facial surface image. Further denote

(a, b) to be the vertex pair defined by the triangulation

set Ω. Then we can define the weight matrix

W a;b ¼
1 if a; bð Þ∈Ω
0 otherwise

;

�
ð11Þ

which indicates adjacencies between vertices. Let τa=∑bWa,b

be a connectivity weight vector, which counts the number

of edges connected to the vertex a. Then the Laplacian op-

erator can be computed in matrix form as follows,

L ¼ Γ−W ; ð12Þ

where Γ = diag(τ1,…, τn).

As previously mentioned, we used the gradient of the

learned disfigurement (∇ŝ and ∇t̂ ) to guide the vector

field (αs and αt). Then, the Poisson equation (10) can be

expressed as,

Δf s ¼ Δŝ overφi; with f s ∂φi ¼ f �s ∂φi

����

ð13Þ

where it can be formulated as the following linear

equations:

Xm

b¼1

�
La;b⋅f s

��
v¼b

	
¼

Xm

b¼1

�
La;b⋅ŝ

��
v¼b

	
; if b∉∂φi

f s
��
v¼b ¼ f �s

��
v¼b

;if b∈∂φi

; ð14Þ

where m is the total number of vertices in φi, and fs|v = b

and ŝ|v = b refer to the structural information contained

in fs and ŝ at the vertex v = b, respectively.

The above linear equation can be solved using an it-

erative algorithm. We used the biconjugate gradient

Figure 7 Illustration of the concept of our Eigen-disfigurement model. A shows the longitudinal changes of a patient who underwent

reconstructive surgery on his right mandible and neck area (highlighted by yellow dashed circle). As shown, major structural and textural

changes occur in the reconstructed area. B shows images of the same patient with varying degrees (i.e., λ values) along the direction of the

first principal component. As the λ value deviates from 0, the degree of disfigurement increases. Specifically, as its value deviates towards −1,

the texture/color of the disfigured region deviates (i.e., darker) from that of the typical healthy face. Moreover, as its value deviates towards 1,

the structure of the disfigured region deviates from that of the typical healthy face. Thus the first principal component was sufficient to capture

the disfigurement of the patient.
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method [42] to solve the above sparse equation, i.e., to

compute fs for each of the x, y, and z components separ-

ately. In all cases, the least square solutions are found

within 1000 iterations. Figure 8 shows how the stitching

function works; it smoothly connects the learned disfig-

urement of varying degree to the target face within the

ROI of the target face using gradient information from

the learned disfigurement.

Evaluation strategy

Evaluation of preprocessing step

The disfigurement model that this study proposes is

based on 3D facial surface images of patients reproduced

from original 3D images, using the model mannequin

face to achieve correspondence across images. Thus, a

reliable and accurate algorithm to reproduce the 3D

faces with full correspondence is necessary.

To evaluate the quality of the preprocessing step, we

tested if fiducial points that were not used for the pre-

processing step can be accurately retrieved, which is

similar to the method described in [43]. First we placed

the additional fiducial points on the model mannequin

face and each of 3D facial surface images (both disfig-

ured and non-disfigured set). We call these fiducial

points as validation fiducial points. Then, we computed

the error between the validation fiducial points of a

given 3D facial surface image and those of its repro-

duced version from the model mannequin face. A total

of 10 validation fiducial points were annotated and used

for this analysis (Figure 9). Note that these validation fi-

ducial points were not used for the preprocessing step.

First 7 fiducial points (white dots in Figure 9) are based

on the previous literatures (e.g., [24,34]), where mainly

located in mid-face area. The other 3 fiducial points are

in peripheral. Since there are less visible fiducial points

in peripheral than mid-face area, we mathematically

computed the location of these 3 fiducial points from

the pre-existing fiducial points; we used the surface

point on the middle between two pre-existing fiducial

points. Euclidean error for the 10 additional fiducial

points will be minimized as the algorithm effectively re-

produces the given face with full correspondence to

other faces.

