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Abstract

A surface is often modeled as a triangulated mesh of 3D points and textures

associated with faces of the mesh. The 3D points could be either sampled

from range data or derived from a set of images using a stereo or Structure-

from-Motion algorithm. When the points do not lie at critical points of max-

imum curvature or discontinuities of the real surface, faces of the mesh do

not lie close to the modeled surface. This results in textural artifacts, and the

model is not perfectly coherent with a set of actual images—the ones that are

used to texture-map its mesh.

This paper presents a technique for perfecting the 3D surface model by

repositioning its vertices so that it is coherent with a set of observed images

of the object. The textural artifacts and incoherence with images are due to

the non-planarity of a surface patch being approximated by a planar face,

as observed from multiple viewpoints. Image areas from the viewpoints are

used to represent texture for the patch in eigenspace. The eigenspace repre-

sentation captures variations of texture, which we seek to minimize.

A coherence measure based on the difference between the face textures

reconstructed from eigenspace and the actual images is used to reposition the

vertices so that the model is improved or faired. We refer to this technique

of model refinement as EigenFairing, by which the model is faired, both ge-

ometrically and texturally, to better approximate the real surface.

1 Introduction

A model of a real surface is often represented as a textured mesh of 3D points. The

points form vertices of a triangulated mesh, faces of which are texture-mapped to model

the surface. This representation has proven to be effective, as a significant number of

surfaces can be modeled by a mesh of planar faces. Most sensed 3D data, however, do

not always lie at critical points of maximum curvature or discontinuities, such as corners

and edges of the real surface [Figure 1]. Laser scanned data misses out on these strategic

but spatially minute points. Features selected and tracked using local pixel intensities in

images for stereo or SfM algorithms do not always correspond to points of discontinuity

of the observed surface. These facts lead to a poor approximation of the surface by planar

faces, and result in not-so-perfect appearance of modeled surfaces. This paper brings out

this salient aspect of 3D modeling. It presents a new method of repositioning vertices

of the mesh to those critical points for an improvement in the geometrical and textural



Figure 1: (a) 3D points used for creating the model do not lie at geometrical extremities

or points of discontinuity of the cube’s surface. Faces of the mesh with such 3D points as

vertices are poor approximation of the real surface. (b) For the new vertex positions, the

mesh faces lie on the surface of the cube, thus creating a good model.

quality of the model. We show that this seemingly incremental change has a significant

impact on the model’s overall appearance.

The 3D model is refined or faired by relocating vertices such that the planar faces

lie closer to the surface patches they approximate. As the real surface is not known to

us, the same set of images that is used for texture-mapping faces of the mesh guides the

fairing process. A mesh face, that approximates a surface patch, is projected into images

to yield triangular image areas. A set of these image areas corresponding to the same

surface patch has information of how good its planar approximation is. Had the surface

patch been planar, the image areas corresponding to its planar approximation would be

the same when warped into a fixed triangular area [Figure 2]. As the real world is not built

of simplicial elements, the variations of texture in the image areas can be attributed to the

non-planarity of the surface patch. We would like to get the best possible representation

of texture from the image areas by encoding the textural variations.

Given a set of image areas, a compact representation of these variations can be derived

in terms of a small number of orthogonal basis images. This representation, also called

an eigenspace decomposition, encodes the minute variations of texture as observed from

different viewpoints [7]. We reposition vertices of the mesh such that these textural varia-

tions are minimized. In the process, faces of the mesh better approximate the real surface

in the geometrical sense. Also, the texture-mapped 3D mesh–the 3D model–appears to

be as close as possible to the actual images when observed from the same camera view-

points. This coherence between the actual image area and the textural representation of

the corresponding surface patch can be quantified as the distance-from-eigenspace of the

image area. The better a triangular face approximates the surface patch geometrically,

the smaller is the variation of appearance in images, and the smaller is the distance-from-

eigenspace of the image-areas corresponding to the patch. We refer to this idea of 3D

model refinement as EigenFairing.

2 Related Work

The problem of model refinement based on image data has been studied extensively. A

single image can be used to reposition vertices of a texture-mapped mesh by minimizing

error metrics based on the vertex positions, surface normals, and other surface properties



Figure 2: Image areas AiBiCi in the i-th image and A jB jC j in the j-th image correspond to

the same 3D mesh face. Affine warping of AiBiCi into A jB jC j yields image patch A′
iB

′
jC

′
j.

