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In this study an eigen value approach has been employed to examine the mechanical force applied along with 
a transverse magnetic field in a two dimensional generalized magneto micropolar thermoelastic infinite space. 
Results have been obtained by treating rotational velocity to be invariant. Integral transforms have been applied 
to solve the system of partial differential equations. Components of displacement, normal stress, tangential couple 
stress, temperature distribution, electric field and magnetic field have been obtained in the transformed domain. 
Finally numerical inversion technique has been used to invert the result in the physical domain. Graphical 
analysis has been done to described the study. 
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1. Introduction 
 
 The micropolar theory of elasticity was developed with the possibilities of its  wide-ranging practical 
applications in diverse fields such as geophysics, optics and acoustics and so on. Contemporary engineering 
materials are usually made up of constituents possessing internal structures. Some of the material in this 
category are polycrystalline materials, materials with fibrous or coarse grain. Classical elasticity is 
inadequate to represent the behaviour of such materials. An analysis of these type of materials requires a 
special theory “Micropolar Elasticity” developed by Eringen [1] which deals with deformation of oriented 
particles. Basically a micropolar continuum is a collection of interconnected particles in the form of small 
rigid bodies which can undergo both translational and rotational motions. Classic examples of such materials 
are granular media and multimolecular bodies, whose microstructure act as an evident part in their 
macroscopic responses.  
 The current area of study namely: magneto micropolar thermoelasticity is an extension of this theory. 
This theory deals with the effects of the magnetic field on the elastic deformation produced by uneven 
heating throughout the body which may or may not be subjected to mechanical forces. In this case, in 
addition to elastic and electro-magnetic fields, thermal field is also present. Each of these fields contributes 
to the total deformation of the body and interacts with each other. Maxwell’s equations still govern the 
electro-magnetic field while the elastic field is determined by the modified Hooke’s law and the thermal field 
by Fourier’s law of heat conduction in its modified form. Due to superposition of the electromagnetic field 
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on the elastic field, the elastic-stress relation gets modified with the introduction of Lorentz’s force as body 
force and in turn the elastic field influences the electro-magnetic field by modifying Ohm’s law. 
 Basic equations of magneto micro thermoelasticity were obtained by Kaliski [2]. Also, the wave type 
of the above equations were studied by Kaliski and Nowacki [3]. Paria [4], Knopoff [5], Banos [6], 
Chadwick [7], and Purushothama [8] contributed to magneto elasticity theories. Nowacki [9] studied a 
simplified two dimensional problem of magneto-micropolar elasticity. Ezzat and Youssef [10] investigated 
the problem of micropolar thermal elasticity in perfectly conducting media. Bakasi et al. [11] studied 
magneto thermal elastic problems with thermal relaxations and heat sources in a three dimensional infinite 
rotating elastic media. A problem of generalized magneto thermoelasticity in a conducting medium with 
variable material properties was also studied by Youssef [12]. The effect of rotation was analyzed by Kumar 
and Rupender [13] by using a two dimensional model in an electromagnetic micropolar generalized 
thermoelastic medium in the presence of a transverse magnetic field subjected to a mechanical force or 
thermal source and observed that the application of a thermal source is more significant than the mechanical 
force. Ezzat and Bary [14] compared the one-temperature theory with the two temperature theory in a 
generalized magneto thermoelastic medium in a perfectly conducting medium using the state space approach 
subjected to a thermal shock and traction-free surface and found that the two-temperature generalized theory 
describes the behavior of the particles of an elastic body more accurately than the one-temperature theory. 
Ezzat and Awad [15] introduced the modified Ohm’s law, including the temperature gradient and charge 
density effects, and the generalized Fourier’s law including current density effect to the equations of the 
linear theory of micropolar generalized magneto thermoelasticity. A normal mode analysis is used to obtain 
the solution. He and Cao [16] used the generalized thermoelastic theory with thermal relaxation in the 
context of L-S theory to investigate the magneto thermoelastic problem of a thin slim strip placed in a 
magnetic field and subjected to a moving plane of heat source and found that the magnetic field significantly 
influences the variations of non-dimensional displacement and stress but has no effect on the non-
dimensional temperature. Singh and Kumar [17] studied the interaction of the electromagnetic field with the 
elastic field in the presence of temperature by applying the mechanical force and thermal source by using 
modified Fourier and Ohm’s law.  
 Increasing attention is devoted to the interaction between magnetic fields and strain in a micropolar 
thermoelastic solid due to many applications in the fields of geophysics, plasma physics and related areas. 
The deformation at any point of the medium is useful to analyze the deformation field around mining tremors 
and drilling into the crust of the earth. It may also find application in various engineering problems, crystal 
physics and solid-earth geophysics. The present study can be regarded as a better representation of the elastic 
model for studying the earth’s planetary motion as it involves rotational velocity in addition to its thermal 
and electromagnetic field. The scope of the present study is to examine the interaction in the magneto 
micropolar thermoelastic material due to a mechanical source.  
 
