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Abstract—In this work, an adaptive acoustic source tracking
algorithm is proposed. It is based on eigenbeams which perform
spatial decomposition of the sound field, works in two dimensions
for tracking of azimuth and elevation, has low computational
complexity, and is robust to noise and room reverberation. The
tracking is performed using an adaptive principal component
analysis of the particle velocity vector, which points from the
acoustic source to the sensor. The particle velocity vector is
estimated using a spherical microphone array, and is formed
by combining the first-order eigenbeams.

I. INTRODUCTION

Spherical microphone arrays have recently become the sub-
ject of research due to their ability to analyze 3D sound fields
with high spatial resolution. Applications include spatial sound
recording, direction of arrival (DOA) estimation and acoustic
source tracking. Source tracking in particular is necessary for
automated camera steering and microphone array beamformer
steering.

There has been extensive work on localization/DOA esti-
mation in one dimension, which has resulted in a number of
different solutions: time difference of arrival (TDOA) methods
such as GCC-PHAT, subspace methods such as ESPRIT and
MUSIC, and steered response power methods. While some
have been generalized to two dimensions [1], [2], they are
typically computationally complex, due to the need for an ex-
haustive search, and not robust to reverberation. Additionally
TDOA-based methods are unsuitable for practical spherical
microphone arrays with a small radius, due to the insufficient
spacing between microphones.

In this paper we propose a source tracking algorithm based
on a low computational complexity DOA estimation method.
The low complexity of this method is crucial for real-time
tracking applications. The tracking is performed using an
adaptive principal component analysis of the acoustic particle
velocity vector, and is robust to noise and reverberation.

In previous work [3] we drew upon the theory of spherical
harmonics and proposed a low complexity DOA estimation
method based on eigenbeams, a spatial (in this case spherical)
decomposition of the sound field. These eigenbeams were used
to compute a pseudointensity vector, which is similar to the in-
tensity vector in acoustics, and points from the acoustic source
to the receiver. In this work we use a similar eigenbeam-based
method to estimate the particle velocity vector, which can also
be used for DOA estimation [4]. This vector points from the
acoustic source to the receiver for plane wave incidence; we

therefore assume far-field conditions, a point source and a
point sensor.

This paper is organized as follows: in Section II we intro-
duce the particle velocity vector and formulate the DOA esti-
mation problem as a maximum SNR beamforming problem, in
Section III we explain our method for estimating the particle
velocity vector using a spherical microphone array, in Section
IV we present our adaptive tracking algorithm, and in Section
V we evaluate its performance in simulated environments with
different noise and reverberation levels.

II. PROBLEM FORMULATION

A. Particle velocity vector

If u is a unit vector pointing from the sensor towards an
acoustic source and we assume a plane wave at the sensor, the
acoustic particle velocity vector s at a time instant n is given
by [5, p. 31]:

s(n) = −p(n)
Z0

u(n), (1)

where p is the sound pressure and Z0 is the characteristic
acoustic impedance of air. A spherical microphone array
allows us to construct an estimate of the particle velocity
vector s; our task is then to estimate the source location, i.e.
the vector u.

B. Maximum SNR beamforming

Let v(n) = [vx(n), vy(n), vz(n)]T be the noisy input signal,
a time-varying particle velocity vector. The noise is modelled
by a term e(n) = [ex(n), ey(n), ez(n)]T which can include
both ambient noise and room reverberation. The desired and
noise signals are assumed to be mutually independent; the
reflections due to reverberation are therefore assumed to be
diffuse. We have:

v(n) = s(n) + e(n)

= −p(n)
Z0

u(n) + e(n), (2)

If we apply a time-varying spatial weighting vector w(n)
to the input signal v(n), and sum the resulting three signals,
we get an output signal y(n):

y(n) = wT (n) v(n)

= wT (n) s(n) + wT (n) e(n)

= −p(n)
Z0

wT (n) u(n) + wT (n)e(n). (3)



