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Abstract—Face images that are captured by surveillance
cameras usually have a very low resolution, which significantly
limits the performance of face recognition systems. In the past,
super-resolution techniques have been proposed to increase the
resolution by combining information from multiple images. These
techniques use super-resolution as a preprocessing step to obtain
a high-resolution image that is later passed to a face recognition
system. Considering that most state-of-the-art face recognition
systems use an initial dimensionality reduction method, we
propose to transfer the super-resolution reconstruction from pixel
domain to a lower dimensional face space. Such an approach
has the advantage of a significant decrease in the computational
complexity of the super-resolution reconstruction. The recon-
struction algorithm no longer tries to obtain a visually improved
high-quality image, but instead constructs the information re-
quired by the recognition system directly in the low dimensional
domain without any unnecessary overhead. In addition, we show
that face-space super-resolution is more robust to registration
errors and noise than pixel-domain super-resolution because of
the addition of model-based constraints.

Index Terms—Dynamic range extension, face recognition, mul-
tiframe reconstruction, super-resolution.

I. INTRODUCTION

T HE performance of existing face recognition systems
decreases significantly if the resolution of the face

image falls below a certain level. This is especially critical in
surveillance imagery where often only a low-resolution video
sequence of the face is available. If these low-resolution images
are passed to a face recognition system, the performance is
usually unacceptable. Therefore, super-resolution techniques
have been proposed for face recognition that attempt to obtain
a high-resolution face image by combining the information
from multiple low-resolution images [1]–[4]. In general,
super-resolution algorithms try to regularize the ill-posedness
of the problem using prior knowledge about the solution,
such as smoothness or positivity [5]–[8]. Recently, researchers
have proposed algorithms that attempt to use model-based
constraints in regularization. While [1] demonstrates how
super-resolution (without model-based priors) can improve
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the face recognition rate, [2]–[4] provide super-resolution
algorithms that use face-specific constraints for regularization.

All these systems propose super-resolution as a separate pre-
processing block in front of a face recognition system. In other
words, their main goal is to construct a high-resolution, visually
improved face image that can later be passed to a face recogni-
tion system for improved performance. This is perfectly valid as
long as computational complexity is not an issue. However, in a
real-time surveillance scenario where the super-resolution algo-
rithm is expected to work on continuous video streams, compu-
tational complexity is usually a very critical issue. In this paper,
we propose an efficient super-resolution method for face recog-
nition that transfers the super-resolution problem from the pixel
domain to a low dimensional face space. This is based on the ob-
servation that nearly all state-of-the-art face recognition systems
use some kind of front-end dimensionality reduction, and that
a lot of redundant information generated by the preprocessing
super-resolution algorithm is not used by the face recognition
block. Hence, we perform the super-resolution reconstruction
in the low-dimensional framework so that only the necessary in-
formation is reconstructed. In addition, we show that face-space
super-resolution is more robust to registration errors and noise
than the pixel-domain super-resolution because of the addition
of model-based constraints.

There are two important sources of noise in this problem. One
is the observation noise that results from the imaging system.
The other is the representation error, which is a result of the
dimensionality reduction. We derive the statistics of these noise
processesfor the low-dimensional face spaceby using examples
from the human face image class. Substitution of this model-
based information into the algorithm provides a higher robust-
ness to noise. We test our system on both real and synthetic
video sequences.

Currently, by far the most popular dimensionality reduction
technique in face recognition is to use subspace projections
based on the Karhunen–Loeve Transform (KLT). This type of
dimensionality reduction has been central to the development
of face recognition algorithms for the last ten years. We propose
to use a similar KLT-based dimensionality reduction technique
to decrease the computational cost of the super-resolution
algorithm by transforming it from a problem in the pixel
domain to a problem in the lower-dimensional subspace, which
is called the face space.

In Section II, we briefly review the KLT-based dimension-
ality reduction method for face recognition. Then, in Section III,
we formulate the super-resolution problem in the low-dimen-
sional framework. Section IV details the reconstruction algo-
rithm, and Section V provides experimental results addressing
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several issues, such as sensitivity to noise and motion estimation
errors. Conclusions are given in Section VI.