Sensitivity to fiducial point allocation

We evaluated how sensitive the algorithm is to errors in-

troduced by fiducial point allocation since such errors

can affect the overall quality of the reproduced face. For

this, we randomly selected one face pair from each data-

set (disfigured and non-disfigured) and the preprocess-

ing algorithm was reapplied after randomly scrambling

the locations of the fiducial points. It was found that the

maximum error was 1.49mm when human raters anno-

tated the fiducial points [35]. Next, we scrambled the lo-

cation of each fiducial point (excluding additional

fiducial points introduced in the previous chapter) by

Figure 8 Illustration of how the stitching function works to create simulated faces with disfigurements. The stitching function finds the

interpolation functions that follow the gradient of the learned disfigurement (gradient of structural and textural part inside of red boundary line

in A) from the boundary of the target face (blue dashed line in C). Sub-figures D-H are simulation results for varying degrees of disfigurement on

the target face B. It may be seen that the stitching functions fs and ft smoothly connect the learned disfigurements of varying degrees to the

target face using the unknown boundary of the ROI of the target face and gradient of the learned disfigurement.
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1.5 – 3mm in increments of 0.5mm. We then repeated

the error analysis as described in the previous section

for each case to check the effect of the introduced pertur-

bations in fiducial point allocation for the overall quality of

the reproduced face. We excluded the 3 additional fiducial

points in peripheral for this analysis as the scrambling

process can perturb their locations. The aforementioned

procedures were repeated 10 times to obtain summary sta-

tistics (e.g., average) of the above measures.

Evaluation of disfigurement model

The ultimate purpose of this study is to provide a new tool

that allows us to understand human impressions of visible

disfigurements while being able to control the location and

level of the severity of disfigurement. Our goal is not to es-

timate physical properties of a reconstructive surgery out-

come, but rather, to determine whether the resulting

simulated disfigurement is plausible or not.

The best way to evaluate the visual plausibility of the

simulated disfigurement is to obtain subjective opinions of

medical professionals who have clinical experience in the

treatment of patients with head and neck cancer. Thus, we

conducted an observer study using 4 medical professionals

under an approved IRB protocol from The University of

Texas at Austin (Protocol ID of 2013-10-0065). The par-

ticipating medical professionals included 2 plastic/recon-

structive surgeons, 1 nurse, and 1 physician assistant (PA)

employed at the Seton Medical Center in Austin, Texas,

USA. All medical professionals provided informed consent

(verbal) to participate the study. These medical profes-

sionals were not involved in the development of the disfig-

urement model. Here after we shall refer to these 4

medical professionals as observers.

Simulated image set for observer study We selected a

total of five 3D facial images (3 female and 2 male, all non

Hispanic/Latino White to match the major race/ethnic

group in the disfigured set) as target faces for the simula-

tion (Figure 10A). Among the 5 images, 2 were from the

dataset of disfigured faces while 3 were from the dataset of

non-disfigured faces. The 3 individuals from the non-

disfigured dataset had ages typical of facial cancer patients

(>45 old). After removing visually subtle disfigurements or

disfigurements having similar shape and texture each other

(1 mid-face and 3 periphery), we applied 13 disfigurements

(the first 6 mid-face disfigurements and the first 7 periph-

eral disfigurements listed in Table 1) developed from our

modeling technique on randomly selected male target

faces. The same 13 disfigurements were also applied on

randomly selected female target faces. For those 26 simula-

tions, we fixed λ = 0.5 (Figure 10B). To test the observers’

responses to implausible results, we also included 4 im-

plausible simulations (2 mid-face disfigurements and 2 per-

ipheral disfigurements) by exaggerating the degree of

disfigurement by setting λ = 1.3 (Figure 10C). In addition,

for comparison, we included two 3D facial images of pa-

tients having real disfigurements (Figure 10D). These im-

ages were not used to develop our disfigurement model.

Therefore, a total of thirty two 3D facial images were pre-

pared for evaluation of the proposed disfigurement model-

ing technique.

Observer study setup Each 3D simulated face was dis-

played on a typical personal computer screen. Each 3D

face was rendered on the screen and observers were

allowed to evaluate the facial appearance fully by rotat-

ing the face and zooming in or out of the 3D scene.

After the review, they were asked to rate the plausibil-

ity of the simulation result using a 9-point Likert scale.

A value of 1 indicates that they strongly disagreed that

the depicted disfigurement could be seen as an outcome

following facial reconstructive surgery, while a value of 9

indicates that they strongly agreed that the depicted dis-

figurement could be seen as a reconstruction outcome.

The duration of the study was approximately 40 minutes

for each observer. Figure 11 shows the layout of the ex-

periment for this study.