The texture within the two areas, A′
iB

′
iC

′
i and A jB jC j, are not the same because vertex A is

not at an edge or a corner, and the mesh face does not lie on the actual 3D surface of the

object. Note the ghosting of edges in their superimposition (average) in the center.

such as color and texture [4]. The algorithm never accesses the pixels of the single-image

texture and merely updates texture coordinates in the image. Image-driven mesh simplifi-

cation [5] compares actual images against images of the simplified model to decide which

portions of a model to refine through the edge collapse operator. In image-consistent sur-

face triangulation [6], the initial mesh is refined through edge-swaps to best account for

observed images. The edge-swapping scheme, that uses the weighted-average of affine-

warped image areas, works well only if a surface patch has enough texture and is close to

the planar face that approximates it. Other algorithms [3] [8] recover surface shape and

reflectance properties from multiple images by deforming a 3D representation. However,

these methods optimize complicated objective functions that combine several image and

geometric-based constraints. We shall show that a simple objective function, based on

the eigenspace representation of texture, can be minimized to refine the geometry of 3D

models. Our approach is especially consequential for modeling surfaces whose textural

detail is denser than the geometrical level of detail.

Eigenspace texture methods [7] [1] encode appearance variations of a surface patch

under various viewing conditions. Appearance of patches are encoded using the eigenspace

method, and new views are reconstructed from their eigenspace representations. We shall

use an eigenspace representation of dimensionality five to represent texture of 3D surface.

It has been shown that for diffuse surfaces of arbitrary texture, the first five components

of eigenspace explain most of the image variation [2].

EigenFairing is similar to the multiresolution surface reconstruction algorithm [9], but

it does not attempt to subdivide the mesh to account for perspective effects. It refines a

given mesh to best approximate an observed surface. The planarity of a surface patch

as compared to a mesh face that models it, i.e. perspective distortion, depends on the

position of the vertices. One of the critical components of model refinement, that seems

to be missing in previous work, is the relocation of vertex points so that they lie at the

extremities or critical points of object geometry.

3 Image Coherence

If a surface patch is not planar and has perspective distortion, how can texture of its planar

approximation—the mesh face—be best represented, given the triangular pixel-areas in



Figure 3: The triangular image patch IiF in the i-th image corresponding to face F

is warped to a fixed cell image IiF . The reconstructed cell image using the first five

components of eigen-space is UF ci. The Geman-McClure norm between IiF and UF ci

for σ=100, and the spatial distribution of outliers (eT = σ/
√

3) are on the right.

multiple images that correspond to it? The triangular image areas depend on viewpoints

of the camera as well as degree of non-planarity of the 3D-surface patch. The affine warp-

ing of triangular image areas into each other does not align the texture within [Figure 2].

Estimating texture that corresponds to the mesh face by weighted-average of pixels from

different images [6] leads to blurring of the estimated texture. Since image-consistency

is sensitive to textural variations, averaging of affine-warped image areas leads to com-

plicated overlapping surfaces and chances of the refinement algorithm being trapped in

local minima. Moreover, textural variations of image areas corresponding to the same

3D-surface patch can be exploited for refining the mesh. Image coherence considers this

intra-image textural variation, as well as consistency of estimated texture when compared

to actual images.

For a given set of image areas corresponding to a single 3D-surface patch, image co-

herence constructs a small set of basis images that best captures the variations in texture.

These basis images form a view-based representation of the texture of the patch. Each

triangular image area is affine warped to a fixed triangular area called the cell image [7].

Since each cell image is created by affine warping the triangular image areas correspond-

ing to a patch, the number of basis vectors to adequately represent its appearance depends

on the planarity of the patch. This is valid under the assumption that the patch has Lam-

bertian reflective properties. The more planar a patch is, the better is its approximation by

the mesh face, the lower is its perspective distortion as seen from the image-viewpoints,

and therefore, the lower is the number of basis vectors needed to represent the texture

of the patch. Considering the first k principal components corresponding to the k largest

singular values, the basis image-set is UF = [UF1,UF2, ...,UF k] for face F . Let UF ci

denote the reconstructed cell image corresponding to the ith-image patch. The set of

scalar values, ci = [ci1,ci2, ...,cik], is computed by taking the dot product of the cell image

and basis images UF . Thus, UF ci is constructed by a linear combination of the k basis

images; UF ci ≡ ∑k
m=1 cimUFm.