II. DIMENSIONALITY REDUCTION FORFACE RECOGNITION

KLT-based dimensionality reduction for face images was first
proposed by Sirovich and Kirby [9]. They showed that face im-
ages could be represented efficiently by projecting them onto
a low-dimensional linear subspace that is computed using the
KLT. Later, Turk and Pentland demonstrated that this subspace
representation could be used to implement a very efficient and
successful face recognition system [10]. Since then, eigenface-
based dimensionality reduction has been used widely in face
recognition.

Mathematically, the eigenface method tries to represent a face
image as a linear combination of orthonormal vectors, called
eigenfaces. These eigenfaces are obtained by finding the eigen-
vectors of the covariance matrix of the training face image set.
Let be a set of face images, each ordered lex-
icographically. The eigenvectors of the matrix

(1)

that correspond to the largesteigenvalues span a linear sub-
space that can reconstruct the face images with minimum recon-
struction error in the least squares sense. This-dimensional
subspace is called the face space. Assumingis a lexicograph-
ically ordered face image and is the matrix that contains the
eigenfaces as its columns, we can write

(2)

where is the feature vector that represents the face, andis
the subspace representation error for the face image. As a larger
training data set is used and the dimensionality of the face space
is increased, the representation errorgets smaller. Letting

(3)

be the feature vector, and

(4)

be the matrix where are the eigenface vectors,is
computed as follows:

for (5)

III. SUPER-RESOLUTION IN THE FACE SUBSPACE

In this section, we formulate the super-resolution problem in
the low-dimensional face subspace. In such a formulation, the
observations are inaccurate feature vectors of a subject, and the
reconstruction algorithm estimates the true feature vector. We
start with the observation model for pixel-domain super-reso-
lution, and then derive the observation model for face-space
super-resolution using the eigenface representation. In pixel-do-
main super-resolution, the observations are low-resolution im-
ages that are related to a high-resolution image by a linear map-
ping. By ordering images lexicographically, such a relation can
be written in matrix-vector notation as follows:

for (6)

where is the unknown high-resolution image, is the th
low-resolution image observation, is a linear operator that
incorporates the motion, blurring, and downsampling processes,

is the noise vector, and is the number of observations.
Assuming that is the downsampling factor , and
that the high-resolution image is of dimension ; ,

, , and have dimensions , , ,
and , respectively. The matrix can be written as

(7)

where , , and are the downsampling, blurring, and
motion warping matrices, respectively. Details of such modeling
can be found in [5], [6], and [11], and we will not elaborate
on it in this paper. [Note that it is also possible to include an
upsampling matrix in that will make the sizes of and

equal.]
The images and have components that lie in and are

orthogonal to the face space. Only the components that lie in
the face space are necessary in recognition. We will now derive
the observation model for the reconstruction of the components
that lie in the face space. The formulation and reconstruction
algorithm will not neglect the spatial-domain observation noise
and the subspace representation error, which is initially orthog-
onal to the face space but which has an effect during the imaging
process. We start by writing the face-space representation

(8)

for (9)

where and are and matrices that contain
the eigenfaces in their columns, is the dimensional
feature vector that is associated with theth observation, and

and are the and representation error
vectors. Note that we have two different eigenvector bases,
and , corresponding to high and low resolution face images,
respectively. [If we had included an upsampling matrix in ,
then we could use the same basis matrix.]

We substitute (8) and (9) into (6) to obtain

(10)

Now, we will project (10) into the lower-dimensional face space
using the fact that the representations errorsare orthogonal
to the face space . Using

for (11)

and

(12)

and multiplying both sides of (10) by on the left, we obtain

(13)

This is the observation equation that is analogous to (6). It gives
the relation between the unknown “true” feature vectorand
the observed “inaccurate” feature vectors . In the traditional
way of applying super-resolution, the unknown high-resolution
image in (6) is reconstructed from the low-resolution obser-
vations . Then, the reconstructedis fed into a face recog-
nition system (see Fig. 1). For eigenface-based face recognition
systems, a better way is to directly reconstruct the low-dimen-
sional feature vector. Using the relation provided in (13), accu-
rate feature vectors of a face image can be obtained from the in-
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Fig. 1. Super-resolution applied as a preprocessing block to face recognition.

Fig. 2. Super-resolution embedded into eigenface-based face recognition.

accurate feature vector observations. This is illustrated in Fig. 2.
The face observations are first projected into the face space,
and the computationally intensive super-resolution reconstruc-
tion is performed in the low-dimensional face subspace instead
of in the spatial domain. A quantitative comparison of the com-
putational complexity of these two approaches is provided in the
next section.