2. Basic equations 
 
 Following Baksi et al. [11], the linear equations of electrodynamics of a slowly moving medium for 
a homogenous and perfectly conducting elastic solid in the simplified form along with field equations of 
motion and constitutive relations in the theory of micropolar generalized thermoelasticity, taking into 
account the Lorentz force are given by Eqs (2.1)-(2.9) 
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where     t3 2 K           and      0 o  F J H , (2.10) 

 

oH  is the external applied magnetic field intensity vector, h the induced magnetic field vector, E the 

induced electric field vector, J the current density vector, u the displacement vector, 0  and 0  the magnetic 

and electric permeabilities, respectively, and ij  – the Kroneker delta. 

 
3. Formulation and solution of the problem 
 
 We consider a homogenous, isotropic, perfectly conducting micropolar generalized thermoelastic 
medium, permeated by an initial magnetic field oH  acting along the 2x  -axis.  

 For a two dimensional problem we take the displacement vector u, rotation vector Ω  and 
microrotation vector   as (by assuming  Ω  to be invariant) 
 
   , ,1 3u 0 uu ,       , , ,20 0       ,Ω ,20 0Ω ,      , ,1 3E 0 EE , 

   (3.1) 
   , ,0 h 0h ,      , ,0 020 H 0H . 

 
 Using expressions mentioned in Eq.(3.1) in Eqs (2.1)–(2.4), (2.8)-(2.9) we get 
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 Using the dimensionless quantities as defined in Eq.(3.12), the system of Eqs (3.2)-(3.11) after 
suppressing the asterisks can be rewritten as  
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 We take the Laplace and Fourier transform as 
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 After applying the transformation as defined in Eqs (3.24)-(3.25) on Eqs (3.13)–(3.16), we get 
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I  is identity matrix of order 4, O is null matrix of order of 4 and    is the transpose of matrix. 
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To solve the above equation, we take    , , ,  3qx
3W x s X s e   , for some parameter q. 

 Using this value in Eq.(3.36), we get  
 
  ( , , ) ( , , )3 3AW x s qW x s   , (3.40) 
 
which leads to the eigen value problem. 
 A characteristic equation corresponding to the matrix A is given as 
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 The eigen values of matrix A are the characteristic roots of Eq.(3.42). The eigen vectors ( , )X s  

corresponding to eigen value pq  can be determined by solving the homogenous equations 
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 Thus a solution of Eq.(3.40) becomes 
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where iB s  are eight arbitrary constants.  
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4. Boundary conditions 
 
 We consider an infinite micropolar elastic space in which a concentrated force    0 1F P x t     

where 0P  is the magnitude of the force, acting in the direction of the 3x  -axis at the origin. The boundary 

conditions for the present problem on the plane 3x 0  are  
 

     , , , , ,1 1 1 1u x 0 t u x 0 t 0     (4.1) 

 

     , , , , ,3 1 3 1u x 0 t u x 0 t 0     (4.2) 

 

     , , , ,2 1 2 1x 0 t x 0 t 0     , (4.3) 
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 Using these values of iB s  in Eqs (3.48)-(3.57), we obtain transformed components of displacement, 
microrotation, temperature distribution, tangential and normal stress, induced electric field and magnetic 
field, where 
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5. Inversion of the transforms 
 
 The transformed components of displacement, microrotation, temperature distribution, tangential and 
normal stress, couple stress, induced electric field and magnetic field are dependent on , 3x s  and  . To 

obtain them in the physical domain in the form of ( , , )1 3f x x t , we invert integral transforms by using the 
inversion technique as used by Singh et al. [18]. 
 