An image coherent representation is the best possible approximation, UF ci, over all

image areas, i.e., for i = 1,2, ...,n. For a Lambertian surface, such a representation reflects

the accuracy of approximation of the textured patch by the mesh geometrical element.

Image coherence is based on the closeness of these two approximations: the textural

approximation as captured by the basis images, and the geometrical approximation of the



physical 3D patch by the planar face. Minimizing the error in representation of surface

texture minimizes the error in the approximation of the surface patch by a linear mesh

element.

4 Model Fairing

Given a set of basis texture-images UF corresponding to a face F , we reconstruct the

image patch UF ci in the i-th image. The objective function to be minimized for the set of

n cell images, IiF ; i = 1, ...,n , is

E(c) =
n

∑
i=1

∑
uF

ρ(IiF (u)− [UF ci](u)) (1)

The error norm ρ defined over residual pixel-error in cell images. uF is the coordinate

of cell pixels. Instead of exhaustively searching around each vertex in 3D space, we

formulate an iterative search method.

4.1 Vertex Displacement

Let η = [ηX ηY ηZ ]T represent a 3D displacement of a vertex. The faired vertex point

x̃V is updated as x̃V ← xV +η . The goal is to simultaneously find the coefficients c and

displacement vector η that minimize the objective function of the residual error;

E(c,η ) =
n

∑
i=1

∑
u

F̃

ρ(IiF̃ (u)− [U
F̃

ci](u)) (2)

for the faces F̃ constructed from the new vertices x̃V . This optimization interleaves two

sub-problems. The first sub-problem is to minimize E(c,η ) with respect to c while the

vertex xV is kept fixed. This is the same as the eigen-texture method [7] discussed in the

last section.

The second sub-problem is to minimize E(c,η ) with respect to the fairing parameters

or displacement η , this time with the coefficients c held fixed. The image patch IF corre-

sponding to face F gets warped to I
F̃

that corresponds to a new face F̃ . For a given set

of basis images UF , we have to determine a new set of image patches and corresponding

cell images, IiF̃ (u) for i = 1,2, ...,n , such that the following is minimized:

n

∑
i=1

∑
u

F̃

ρ(IiF̃ (u)− [UF ci](u)) (3)

Due to a vertex displacement η , cell pixels at u get displaced to new cell image coordi-

nates as u+υiF (u,η ). For a given pixel-coordinate displacement function υiF (u,η ), the

new cell image is IiF̃ (u) = IiF (u+υiF (u,η )). Ideally, we should have

IiF (u+υiF (u,η )) = [UF ci](u) (4)

Equation (4) states that there are pixel displacements υiF (u,η ) that when applied to the

image patch IiF make IiF look like some image reconstructed from the eigenspace. A

first order Taylor series expansion of the left hand side of Equation (4) yields

IiF (u)+ ∇ IiF ·υiF (u,η ) = [UF ci](u) (5)



Summing the residual pixel-error ec over cell pixels uF corresponding to face F in all

images, the error function can be written in terms of ec as

E(c,η ) =
n

∑
i=1

∑
uF

ρ ( ec ) where ec ≡ ∇ IiF ·υiF (u,η )+(IiF (u)− [UF ci](u)) (6)

4.2 Optimization

The minimization of E(c,η ) with respect to η can be obtained using the Gauss-Newton

algorithm. In the Gauss-Newton method, a search direction is computed using the gra-

dient, and a first-order approximation to the Hessian for the given objective function

E(c,η ). The k-th element of gradient vector g is

gk =
n

∑
i=1

∑
uF

ρ̇ ( ec )
∂ec

∂ηk

,
∂ec

∂ηk

=

(

∇ IiF · ∂υiF (u,η )

∂ηk

)

for k ∈ {X ,Y,Z}. (7)

where ρ̇, also called the influence function, is the derivative of the error norm ρ with

respect to the residual pixel error. We have chosen the Geman-McClure norm as our

error norm ρ; it is defined over the residual pixel-error ec in cell images. Given a scale

factor σ that controls the convexity of the norm and its influence to outliers, we have:

ρ(ec) = e2
c/(σ + e2

c) , ρ̇(ec) = 2σec/(σ + e2
c)

2 , and ρ̈(ec) = 2σ(σ − 3e2
c)/(σ + e2

c)
3.