While we are reconstructing the feature vectors in the low-di-
mensional subspace, we can (and will) substitute face specific
information in the form of statistics of the prior distributions
of the feature vectors and distributions of the noise processes.
Using model-based information in regularizing the super-reso-
lution algorithm has been shown to be successful in previous
work [2]–[4]. This helps to obtain more robust results when
compared to traditional super-resolution algorithms. Our exper-
iments in this paper also confirm the advantages of using such
model-based information. Our main difference, however, with
respect to previous model-based algorithms is that we specifi-
cally transform all of the prior information to the low dimen-
sional face space so that the computational complexity is kept
low with little or no sacrifice in performance. This is in con-
trast to previous approaches that use complicated pixel-domain
model-based statistical information.

IV. RECONSTRUCTIONALGORITHM

In this section, we present a reconstruction algorithm to solve
(13) based on Bayesian estimation. The algorithm handles the
observation noise and subspace representation error in the low-
dimensional face subspace. The maximuma posterioriproba-
bility (MAP) estimator is the argument that maximizes the

product of the conditional probability and
the prior probability

(14)

We now need to model the statistics and
. The prior probability can simply be assumed to be

jointly Gaussian

(15)

where is the covariance matrix, is the mean
of , and is a normalization constant.

In order to find , we first model the noise
process in the spatial domain, and then derive its statistics in
face space. We define a total noise term that consists of the
noises resulting from the subspace representation errorand
the observation noise in the spatial domain

(16)

Using this definition, we rewrite (13) for convenience

(17)

The reason we defined as the total noise term
instead of its projection onto the face subspace is because of
the modeling convenience in the spatial domain. It has been
demonstrated that modeling the noise [resulting from the
imaging system and the estimation of ] in the spatial do-
main as an independent identically distributed (IID) Gaussian
processes is a good assumption [5], [6]. We further assume that
the covariance matrix of this Gaussian process is diagonal so
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that the statistical parameters can be estimated easily even with
the limited training data. Using these assumptions, it is easy
to find the distribution of in the face space, as will be
shown shortly.

Defining as the positive definite diagonal
covariance matrix and as the mean of , we
can write the probability distribution of as

(18)
where is a normalization constant.

Now, we need to derive the distribution of the projected
noise, , in order to get the conditional PDF

. From the analysis of functions of multi-
variate random variables [12], it follows that is also
jointly Gaussian since is nonsingular (by construction).
As a result, we have

(19)

where is the new mean and is the new covariance
matrix computed by

(20)

The covariance matrix has dimension while is of
dimension . Using (17) and (19), we find the con-
ditional PDF

(21)

Since we assumed that is IID, it follows that the probability
density function is the product of
for . Defining as the mean of the
process , we write

(22)

Substituting the conditional and prior PDFs given in (15) and
(22) into (14), we obtain the MAP estimatoras follows:

(23)

So far, we have shown how to incorporate the statistics of
spatial-domain noise and prior information into the low-di-

mensional face-space reconstruction. In the next section, we
estimate the parameters for these assumed models and provide
experiments analyzing the recognition performance, effects of
feature vector length, sensitivity to noise and motion estimation
errors, etc.

Before getting to the experimental results, we provide an al-
gorithm to solve (23). One approach to obtain the MAP estimate

is an iterative steepest descent method. Defining as the
cost function to be minimized, the feature vectorcan be up-
dated in the direction of the negative gradient of . That is,
at the th iteration, the feature vector can be updated as follows:

(24)

where is the step size.
From (23), a slightly generalized cost function is chosen as

(25)

where is a number, , that controls the rela-
tive contribution of the prior information in the reconstruction.
When is set to zero, the estimator becomes a maximum likeli-
hood (ML) estimator. When is one, only the prior information
is used, and the noise statistics are discarded. corre-
sponds to the original MAP estimator.

Taking the derivative of with respect to , the gradient
of can be calculated as

(26)

Although the step size in (24) can be chosen as fixed, a better
way is to update it using the Hessian of . In this case, is
updated at each iteration using the formula

(27)

where is the Hessian matrix found by

(28)

In the reconstruction, everything but, , and is known
and can be computed in advance. (The details are left to the next
section.) For a specific observation sequence, the feature
vectors and the blur mappings are computed, and the
true feature vector is estimated. The pseude-code of the com-
plete algorithm is as follows.