The output signal-to-noise ratio (SNR) can be defined as

oSNR(w) =
wTRssw
wTReew

=
σ2
s

(
wTu

)2
wTReew

, (4)

where Rss = E{s(n)sT (n)} is the covariance matrix of
the desired source signal and Ree = E{e(n)eT (n)} is the
covariance matrix of the noise. As the desired signal s and the
noise signal e are mutually independent, the covariance matrix
of the input signal v can be expressed as Rvv = Rss + Ree

and we can express the variance of the output y as

σ2
y = wTRvvw

= wT [Rss + Ree] w

= wTRssw + wTReew. (5)

The beamformer with weights w that maximizes the output
SNR oSNR(w) is known as a maximum SNR beamformer.
This is equivalent to determining the principal component of
the data set comprising the noisy observations of the particle
velocity vector.

Let us now assume spherically white noise such that

Ree = σ2
eI, (6)

where I denotes a 3 × 3 identity matrix. Substituting this
expression in (5), one can see that maximising the output SNR
in (4) is equivalent to maximizing the power of y(n) under
the constraint

wTw = 1. (7)

Therefore, our objective can be formulated as

ŵ = arg max
w

wTRvvw s.t. wTw = 1. (8)

The optimal solution wo is given by u = s/‖s‖, where || · ||
denotes the l-2 norm.

For the more general problem where the noise is not
spherically white, the objective function would be given by

ŵ = arg max
w

wTRvvw s.t. wTReew = 1. (9)

In this case an estimate of Ree would be required.

III. EIGENBEAM-BASED PARTICLE VELOCITY
VECTOR ESTIMATION

The noisy particle velocity vector v can be measured using
an acoustic vector sensor (e.g. the Microflown [6]), however
here we wish to measure it using conventional pressure sen-
sors. In [3], we proposed a method for estimating the acoustic
intensity vector using eigenbeams, which are the result of
the decomposition of a three-dimensional sound pressure field
into a set of eigensolutions of the acoustic wave equation in
spherical polar coordinates. These eigenbeams can be obtained
using a spherical microphone array. Since the direction of the
intensity vector I = pv is given by the particle velocity vector,
we can use this method here to estimate the particle velocity
vector.

A. Eigenbeam calculation

Let us consider a sound pressure field p(k, r) at a point
r = (r,Ω) = (r, θ, φ) (in spherical polar coordinates, with
elevation θ and azimuth φ) on a sphere, where k is the
wavenumber. The spherical Fourier transform of this field is
given by [7, p. 192]:

plm(k) =
∫

Ω∈S2
p(k, r,Ω)Y ∗lm(Ω)dΩ, (10)

where (·)∗ denotes the complex conjugate and
∫

Ω∈S2 dΩ ,∫ 2π

0

∫ π
0

sin θdθdφ. We call plm the eigenbeam of order l and
degree m. Our basis functions are spherical harmonics Ylm(Ω)
given by [7, p. 190]:

Ylm(Ω) =

√
(2l + 1)

4π
(l −m)!
(l +m)!

Plm(cos θ)eimφ, (11)

where Plm is the associated Legendre function and i =
√
−1.

With a spherical microphone array we do not have a
continuous pressure sensor, but instead a sensor formed from
discretely spaced microphones. If we have a finite number
of microphones Q with spherical polar coordinates rq =
(rq,Ωq), q = 1, . . . , Q, we can approximate the integral in
(10) with a weighted sum of the pressure at each microphone
[8]:

plm(k) ≈
Q∑
q=1

p(k, rq,Ωq) gq,lm. (12)

The weights gq,lm, which depend on the sampling configura-
tion, must be chosen such that (12) is an accurate approxima-
tion of (10). As the spherical harmonics are orthonormal [9],
choosing

gq,lm =
4π
Q
Y ∗lm(Ωq)

makes this approximation exact provided the microphones are
equally spaced on the sphere and Q ≥ (N + 1)2, where N
is the highest harmonic order. In practice a small error is
involved as perfectly equidistant microphone positions cannot
be determined for non-trivial configurations.