Statistical analysis for observer study We performed a

statistical modeling of the observers’ ratings to investigate

the plausibility of different types of facial disfigurement

Figure 9 Location of validation fiducial points. A total of 10

validation fiducial points were used to evaluate the pre-processing

step. Among those, 7 were located on the mid-face area (white dots)

and the other 3 were located on the periphery (blue dots). For those

points on periphery, we used the surface point on the middle between

two existing fiducial points, which were used in the pre-processing

step (red dots, annotated as modeling points). Yellow lines indicate

what modeling points were used to obtain the peripheral validation

fiducial points.
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simulations. In addition to the simulation type, gender of

target faces was included as a covariate since previous liter-

atures suggest that there may an inherent bias in observer’s

perception on facial lesions (e.g., [44]). Moreover, the

observers’ criteria of assessing the plausibility of the facial

disfigurement are expected to show some variability. Thus,

we used a mixed model to properly model factors affecting

observers’ ratings as well as the inter-observer variability.

Among many variations of mixed models, we utilized a

cumulative link mixed model as observer’s ratings are

ordinal in nature:

logit P ri≤jð Þð Þ ¼ θj þ βX i þ Obsi;

i ¼ 1;…; 128; j ¼ 1;…; 8
ð15Þ

where r, X, and Obs are the observers’ ratings, the fixed

effects, and the random effects, respectively. In addition,

i indexes all ratings, β corresponds to the coefficient as-

sociated with X, and θj is a threshold value for jth Likert

scale level. This model accounts for the cumulative prob-

ability distribution of the ith rating being in the jth Likert

scale level. The simulation types (mid-face, periphery, real,

and exaggerated) and gender of each target face are consid-

ered as the fixed effects Xi. The inter-observer variability is

modeled as random effects Obsi e N 0; σ2Obs
� �

: Note that we

did not stratify the real and exaggerated simulation samples

further to create additional (sub) types due to the limited

number of available samples in both cases.

The questions that we are interested in are: 1) whether there

is any difference in observer-rated plausibility between the

simulated faces, the real patient faces, and the exaggerated

faces, and 2) whether the plausibility ratings on simulation re-

sults are affected by the gender of the target face. This study

used the ordinal package of the R v.3.0.3 [45] to build a cumu-

lative link mixed model and answer the above questions.

Results
Evaluation of preprocessing step

The results show that the preprocessing step effectively

reproduced the given face using the reference manne-

quin model (Table 2). For both datasets, the averaged

error for each validation fiducial points ranged from 1.2mm

to 4.4mm. The average error for the points around nose

(nb1 and nb2 in Figure 9) and the peripheral point on

Figure 10 Examples of simulated and real disfigurements. In subfigure A, the first two images from the left are from the disfigured dataset

while the others are from the non-disfigured dataset. From left to right, subfigure B shows: 1) disfigurement due to a flap on the left mandible

and neck, 2) disfigurement due to a flap around the nose and eye area, 3) disfigurement due to a mandibulectomy scar on the mouth and neck,

4) disfigurement due to a flap on the right eye and forehead, and 5) disfigurement due to a flap on the right eye, respectively. Subfigure C shows

implausible results created by exaggerating the degree of disfigurement. Their plausible versions are shown in the first two simulations in B. Subfigure

D shows real disfigurements. The patients’ pre-operative faces are the first two faces in A.
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forehead (p1 in Figure 9) were relatively higher than for the

other points (which ranged from 3.2mm to 4.4mm). These

validation fiducial points have less neighboring fiducial points

than the other validation fiducial points. This means they

have more freedom to move away from the point where it

should be. However, the amount of error was still small

(less than 5mm) compared with the degree of morpho-

logical change due to the reconstructive surgery.

Evaluation of fiducial point allocation sensitivity

The results show that there was no significant effect on

the error introduced by the fiducial points allocation

(Table 3). Although the error increased with the amount

of perturbation introduced, the increased amounts are

limited (mostly less than 5mm). Thus, the effect of er-

rors in fiducial point allocation on the overall quality of

the preprocessed faces and the subsequent disfigurement

models was minimal.

Observer evaluation of disfigurement

The test for differences in gender shows that there was no

statistically significant gender effect on observer’s plausi-

bility ratings (p-value = 0.64) when considering different

simulation types (Table 4). Similarly, the test for

Figure 11 Screen layout of the evaluation study. Observers were allowed to examine the given stimuli fully by rotating the rendered 3D faces

and zooming in or out of the 3D scene.
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differences between the real samples and the other simu-

lation types indicate that there was no statistically signifi-

cant difference in observer plausibility ratings (p-value =

0.08) between the real samples and the simulations of

peripheral disfigurements when considering gender.