1) Choose a reference frame from the video sequence, bilin-
early interpolate it, and project it onto the face space to
obtain an initial estimate for the true feature vector.

2) Obtain the feature vector by projecting each low-
resolution frame onto the face space. [That is,

.]
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3) Estimate the motion between the reference and other
frames, and compute .

4) Set the maximum number of iterations, .
5) For to ,

a) Compute using (26).
b) Compute using (28).
c) Compute using (27).
d) Compute using (24).

6) Set the MAP estimate to .
We now take a look at the computational complexity of the pro-
posed algorithm compared to a pixel-domain reconstruction. Let

be the total number of pixels in a (high-resolution) face image,
be the length of the feature vectors, andbe the downsam-

pling factor . Excluding the motion estimation stage
of the reconstruction, most of the computational cost results
from the computation of . According to our image
acquisition model, can be represented as the successive ap-
plication of motion warping, PSF blurring, and downsampling
[see (7)]. Since the blurring and downsampling operations are
time-invariant, only the motion warping operation needs to be
computed for each observation separately. Denoting , ,
and as the motion warping, blurring, and downsampling ma-
trices, respectively, we need three matrix-vector multiplications
to compute , where . The first one
is , which requires approximately multiplications and
additions. This is then multiplied by , which requires
multiplications and additions. This is followed by a multiplica-
tion with the matrix , which can be precomputed
and stored. The total number of multiplications and additions
is approximately . On the other hand, doing these
operations in the pixel domain [using the matrix ] requires

operations. Referring to the gradient and Hessian
matrix computations [(26) and (27)], the eigenface-space re-
construction requires roughly fewer oper-
ations per iteration than the spatial-domain reconstruction does.
(In our experiments, is 1600, is 0.25, is 40, and is 16.)

V. EXPERIMENTAL RESULTS

We performed a set of experiments to demonstrate the effi-
cacy of the proposed method. We investigated the effect of the
face-space dimension, and sensitivity to noise and motion esti-
mation errors. We have also performed a recognition experiment
with real video sequences. We will explain each step of the ex-
periments in detail.

A. Obtaining the Face Subspace

In these experiments, we used face images from the Yale face
databases A and B [13], Harvard Robotics Laboratory database
[14], AR database [15], and CMU database [16]. The images are
downsampled to have a size of , and aligned according to
the manually located eye and mouth locations. We selected 134
images as training data and 50 images as test data. We applied
the KLT to those 134 images and chose the first 60 eigenvectors
having the largest eigenvalues to form the face subspace. (These
60 eigenvectors form the columns of the matrix.) We also
downsampled the training images by four to obtain
images, applied the KLT to those images, and chose the first
60 of them to construct the eigenface space.

B. Obtaining Low-Resolution Observations for Synthetic Video

The test images were jittered by a random amount to simulate
motion, blurred, and downsampled by a factor of four to pro-
duce multiple low-resolution images for each subject. The mo-
tion vectors were saved for use in synthetic video experiments.
For blurring, the images were convolved with a point spread
function (PSF), which was set to a normalized Gaussian
kernel with zero mean and a standard deviation of one pixel.

C. Estimating the Statistics of Noise and Feature Vectors

From the training image set , , we
estimate the statistics ofand . The unbiased estimates for
the mean and covariance matrix ofare simply obtained from
the sample mean and variances

(29)

and

(30)

Because of the limited number of training images, for more re-
liable estimation, we assume a diagonal covariance matrix, so
the off-diagonal elements of the matrixare set to zero.

The mean and covariance matrices of are found similarly.
Letting be the th observation of theth training image,

and , we estimate the mean and
covariance matrices as follows:

(31)

and

(32)

Again, the off-diagonals of are set to zero. The meanand
covariance matrix for are found using
and .

D. Reconstruction for Synthetic Video

One of the frames for each video sequence is chosen as the
reference frame, bilinearly interpolated by four, and projected
onto the face space to obtain the initial estimate for the true
feature vector. It is then updated using the algorithm proposed
in the previous section. The mapping is computed from the
known motion vectors and PSF, and 16 low-resolution images
are used in the reconstruction. The model parameters, , ,
and computed in Step C are used in the reconstruction with

set to 0.5. The number of iterations is set to seven
for each sequence.