B. Particle velocity vector estimation

The particle velocity vector can be estimated from the first-
order (l = 1) eigenbeams p1(−1)(k), p10(k) and p11(k), as in
[3]:

v(k) =

 vx(k)
vy(k)
vz(k)

 (13)

where the components vx(k), vy(k) and vz(k) of this vector
are dipoles steered in the opposite direction to the x, y and z
axes, to account for the minus sign in (1). This yields a vector
v(k) that is proportional to the particle velocity vector, which
is sufficient since we are only interested in its direction.



The steered beams vx(k), vy(k) and vz(k) are formed using
a linear combination of rotated first-order eigenbeams [3]:

va(k) =
1

b1(k)

1∑
m=−1

α a,m p1m(k), a ∈ {x, y, z} (14)

where the b1(k) factor is the first-order mode strength and is
required to make the beam patterns wavenumber independent.

To steer each of the eigenbeams in the appropriate direc-
tion (θr, φr), we multiply them by the spherical harmonics
Y1m(θr, φr). We therefore require:

α x,m = Y1m(π/2, π),
α y,m = Y1m(π/2,−π/2),
α z,m = Y1m(π, 0).

The particle velocities va(n) in the discrete time domain are
then obtained by taking the inverse discrete Fourier transform
of the beams va(k) evaluated at discrete values of wavenumber
k.

IV. ADAPTIVE LOCALIZATION ALGORITHM

A. Gradient ascent algorithm for spherically white noise

The constraint optimization problem in (8) can be solved
using the method of Lagrange multipliers:

L(w, λ) = wTRvvw + λ
(
wTw − 1

)
, (15)

where λ denotes the Lagrange multiplier. The update equation
is given by

ŵ(n) = ŵ(n−1) + µ∇Lw|w=ŵ(n−1), (16)

where µ is the step size and

∇Lw = 2Rvvw + λw. (17)

We determine λ such that wT (n)w(n) = 1, neglecting
terms of O(µ2), as follows:

[w(n−1) + µ∇Lw]T [w(n−1) + µ∇Lw] = 1

wT (n−1)w(n−1)

+2µwT (n−1) [2Rvvw(n−1) + λw(n−1)] = 1

wT (n−1)w(n−1)

+4µwT (n−1)Rvvw(n−1) + 2µλwT (n−1)w(n−1) = 1

1−wT (n−1)w(n−1)− 4µwT (n−1)Rvvw(n−1)

2µwT (n−1)w(n−1)
= λ

1−wT (n−1)w(n−1)

2µwT (n−1)w(n−1)
− 2wT (n−1)Rvvw(n−1)

wT (n−1)w(n−1)
= λ.

Now we obtain the update equation by substituting λ into (16):

ŵ(n) = ŵ(n−1) + µ

[
2Rvvŵ(n−1)

+

(
1−wT (n−1)w(n−1)

2µŵT (n−1)ŵ(n−1)
− 2ŵT (n−1)Rvvŵ(n−1)

ŵT (n−1)ŵ(n−1)

)
ŵ(n−1)

]
(18)

which can be written as

ŵ(n) =
1
2

[
1

ŵT (n−1)ŵ(n−1)
+ 1
]
ŵ(n−1)

+µ

[
2Rvvŵ(n−1)− 2ŵT (n−1)Rvvŵ(n−1)

ŵT (n−1)ŵ(n−1)
ŵ(n−1)

]
.

(19)

B. Sign ambiguity

Principal component analysis (PCA) and the method de-
scribed in Section IV-A have an inherent sign ambiguity which
is not mathematically solvable. To obtain an estimate û of u
which points in the correct direction, we need to determine the
correct sign from an analysis of the data. This can be done by
looking at the sign of the correlation ryp between y and p: if
it is positive, then u points in the opposite direction to w, and
if it is negative, then u points in the same direction as w:

u(n) = −sign (ryp) w(n). (20)

C. Implementation

For an efficient implementation which allows for tracking,
we do not perform the processing on a per sample basis, but
instead on a frame by frame basis. We initialise the algorithm
for frame ` = 0 using a standard PCA, i.e., we take the
eigenvector corresponding to the largest eigenvalue of the data
covariance matrix Rvv(0).

