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Eigenfrequencies of an Elliptic Membrane*

By B. A. Troesch and H. R. Troesch

Abstract. The first few eigenfrequencies of a homogeneous elliptic membrane, which is

fixed along its boundary, are given in a graph. It is explained in detail, how more accurate

results can readily be obtained for special purposes. The known expansion of the eigenfre-

quencies for small and large eccentricities are summarized. As an application some nodal

patterns for a membrane with a double eigenvalue are presented.

1. Introduction. The free vibrations of elliptic membranes and related problems

have been investigated extensively since E. Mathieu's work a hundred years ago

([7], [1] and [3, p. 525], and the references given there). The determination of the

eigenfrequencies of an elliptic membrane, which is fixed along its boundary, leads

to the problem of finding the roots of the radial (or modified) Mathieu functions.

Although these functions have been tabulated in part ([5], [6], [14]), the membrane

frequencies, especially for the higher modes, are apparently not available in easily

accessible form [15].

It is the purpose of this paper to fill this gap and to present in simple form (see

Fig. 1) the fundamental and a few higher harmonic frequencies for elliptic membranes

as a function of the eccentricity. When dealing with Mathieu functions, it is often

difficult to extract the necessary information quickly from the available literature,

especially from more than one source, since the notation and the normalization have

not yet been standardized. For this reason, we present the results in such a way that

only reference [1] is actually needed. (The only exceptions are the formulas from [8]

and [9], which are used for the expansions in Sections 5 and 6.) The use of Fig. 1 is

facilitated by the sketch of the corresponding nodal patterns and the limiting eigen-

values given in Table 1. Quite on purpose, no scaling of any kind has been introduced.

The summary of the mathematical background (including the notation) is pre-

sented in Section 2, following mainly [2]. For the cases where the Fig. 1 does not

furnish results of sufficient accuracy, the computational method to improve the

precision is explained in Section 3, and some further details are given in connection

with Problem 2 in Section 4.

2. Problem Statement and Notation. The harmonic vibrations of a homoge-

neous membrane are governed by the reduced wave equation for the small deflection <p:

(2.1) VV + X*> = 0;
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756 B.   A.   TROESCH  AND  H.  R.   TROESCH

and, if the membrane is fixed along its boundary, <p is subject to the boundary condi-

tion

(2.2) <p = 0.

The eigenvalues X = pw2/T depend on the frequency of the free vibration oo, the

density p, and the tension T.

For elliptic membranes, elliptic coordinates £, r¡ are introduced; they are related

to the cartesian coordinates x', y' by

,« „, x' = c cosh £ cos n,       - ^ „  ^        .   -      „ _
(2.3) 0 g £ <  co, 0 g t? < 2ir.

y' = c sinh £ sin r¡,

The curves £ = constant are confocal ellipses with the focal points at x' = ±c.

(The dashed quantities for the cartesian coordinates are used here to avoid a possible

conflict with the meaning of x and y in [1].)

In elliptic coordinates, Eq. (2.1) becomes

<Pa + <Pn + (Xc2/2)(cosh 2£ — cos 2t))<p = 0,

and separation of variables <p = X(£)Y(ri) leads to the Mathieu differential equation

(2.4) Y" + (a* - 2q cos 2??) Y = 0

(cf. [1, Eq. (2.01)]) and to the modified Mathieu differential equation

(2.5) X" - (a* - 2q cosh 2£)Z = 0.

Here, a* denotes the separation constant and

(2.6) 4q = Xc2.

The alternate notation in [1] will also be used, namely

(2.7) s = Xc2,

and we note in passing that this important parameter s is called 4k2 in [8] and 4A2 in [9].

The solutions of Eq. (2.4) which are appropriate for our problem must be periodic

with period ir or 2ir, and are called

(2.8) «?m(j?, q)    and    sem+1(rj, q), m = 0, 1, 2, • • ■  .

