Eigenfaces for Recognition

Matthew Turk and Alex Pentland

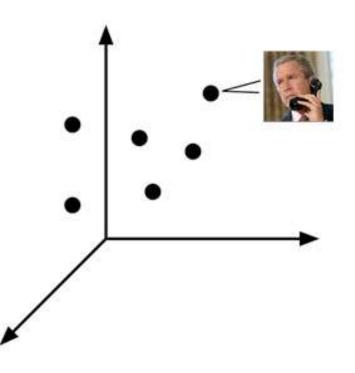
presented by Kimo Johnson

Face Recognition

- Faces
 - primary focus of attention
 - determine identity and emotion
- Human ability
 - speed
 - robust to changes

Face Recognition

- Computational models
 - criminal identification
 - security systems
 - human-computer interaction
- Goals
 - fast
 - reasonably simple
 - accurate in constrained environments


Background

- Individual features
 - eyes, nose, mouth, head outline
 - position and size relationships
- Disadvantages
 - multiple views
 - fragile and complex

Eigenfaces

- The eigenface approach
 - images are points in a vector space
 - use PCA to reduce dimensionality
 - face space
 - Sirovich & Kirby 1987
 - Kirby & Sirovich 1990

- compare projections onto face space to recognize faces

PCA

- Principal component analysis
 - -X is $m \ge n$
 - *m*: dimensionality of image
 - *n*: number of images
 - orthogonal change of variable

X = UY

- maximize variance of projected samples
- eigenvectors of covariance matrix

$$S = XX^T$$

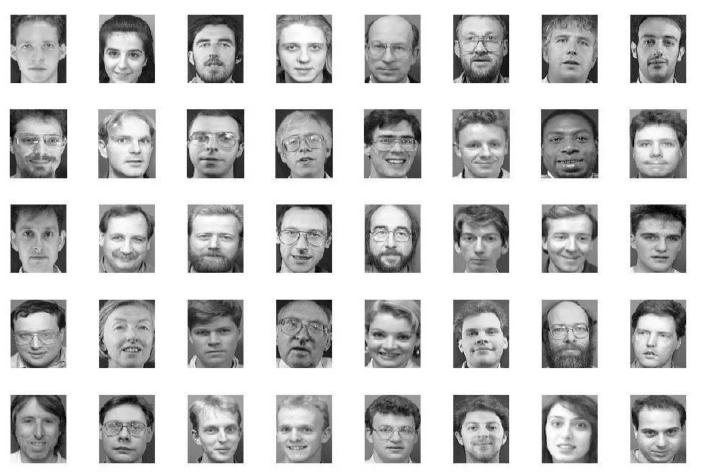
PCA

• Optimization

- We want eigenvectors of S
$$(m \ge m)$$

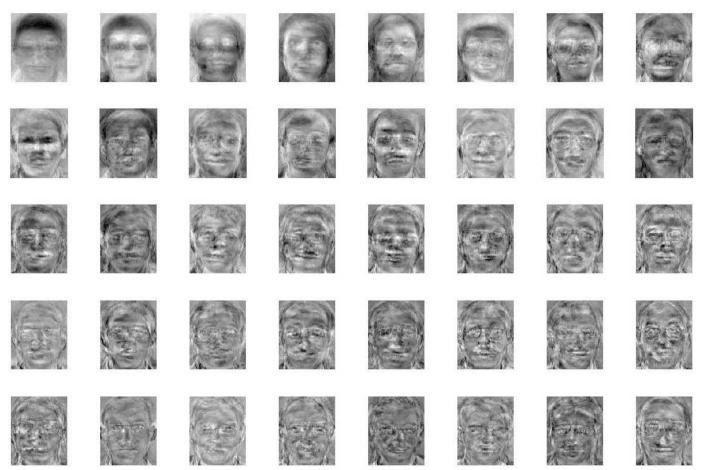
$$S\mathbf{u} = \lambda \mathbf{u}$$

- If *m* is much larger than *n*, form T $(n \ge n)$


$$T = X^{T} X$$
$$T \mathbf{v} = \lambda \mathbf{v} = (X^{T} X) \mathbf{v}$$
$$X(X^{T} X) \mathbf{v} = X \lambda \mathbf{v} = \lambda(X \mathbf{v})$$
$$S(X \mathbf{v}) = \lambda(X \mathbf{v})$$