We also wanted to compare the results of this eigenface-do-
main super-resolution algorithm with a traditional pixel-domain
super-resolution. We applied the pixel-domain super-resolution
algorithm given in [11] to the low-resolution video sequences
again using the same 16 low-resolution images and setting the
number iterations to seven. After the high-resolution images are
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Fig. 3. Error in feature vector computation.

reconstructed, they are projected onto the face spaceto obtain
the feature vectors.

The feature vectors obtained from these algorithms are com-
pared with the true feature vectors (which are computed using
the original high-resolution images). For each subject
(image sequence), we computed the normalized distance be-
tween the true feature vectorand the estimated feature vector

. The normalized distance is defined as

(33)

where is the length of vector .
Fig. 3 shows the results for three cases: i) Feature vectors

computed from a single observation (no super-resolution
applied). ii) Feature vectors computed after pixel-domain
super-resolution applied. iii) Feature vectors reconstructed
using the proposed eigenface-domain super-resolution. As seen
in the figure, eigenface-domain super-resolution achieves a
similar performance to the pixel-domain super-resolution at
less computation.

We also provide an example from the face database. Fig. 4
shows the results forSubject 1in the test data. In that figure, (a)
is the original 40 40 image, (b) is one of the observations inter-
polated using nearest neighbor interpolation, (c) is the bilinearly
interpolated observation, which is the initial estimate in recon-
struction, (d) is the result of the pixel-domain super-resolution,
(e) is the projection of the result in (d) into the face space, and
(f) is the representation of the reconstructed feature-vector from
the eigenface-domain super-resolution algorithm. As seen, (e)

Fig. 4. (a) Original 40� 40 image. (b) 10� 10 low-resolution observation is
interpolated using nearest neighbor interpolation. (c) 10� 10 low-resolution
observation is interpolated using bilinear interpolation. (d) Pixel-domain
super-resolution applied. (e) The result of pixel-domain super-resolution
reconstruction is projected into the face subspace. (f) Representation of the
feature vector reconstructed using the eigenface-domain super-resolution in
the face subspace.

and (f) are almost identical, but (f) is obtained at a lower com-
putational burden.

This experiment was done for a face-space dimension of 60,
which brings up the question of how the feature vector length
(i.e., dimension of the face space) affects the performance.
This question is addressed in the next experiment. We will
also demonstrate that eigenface-domain super-resolution is
more robust to noise and motion estimation errors than the
pixel-domain super-resolution.
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Fig. 5. Effect of feature vector length on performance.

E. Effect of Feature Vector Size on Reconstruction

We repeated the experiments for various feature vector sizes
to examine the effect of the face-space dimension on reconstruc-
tion. The results are given in Fig. 5. In that figure, the-axis is
the dimension of the face space, and the-axis is the normalized
distance averaged over 50 subjects. Due to the face-space rep-
resentation error, pixel-domain super-resolution performs better
than the eigenface-domain super-resolution at very low face-
space dimensions. As expected, as the feature vector size is
increased, the performance of the eigenface-domain super-res-
olution approaches that of the pixel-domain super-resolution.
Note that this is the result for the case where there is no ob-
servation noise or motion estimation error. As will be shown
shortly, when there is noise or motion estimation error, eigen-
face-domain super-resolution becomes better than the pixel-do-
main super-resolution even at the low face-space dimensions.
This is because the solution obtained in eigenface domain is
constrained by face-specific priors.

F. Effect of Noise on Reconstruction

In order to examine the effects of observation noise, we
added zero-mean Gaussian IID noise to each low-resolution
video frame. The experiment is done for a feature vector
size of 40, and repeated for each of the 50 video sequences.
Fig. 6 shows the results for different noise powers. (The-axis
is the variance of the noise, and the-axis is the average
normalized distance.) As seen in that figure, when the noise
power is zero, the pixel-domain super-resolution is better
than the eigenface-domain super-resolution. However, as the

noise power increases, eigenface-domain super-resolution
outperforms pixel-domain super-resolution. The reason is that
eigenface-domain super-resolution constrains the solution to
lie in the face space, and therefore, it is more robust to noise.