However, we found opposite results (p-values < 0.001) for

mid-face and exaggerated simulated disfigurements. This

demonstrates that our modeling technique was effective

when simulating peripheral disfigurements. However,

mid-face simulations were not rated as similar to the real

samples.

In addition, we evaluated the observer effects by con-

ducting a likelihood ratio test between the original cu-

mulative link mixed model and an additional cumulative

link model without observer effects. The chi-squared

test on the likelihood ratio showed significant difference

between two models (χ2 = 14.88, df = 1, p-value <0.001),

which indicates that the observer-level random effects

are significant. We further evaluated the observer effects

by estimating their conditional modes with 95% confidence

intervals based on the conditional variance (Figure 12).

The fourth observer gave the lowest plausibility ratings to

simulations, while the second observer gave the highest

plausibility ratings. These results indicate that observers

perceive the plausibility of simulation samples differently.

To evaluate the trend of observer ratings in detail, we

computed summary statistics for each simulation type,

and for each gender. As expected, the real disfigurement

samples were rated higher (group median: 7.25) than the

others (Table 5). In addition, the exaggerated disfigure-

ment simulations were rated lower (group median: 1.75)

than the others. The mid-face (group median: 5.5) and

peripheral (group median 6.5) disfigurement examples

were rated between the ratings of the real and exagger-

ated samples. Although there are some exceptions, most

of simulated disfigurements received median ratings

above 5, which means the observers were prone to be-

lieve that those simulations were plausible facial cancer

reconstruction outcomes. Two mid-face simulations

(M1 and M4 in Table 5) were rated as implausible re-

sults. The disfigured regions of patients M1 and M4 are

wider than on the 4 patients with mid-face disfigure-

ment. In fact, the disfigured region of patient M6 is

smaller than the others and its simulation on the target

faces got high ratings (especially on male target). This

indicates that the observers perceive a wider and larger

disfigurement simulation as less plausible.

Discussion
We proposed a new strategy to learn facial disfigure-

ments from real patient data that persist after ablative

and reconstructive surgery of facial cancers. We subse-

quently used the gathered data to simulate such disfig-

urements on the faces of other individuals by a

modeling process. Unlike previous studies investigating

how human perceive facial disfigurements, this study

utilized modeling techniques that provide control over

the type, location, and degree of disfigurement, enabling

controlled and systematic experiments on the human

perception of disfigurements.

From the 3D surface facial images of patients with fa-

cial disfigurement, the algorithm first reproduces each

face from a facial mannequin model to establish full cor-

respondence between the faces. Using the reproduced

faces, an algorithm derived from the model learns the

longitudinal structural and textural changes (disfigure-

ments) on each patient’s face over the course of the

treatment. This algorithm enables plausible simulations

by smoothly imposing the learned disfigurements on the

corresponding part of the faces of others.

Quantitative evaluation of the reproduced faces

showed that the algorithm was able to effectively repro-

duce each given face using a facial mannequin model.

We also showed that human error during fiducial point

allocation could introduce errors in modeling. However,

these errors were very small (mostly less than 5mm) as

compared to structural changes that patients can experi-

ence during treatment.

To show that the proposed modeling strategy can be

used to investigate how humans perceive disfigurement,

we evaluated the plausibility of the simulated examples

using panel ratings of experienced medical professionals,

blind to the source of each image. We prepared a total

of 32 facial images for evaluation. Four types of samples

were prepared: 1) mid-face, 2) periphery, 3) real, and 4)

exaggerated. Based on statistical analysis of the observer

ratings, our disfigurement modeling scheme was able to

create simulation results with plausibility ratings similar

to real disfigurement samples for periphery disfigure-

ments. While mid-face simulations were rated as lower

Table 2 Error between the pre-processed face and the

given face for validation fiducial points

Validation
fiducial
points

Error (mm)

Disfigured set Non-disfigured set

Mean Std Mean Std

g 1.2 0.7 1.4 0.7

nb1 3.5 2 4.2 2.2

nb2 4.4 2.2 3 1.7

sbal1 2.8 1.3 2.6 1.2

sbal2 3 1.6 3.4 1.7

l1 2.2 1.2 2 1.1

l2 3 1.4 3.7 1.5

p1 3.2 1.7 2.9 1.7

p2 2.3 1.3 2.1 1.1

p3 2 1.3 1.7 0.9
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than real and periphery samples, in most cases these also

were rated as plausible reconstructive surgery outcomes.