The {k, l}-th element of the Hessian H is

Hkl =
n

∑
i=1

∑
uF

ρ̈(ec)
∂ec

∂ηk

∂ec

∂ηl

for k, l ∈ {X ,Y,Z} (8)

The objective function E is convex when the Hessian H of E is positive definite. A

positive definite Hessian indicates that the function has a unique optimum, in the local

neighborhood, whereas a Hessian that has one or more eigenvalues zero will allow an

entire manifold of solutions to minimize the objective function. E is locally convex when

ρ̈(ec) > 0 ∀ ec. For small σ values, ρ̈(ec) can be negative, and therefore, one may not

get a descent direction. As ρ̇(0) = 0 , ρ̈(ec) is substituted by its secant approximation,

ρ̇(ec)/ec, for small values of ec, and is positive everywhere. Substituting in equation 8,

∑
l∈{X ,Y,Z}

(

n

∑
i=1

∑
uF

ρ̇(ec)

ec

∂ec

∂ηk

∂ec

∂ηl

)

δηl = −
n

∑
i=1

∑
uF

ρ̇(ec)
∂ec

∂ηk

for k ∈ {X ,Y,Z}. (9)

The fairing displacements, η = [ηX ηY ηZ ]T , are iteratively updated for step m as η (m+1) =
η (m) +δη and η (0) = [ 0 0 0 ]T . After each vertex fairing step, the image patches are up-

dated by considering the new position of the vertex. The new image patches are warped

into their corresponding cell images. These cell images are used for the next optimization

step. As the warping registers the image patches and the eigenspace, the approximation

[UF ci] continues to improve and the texture representation gets better.

4.3 Cell-Pixel Displacement

The cell-pixel displacement function υiF (u,η ) in the i-th image, corresponding to the

face F , is related to the vertex-displacement η . The 3×4 projection matrix P for the i-th



Figure 4: (a) A vertex displacement induces pixel displacements δuiV and δuiV , shown

as red arrows, in image i and j. (b) Pixel displacements are used to calculate the cell pixel-

displacements υiF and υ jF for the i-th and j-th cell images. (c) Optical flow calculated

using constant brightness constraint between the cell image and its eigenspace reconstruc-

tion is superimposed on their difference. (d) The path of successive vertex displacements.

A0
i and A0

j correspond to the initial position of the vertex. Ai and A j correspond to the 3D

point that the vertex converges to. (All red arrows are displacements magnified 10×)

image is known, and let its p-th row be represented as [ rp | tp ] for p = 1,2 and 3. The

pixel displacement in the i-th image corresponding to a small 3D vertex displacement, η ,

is

δuiV =
[

(r3x+t3)r1η−(r1x+t1)r3η
(r3x+t3)2

(r3x+t3)r2η−(r2x+t2)r3η
(r3x+t3)2

]T

(10)

This pixel displacement causes a change in the pixels of the cells. For pixels correspond-

ing to face F in the i-th image, the affine transformation HiF (a 2× 3 matrix) between

the image patch and its cell is known, and u = HiF [uT 1]T . The cell-pixel displacement

function can now be related to the vertex pixel displacement in the image as

υiF (uV ,η ) = HiF [δuT
iV 0]T + δHiF [uT

iV 1]T (11)

For small pixel displacements, δHiF is usually negligible. Once the cell-pixel displace-

ment at the moving vertex is determined, cell-pixel displacements over the entire cell are

calculated by interpolation, because the displacements at the other two fixed vertices and

along their connecting edge are zero. The goal is to achieve cell-pixel displacements that

vary linearly across the cell image from the moving vertex to the other two vertices, or

are as close as possible to a linear variation. We are trying to determine the location of the

faired vertex that best approximates the surface patch with a planar face of the mesh. The

same vertex location yields observed image-pixel displacements that are closest to linear

variation of image-pixel displacements of a planar face. For the new position of the vertex,

the cell-pixel displacements lead to a better approximation of the surface patch; hence, a

more linear variation of flow or pixel displacements appears across the cell image.