G. Effect of Motion Estimation Error on Reconstruction

In addition to the robustness to observation noise, eigen-
face-domain super-resolution is also more robust to motion
estimation errors than pixel-domain super-resolution. This
time, we perturbed each true motion vector with a zero-mean
Gaussian IID random vector to simulate the motion estimation
error. The face dimension for the experiment is again 40. As
seen in Fig. 7, as the motion estimation error increases, the
pixel-domain super-resolution becomes worse than eigen-
face-domain super-resolution immediately. It is also observed
that the pixel-domain super-resolution becomes even worse
than using only one image to get the feature vector. Again
eigenface-domain super-resolution is less sensitive to motion
estimation errors because of the face-space regularization.

H. Recognition Experiment With Real Video Sequences

Finally, we tested the proposed algorithm with real video se-
quences from the CMU database. We performed a recognition
experiment with a database of 68 people. For each person, we
selected the neutral face image from the facial expression part
of the database as the training image. We manually located the
positions of the eyes and the mouth in those images, cropped
them according to those locations, downsampled them to a size
of 40 40, and projected them into the eigenspace to get the
training feature vector for each person.
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Fig. 6. Effect of observation noise on performance.

To perform recognition, we used the talking video sequences
provided in the CMU database. Each sequence contains a single
person talking for 2 s. We had a total of 68 such sequences, one
for each person in our database. The goal of our recognition
experiment is to identify the person who appears in the video.
We used 16 consecutive images from each video sequence. The
original sequences are very high resolution, so we downsampled
them so that the face is around 40 pixels wide. The resulting
sequences form our high-resolution face image sequences, and
we use them as the ground truth to evaluate the success of our
experiments. We then blurred these face image sequences (using
the PSF given in Step B) and downsampled them (by four) to
form low-resolution observations. These low-resolution image
sequences are the input images for the recognition experiment.
We manually located the positions of the eyes and the mouth in
the first frame of these image sequences.

Then, we ran three different recognition experiments. In the
first experiment, we used the first image from each low-reso-
lution image sequence for recognition. We cropped the faces
from the frames according to the locations of the eyes and the
mouth, projected them into the eigenspace, and performed min-
imum distance classification with the norm. The recogni-
tion rate in this case was 44%. In the second experiment, we
again cropped the faces from the first frames of the low resolu-
tion image sequences according to the locations of the eyes and
the mouth. Then, we used block based motion estimation to get
the motion vectors from one image frame to the other. In mo-
tion estimation, we computed the motion vectors for each pixel

with quarter-pixel accuracy. We set the block size and the search
range to 8 and 8, respectively, and we found motion vectors for
each pixel by performing a full search with mean absolute dif-
ference being the matching criteria. Then, we projected all low
resolution face images into the eigenface space, and performed
eigenface space super-resolution to construct an accurate fea-
ture vector for each person. The recognition experiment in this
case provided a recognition rate of 74%. In the third experiment,
we used the first frame of each high-resolution video sequence
to perform recognition. The recognition rate with these high-res-
olution images was 79%.

The results we reported above show that the decrease in the
resolution of the face image decreases the recognition rate sig-
nificantly. (In our experiments, the decrease was from 79% to
44%.) With the super-resolution reconstruction, the recognition
rate improved significantly, and got close to the high-resolution
recognition rate.

VI. CONCLUSIONS

The performance of face recognition systems decreases sig-
nificantly if the resolution of the face image falls below a certain
level. For video sequences, super-resolution techniques can be
used to obtain a high-resolution face image by combining the
information from multiple low-resolution images. Although
super-resolution can be applied as a separate preprocessing
block, in this paper, we propose to apply super-resolution
after dimensionality reduction in a face recognition system.
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Fig. 7. Effect of motion estimation error on performance.

In this way, only the necessary information for recognition
is reconstructed. We have also shown how to incorporate the
model-based information into the face-space reconstruction
algorithm. This helps to obtain more robust results when
compared to the traditional super-resolution algorithms. In the
experiments, we demonstrated robustness to noise and motion
estimation error. We have investigated the effect of face-space
dimension on the reconstruction, and provided recognition
results for real video sequences.

This paper only examines the case for face images; however,
the idea can be extended to other pattern recognition problems
easily. One such application is the recognition of car license
plates from video.
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