We found a significant observer-level random effect in

plausibility ratings. Moreover, we found that observers

tended to rate mid-face simulations with wider affected

regions as lower than those with smaller affected re-

gions. This may indicate that each observer has a differ-

ent threshold of plausibility. In the simulations, we fixed

the degree of disfigurement λ = 0.5 for both mid-face

and peripheral disfigurements. It is possible that the ob-

servers may have perceived such a fixed degree of disfig-

urement differently on the different facial areas, thereby

affecting his/her final ratings. This could explain why

the mid-face simulations were rated lower than peripheral

simulations. It is also possible that setting λ = 0.5 resulted

in mid-face disfigurements that were too large, especially

for disfigurement with wide affected regions. Further stud-

ies with varying λ values will be required to confirm this.

However, the variation found in the observer ratings on

each simulation is strong motivation to create a model to

study human perception of disfigurement.

One limitation of this study is that the algorithm may

decide that an error having greater variation than a real

disfigurement is also a disfigurement. Conversely, the al-

gorithm may ignore minimal disfigurements with less

variation than natural longitudinal variations of a pa-

tients’ face morphology. This is due to the fact that our

modeling technique utilizes PCA to capture longitudinal

structural and textural changes (disfigurements) of a pa-

tient during treatment. Since PCA only aligns the data

in terms of the amount of variance found in it, any error

causing high variation could be detected as disfigure-

ment. Specifically, large illumination changes of one

image relative to another of the same patient could mis-

lead our modeling algorithm to regard such illumination

error as disfigurement. However, such illumination

changes could be controlled at the acquisition stage by

applying a rigorous calibration step on 3D image

Table 3 Evaluation results for fiducial point allocation sensitivity analysis

Mean error between the preprocessed face and the original face (mm)

Perturbation error (mm) 0 1.5 2 2.5 3

Validation fiducial points

Disfigured sample g 2.2 2.8 2.4 3.3 4.2

nb1 4 3.5 3 3.4 5.2

nb2 3.8 4.3 4.2 4.2 4.7

sbal1 1.9 2.1 1.8 2.2 3.2

sbal2 2.7 3 3.6 3.3 4.5

l1 0.9 1.3 1.8 2 2.1

l2 1.5 1.4 1.6 1.7 3.3

Non-disfigured sample g 1.6 1.9 2.5 2.3 2.6

nb1 2.7 2.5 2.4 3.7 3.7

nb2 5.4 6 6 5.7 7

sbal1 2.7 3 3 3.6 4.3

sbal2 1.2 1.7 1.9 2.1 2.3

l1 2.3 2.2 2.1 3 2.8

l2 2.4 2.8 2.1 2.2 2.7

Table 4 Cumulative link mixed model analysis results

Fixed-effects Coefficient Standard error p-value

Simulation type Mid-face −2.99 0.79 <0.001

Peripheral −1.31 0.75 0.08

Exaggerated −7.37 1.09 <0.0001

Gender Female −0.15 0.33 0.64

Random-effects Variance Standard deviation

Observer (Intercept) 0.68 0.83 N/A

Final cumulative link mixed model estimates for each fixed, and random effect variable, as well as the result of testing for difference in observer ratings for simulation types

and gender. For the simulations, the tests for difference in ratings were against real disfigurement samples. For gender, the test was against male target face samples.

Lee et al. BMC Medical Imaging  (2015) 15:12 Page 15 of 19



acquisition and by maintaining the ambient light condi-

tions. Visually minimal disfigurements usually occur

when the oncological and reconstructive surgeries were

conducted internally. In such cases, many disfigurements

are visually subtle or even not superficially visible. Even

if the algorithm extracts such subtle disfigurements, it

may not be useful to develop a disfigurement model

from it since it may not be noticeable to a human obser-

ver. In addition, pre-existing facial characteristics of pa-

tients such as facial wrinkles or surgical scar (e.g.,

Figures 1 and 8) can cause an artifact in our simulation

results. Since the pre-existing characteristics do not

show temporal changes, they can stay in DC component

(or mean) of Eigen-disfigurement, which can cause a vis-

ual artifact. However, we can prevent this artifact by re-

moving it before building Eigen-disfigurement; one can

use the concealment feature of Poisson Image Editing

[41] for this.