Let L denote the frame length and M the frame increment,
thus yielding an overlap of 75% for M = L/4 for example.
The covariance matrix can be recursively estimated over L
samples:

R̂vv(`) = βR R̂vv(`−1) + (1− βR)
1
L

`M+L−1∑
n=`M

v(n)vT (n),

(21)
where βR is a weighting factor: the larger the weighting factor,
the larger the contribution of previous samples. Similarly for
the correlation, we have:

r̂yp(`) = βr r̂yp(`−1) + (1− βr)
1
L

`M+L−1∑
n=`M

ŵT (n)v(n) p̂(n),

(22)
where βr is a weighting factor similar to βR.

The update equation for ŵ is given by:

ŵ(`) =
1
2

[
1

ŵT (`−1)ŵ(`−1)
+ 1
]
ŵ(`−1)

+µ

[
2R̂vv(`)ŵ(`−1)− 2ŵT (`−1)R̂vv(`)ŵ(`−1)

ŵT (`−1)ŵ(`−1)
ŵ(`−1)

]
.

(23)

Finally the estimated unit vector pointing from the sensor
towards the source, for frame `, is given by:

û(`) = −sign (r̂yp(`)) ŵ(`). (24)
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Fig. 1. Position error as a function of SNR and reverberation time T60.

V. PERFORMANCE EVALUATION

A. Experiment setup

We tested our algorithm in a room acoustics scenario
simulated using SMIRgen, a recently developed room impulse
response (RIR) generator for spherical microphone arrays. The
receiver, a 32 microphone rigid spherical microphone array of
radius 4.2 cm (the same specifications as the EigenmikeTM),
was placed near the centre of a simulated 4× 6× 8 m room.

We limited the RIR to 2048 samples, with a sampling
frequency of 8 kHz. The source signal was 2 s of white
Gaussian noise.

B. Static source

In a first experiment for a static source, we performed Monte
Carlo simulations with 10 runs, for various SNRs and room
reverberation times T60. For each run a new source position
was randomly selected, at a distance of 1.5 m from the centre
of the array. We chose a step size µ = 1, weighting factors
βR = 0.95 and βr = 0.98, frame length L = 256 and frame
increment M = 64.

To evaluate the performance of our algorithm we computed
the angular error ε, which is the angle between a unit vector u
pointing in the correct direction and a unit vector û pointing
in the estimated direction. As these are unit vectors, ε is given
by:

ε = cos−1(uT û) (25)

The angular error averaged over all estimates from 1.5 to 2 s
is shown in Fig. 1. It can be seen that even with reverberation
times up to 600 ms and SNRs as low as 0 dB, the angular
error remains below 3.5◦.
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Fig. 2. Source positions relative to centre of spherical microphone array.

C. Moving source

In a second experiment, over a period of 2 s we placed
the source in four different positions around the array, at a
distance of 1.5-2 m from the centre of the array, as illustrated
in Fig. 2. We chose µ = 0.3, βR = 0.9, βr = 0.95, L = 128
and M = 32.

The reference and estimated source positions are shown in
Fig. 3 for various reverberation times and an SNR of 5 dB.
After an initial tracking time, the estimates converge to the true
position, within a couple of degrees. The results are similar
for SNRs above 5 dB. While the tracking time generally
increases as the reverberation time increases, after tracking the
accuracy of the estimates is good even for high reverberation
times. It should be noted that while in some cases it appears
the estimate is diverging from the true position (e.g. at 500–
700 ms), this is due to the sign ambiguity: once the sign has
changed (e.g. at 600 ms), it can be seen that the estimate is
actually converging towards the true position.

D. Choice of adaptive parameters

If we wish to reduce the tracking time, we can increase µ
and decrease βR and βr, at the risk of creating instability and
at the expense of accuracy. If we wish to increase the accuracy,
we can increase βR and βr and decrease µ, at the expense of
a higher tracking time.

VI. CONCLUSION

The proposed algorithm allows us to track sources in two
dimensions (azimuth and elevation) using a spherical micro-
phone array. An evaluation of this algorithm has shown that
it has high accuracy, even in the presence of high levels of
noise, down to SNRs of 0-5 dB, and reverberation times up
to 600 ms.
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