6. Numerical result and discussion 
 
 Following Eringen [19], we take the following values of relevant parameters for the case of 
magnesium crystal as 
 

 . /10 29 4 10 N m   ,     /10 24 10 N m   ,     /10 2K 1 10 N m  ,     . / ,3 31 74 10 kg m          
 

 3x 1 ,         .  ,19 2j 0 2 10 m        * . 19 2K 1 1753 10 m  ,      * . sec/1 20 0787 10 N m   ,       
 
 0 =6.131 × 10-13s,        1 =8.765 × 10-13s,      .0 073  ,      0T =296 K,       
 

 . 9
0 0 779 10 N   ,         9 1

0
1

10 Fm
36

   


,        7 1
0 4 10 Hm    ,     Ω 1  . 

 
 The computations are carried out for the non-dimensional time t=1/2 and range 10 x 9  . The 

distribution of non-dimensional normal displacement 3u , non-dimensional normal stress  33 , non-

dimensional tangential couple stress  32m  and non-dimensional temperature distribution T with non-

dimensional distance 1x  have been shown in Figs 1–4.  
 

 
 

Fig.1. Variation in normal displacement 3u . 
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Fig.2. Variation in normal force stress 33 . 
 

 
 

Fig.3. Variation in tangential couple stress 32m . 
 

 
 

Fig.4. Variation in temperature field T. 
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 The solid line and solid line with solid square represent a micropolar generalized thermoelastic 
medium, for Green and Lindsay [20] theory as G-L (MGTER) and for Lord and Shulman [21] theory as L-S 
(MGTER), respectively with the rotation effect. The small dashes line and small dashes line with circles 
represent a magneto micropolar generalized thermoelastic medium, for L–S theory as L-S (MMGTE) and for 
G–L theory as G-L (MMGTE), respectively. The large dashes line and large dashes line with triangles 
represent magneto micropolar generalized thermoelastic medium with the rotation effect, for G-L theory as 
G-L (MMGTER) and for L-S theory as L-S (MMGTER), respectively. The variations in normal 
displacement  3u , normal stress  33 , tangential couple stress 32m  and temperature distribution T with 

distance 1x  have been shown for mechanical force in Figs 1–4. 

 It is clear from Fig.1 that near the source 3u  has higher values for G-L (MGTER) and L-S 

(MGTER) theories as compared to its values for all other theories. Also, as 1x  increases, the electromagnetic 
and rotation effect tend to diminish. Figure 2 again shows that electromagnetism and the rotation effect have 
much less impact in the range 13 x 9   for normal stress 33 . Figure 3 shows that tangential couple stress 
keeps on increasing as we move away from the point of application of the source for all theories. Finally, 
Fig.4 shows that variation in the temperature distribution T with the rotation effect, near the source has 
higher values and then keeps on decreasing with 1x  whereas without the rotation effect it has lower values 

near the source and then keeps on increasing with 1x . 
 

7. Conclusion 
 

 From the above discussion it is evident that normal displacement, normal stress, tangential couple 
stress and temperature distribution T are affected significantly by the application of rotation and magnetic 
field. Significant difference can be obtained in the temperature distribution by including the rotation effect. 
Also, when the case of rotation effect is considered, normal stress shows opposite behaviour for L-S and G-L 
theories.  
 
Nomenclature 
 
 *c   – specific heat at constant strain 
 E – induced electric field 
 0H  – external applied magnetic field 

 h – induced magnetic field 
 J   – current density vector 
 j – microinertia 
 u – displacement vector 
 , , ,      – micropolar elastic constants 
 t   – coefficient of linear thermal expansion 

 ij   – Kronecker delta 

 0   – electric permeability 

 ijk   – alternating tensor 

 ,     – Lame’s constants 
 ij   – couple stress tensor 

 0   – magnetic permeability 

    – density 
 e   – volume charge density 

 ij   – stress tensor 

 , 0 1   – relaxation times 

    – microrotation vector 
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