The ultimate goal of this study was to provide models

that can simulate surgically plausible disfigurements

with control of the location and degree of the disfigure-

ment. In this respect, the obvious clinical application of

our modeling method is to investigate how humans per-

ceive disfigurements by varying the location and degree

of disfigurement severity. Moreover, our model can be

used for patient consultation. Care providers (e.g., sur-

geons or psychologists) could use an image showing the

simulated disfigurement of a patient who will undergo

certain oncological and reconstructive surgery for facial

cancer for surgical planning, or patient education (i.e.,

helping him/her to understand and cope with possible

changes to his/her face that are expected due to

surgery).

Future applications of this study include: 1) conduct-

ing an additional human observer study using medical

professionals to investigate inter- and intra-rater vari-

ability and to find appropriate ranges of disfigurement

levels as we found variations in their plausibility ratings;

2) conducting a human observer study to determine

how the type, location, and severity of disfigurement af-

fects human perception. This will require observers that

are unfamiliar with facial cancer patient deformities; 3)

testing/validating existing algorithms or further develop-

ing it to locate fiducial points automatically on 3D faces

of patients with facial disfigurements; and 4) investigat-

ing how state-of-the-art face recognition algorithms per-

form on faces with simulated disfigurement. The first

task is needed to further refine our disfigurement

models for future studies. The results of the second task

may foster a deeper understanding of human perception

of disfigured faces, which can be used to help patients

with such disfigurements to psychosocially adjust to live

with those conditions. The results of third task could facili-

tate the overall processing efficiency of the disfigurement

Figure 12 Observer effects via conditional modes with 95% confidence intervals based on the conditional variance. This figure shows

that the fourth observer gave the lowest plausibility ratings, while the second observer gave the highest plausibility ratings. These variations on

ratings may indicate that observers perceive the plausibility of simulation samples differently.
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modeling process. The last task may prove highly interest-

ing for developing security and defense applications. Since

most previous studies have focused on the healthy popula-

tion instead of patients with facial disfigurements, even

state-of-the-art face recognition algorithms may not suc-

ceed on individuals with facial impairments. By using the

proposed disfigurement models, we could create different

types of disfigurements at various locations on a face.

Accordingly, we could be able to systematically validate

existing algorithms and help other researchers develop

optimal methods robust to such facial variations.

Conclusion
This study introduced a framework to learn and extract

facial disfigurements from real patient data that persist

after oncologic and reconstructive surgery of facial can-

cers, and subsequently to model and apply such disfig-

urements on novel faces with a high degree of control of

disfigurement types. The modeling technique was able

to capture facial disfigurements and its simulation repre-

sents plausible outcomes of reconstructive surgery for

facial cancers, especially for disfigurements on the facial

periphery. In the future, the framework introduced by

Table 5 Summary statistics of the medical professionals’ ratings on simulated, real, and exaggerated disfigurement

Types Location/gender of target
face

Disfigurement
source

Medical professionals’ ratings (N = 4)

Median MAD Min Max Overall

Simulated (λ = 0.5 | N = 26) Mid-face female target (N = 6) M1 2.5 0.5 2 5 5.5

M2 6 0.5 5 7

M3 5.5 1 4 8

M4 4.5 0.5 3 5

M5 6 0.5 4 7

M6 5.5 1.5 3 7

Mid-face male target (N = 6) M1 4 1.5 2 7 5

M2 5 1.5 2 7

M3 5 0 3 5

M4 4.5 0.5 4 6

M5 5.5 2 3 8

M6 7 0.5 4 8

Peripheral female target (N = 7) P1 7.5 0.5 7 9 6.5

P2 6.5 0.5 6 8

P3 6.5 0.5 5 7

P4 6 1 2 7

P5 6.5 0.5 4 7

P6 6 1 5 8

P7 7 0.5 6 8

Peripheral male target (N = 7) P1 7 0 7 9 6.5

P2 6.5 1 4 8

P3 7 0.5 5 8

P4 6 1 4 7

P5 7 0.5 5 8

P6 6.5 1 3 8

P7 6 1 6 8

Real (N = 2) Mid-face N/A 8 0.5 7 9 7.25

Peripheral 6.5 1 5 8

Exaggerated (λ = 1.3 | N = 4) Mid-face (N = 2) M1 2 0.5 1 4 1.75

M3 1.5 0.5 1 3

Peripheral (N = 2) P2 1 0 1 2

P3 2 0.5 1 7

MAD refers to median absolute deviation, which is computed as the median of the absolute deviations from the median of the data.
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this study could be used to understand how human per-

ceive facial disfigurements systematically by varying its

type and severity.

Additional file

Additional file 1: This table shows the details of reconstruction

procedures for each patient.
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