Eigenface Recognition Procedure

- Build face space
 - PCA
 - choose M' eigenfaces as a basis for face space
- Project image vectors onto face space
 - nearest known face (Euclidean distance) matches
 - thresholds for distance to face class vs. distance to face space
 - in face space, but no match
 - not in face space

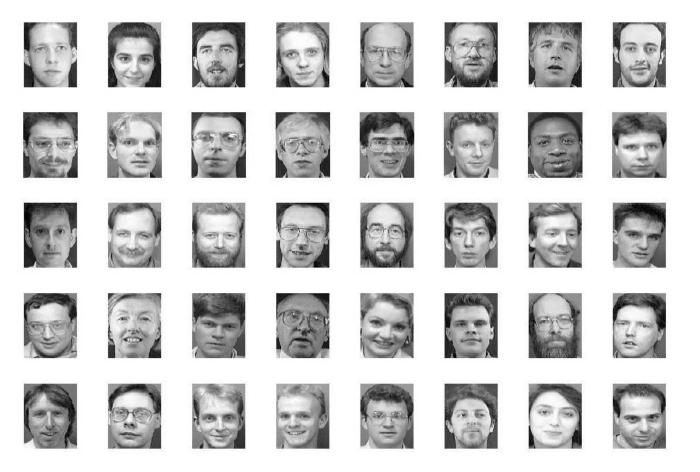

Example: Build Face Space

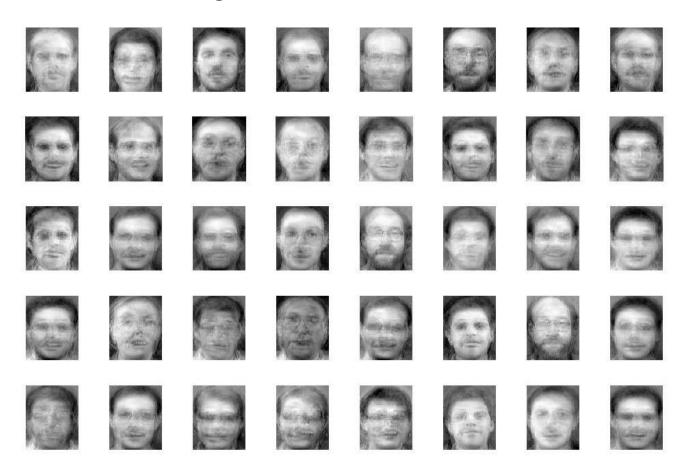
40 faces, 112 x 92 pixels = 10,304 pixels

Example: Build Face Space

X is 10,304 x 40, T is 40 x 40

Example: Build Face Space


Face Space = top 8 eigenfaces


Example: Recognize Faces

Same 40 people, different images

Example: Recognize Faces

recognize 34/40 = 85%

Extensions and Other Issues

- Extensions
 - locating and detecting faces in images and video
 - recognizing new faces
- Other issues
 - eliminating the background
 - scale and orientation invariance

Conclusions

- Face recognition system
 - fast
 - reasonably simple
 - accurate in a constrained environment
- Future work
 - robustness to changes
 - learning new faces
 - eigenfaces to determine gender or facial expressions

PCA details

• Maximize variance of projected samples

$$E[(\mathbf{u}^T \mathbf{x} - E[\mathbf{u}^T \mathbf{x}])^2] = E[(\mathbf{u}^T (\mathbf{x} - E[\mathbf{x}]))^2]$$
$$= \mathbf{u}^T E[(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])^T]\mathbf{u}$$
$$= \mathbf{u}^T S\mathbf{u}$$

PCA details

• Solve using Lagrange multipliers

$$L(\mathbf{u}) = \mathbf{u}^T S \mathbf{u} - \lambda \mathbf{u}^T \mathbf{u}$$
$$\frac{\partial L}{\partial \mathbf{u}} = 2S \mathbf{u} - 2\lambda \mathbf{u} = 0$$
$$S \mathbf{u} = \lambda \mathbf{u}$$

• Solution is eigenvector of covariance matrix