5 An Illustration

At first, we illustrate an EigenFairing process for a unit cube with textures on three faces

visible in 12 images. The vertex A, common to the three faces as shown in Figure 2, is

faired such that it corresponds to the actual corner of the cube. The cell size is 128×128

pixels. The path of the vertex, as it moves towards the actual corner, is displayed in

Figure 4(d) for two views. A vertex displacement during the fairing process is shown

in Figure 4(a). The interpolated pixel-displacements in the cell images, for the same

vertex displacement, are shown in Figure 4(b). Figure 4(c) shows the optical flow fields

computed between the cell image and its eigenspace reconstruction. They point in the

opposite direction to the pixel-displacements. The estimated vertex displacement is the

change in vertex position for which induced pixel-displacements on faces best counter-

balance flow-fields between the cell-images and their eigenspace reconstructions.

6 Results with Real Data

We applied EigenFairing to real outdoor scenes. An initial set of 3D points for generating

the mesh was sampled from range data at points of geometrical extremities and disconti-

nuities, as shown in Figure 5(a). The data was registered with a sequence of 22 images,

two of which are shown in Figure 5, by selecting the closest points of correspondence.

The points do not accurately correspond to physical corners in images, and edges of the

mesh are not aligned with edges of the facade, as viewed in the images. Notice the textu-

ral artifacts if this mesh is used for modeling the facade, in Figures 5(a, left column) and

6(a). After EigenFaring the initial model, the 3D vertices correspond to actual corners,

and edges of the mesh are aligned with physical edges in images [Figure 5(b)]. Also, the

facade is better modeled in a geometrical sense and, at the same time, devoid of textural

artifacts [Figure 6(b)]. Figure 7 shows another real data set where a SfM algorithm was

used to derive the initial position of vertices from 10 images. For both data sets, the initial

meshes are generated using Image-consistent Triangulation [6].

The robustness of the fairing process was increased by adding a coarse-to-fine refine-

ment strategy. A five-level pyramid was used where σsmooth varied linearly from 6.0 to

1.2. The Geman-McClure parameter was chosen as σ = max(|ec|)/
√

3. The error norm

minimizes the effect of outliers that usually appear at geometrical edges of image areas,

specularitites, or due to large textural discontinuities within a patch [Figure 3]. The neigh-

borhood of 3D points for which the initial vertex converges to the faired position depends

on how textured the neighboring faces are and how well their textures are represented

in eigenspace. The new 3D point may not always lie on the actual surface, although its

neighboring faces collectively represent the actual surface region with greater accuracy,

both geometrically and texturally.

7 Conclusion

The EigenFairing algorithm refines a texture-mapped mesh to better represent a surface by

relocating vertices of the mesh. The relocation process is carried out such that the texture

mapped onto the faces is best represented, and the resulting 3D model is coherent with

observed images. Coherence of texture-mapped faces with images has been formulated



Figure 5: On the first column, 3D range data is superimposed on the texture-mapped mod-

els before and after EigenFairing. Range scans often miss out corners due to occlusions or

their spatial minuteness. Selected vertices are not always best positioned for surface ap-

proximation, as seen on the inner dome. The edges are close to, but not perfectly aligned

with the physical edges of the building. Row (a) Initial mesh. Row (b) The EigenFaired

mesh. The red arrows point at mesh elements that have considerably improved the model.

Figure 6: (a) The mesh and the texture-mapped model for the initial position of vertices.

(b) The EigenFaired mesh and model. Notice that the initial mesh has irregularities in

structure along the arch and on the inner dome. The corresponding textural artifacts are

clearly visible in the model. The EigenFaired mesh better approximates the geometrical

structure of the building. Its texture-mapped model is devoid of artifacts at the same time.

as minimizing the distance between observed textures corresponding to the faces of the

mesh and their eigenspace reconstructions. We have shown that minimizing this distance

leads to a better geometrical approximation of the unknown surface by the 3D model.

EigenFairing couples geometrical properties of a 3D model with its textural properties or

albedo. Coherence of texture leads to a faired mesh that is physically closer to the true

surface. This approach is significant for modeling a surface whose textural variation is

much higher than the geometrical resolution required to represent the surface.



Figure 7: On the left are two images showing the initial vertex positions in green and

the faired vertices in red. The faired vertices accurately correspond to corners and edges

of the architecture. Notice the points along the archways, roof and balcony edges. The

initial model and the EigenFaired model are shown in (a) and (b) respectively. The green

and red arrows point out the presence and absence of modeling artifacts respectively.
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