Together with the solutions of the modified Mathieu equation (2.5), the solutions of

Eq. (2.1) then become

(2.9) ip = Cem(t„ q)cem(V, q)

and

(2.10) <p =  Sem+i(£, q)sem+i(i), q)

form = 0, 1, 2, •■• .
If the boundary of the elliptical membrane corresponds to £ = £n, its equation

is (cf. Eq. (2.3))

x     +_y_,

c   cosh  £0      c sinh  £0
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EIGENFREQUENCIES  OF  AN   ELLIPTIC   MEMBRANE 757

with the major axis

(2.11) a — c cosh £0,

the minor axis

(2.12) b = csinh£0,

and

(2.13) c   = a2 - b2.

3. The Method of Computation. In this section, the method of finding the

eigenfrequencies of an elliptic membrane will be outlined. Further details are explained

in connection with the Problem 2 below.

If we wish to find the eigenvalues X for one fixed ellipse with axes a and b (c and £0

are then determined by Eqs. (2.11) to (2.13)), we must compute all q values (see Eq.

(2.6)) for which the modified, or radial, Mathieu functions Cem(£0, q) or Sem+1(£0, q)

vanish. In order to obtain the results needed in Fig. 1, it is, however, much simpler

to reverse the process and to find the roots £0 of Cem and Sem+1 for a given q (or,

equivalently, a given s), since [1] then furnishes the basic information just in the

proper form. The functions

(3.1) Jer(s, x)    and    Jor(s, x),

introduced in [1], where

(3.2) x = £,

are proportional to Cer and Ser [1, p. xxxviii]. The roots are best found by using

Eqs. (3.03) and (3.04) (cf. the remark on p. xxi), or for our purpose simply

(3.3) ¿ (- l)kDe2k+pJ2k+p(s,/2 cosh x) = 0,
* = 0

(3.4) ¿ (-l)*(2ft + p)Do2k+pJ2k+1>(s"2 cosh x) = 0,

where p = 0, 1, and J are the Bessel functions. Since the coefficients De and Do are

tabulated in [1] for different values of r, we need not be concerned with the separation

constant a*. Furthermore, the different normalizations appearing in the literature

for the radial Mathieu functions can also be ignored for the determination of the

root £„.

From the roots s,/2 cosh £„ (now returning to our notation), we find, from Eqs.

(2.7) and (2.11),

(3.5) Xi/2a = s1/2 cosh£„

and

(3.6) X,/2b = s,/2sinh£0 = (\a2 - s)U2.

It turns out that this last quantity is well suited for plotting the results as a function

of the independent variable
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758 B.  A.   TROESCH AND  H.  R.  TROESCH

(3.7) (1 - e2)l/2 = b/a,

since the X1/2¿> curves stay finite and have finite slope at the limiting eccentricities

e = c/a, i.e., at e = 0 and e = 1. Then Fig. 1 gives the eigenvalues for ellipses with

axes a and b which fall within a certain range. If ellipses with a fixed area A are to

be compared, then we note that

(3.8) X =
7T (X'/2¿>)2

A (I- e2)1'2 '

/2lso that X is constant on parabolas through X1/2¿» = 0, e = 1, opening to the left

.4     .6 .8       .9     .95        .995        e

Figure 1.    The lowest eigenfrequencies of a fixed membrane
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Table 1.   Nodal patterns and limits of eigenvalues

759

Fn

E0

Do

C„

Bo

A0

Point I, X1/26 = t/2

Point      X1/2¿>

8.7715

7.5883

6.3802

5.1356

3.8317

2.4048

Mathieu

function

Ce,

Ce4

Ce3

Ce2

Ce i

Ce0

Nodal

pattern

dLD

Point II, X1/2¿> = w

Mathieu

function

Se¡¡

Set
Se3

Se2

Se¡

Nodal

pattern

©

Point III, X1/2¿> = 3t/2

£, 11.0647

A 9.7610
C, 8.4172

5, 7.0156

Ax 5.5201

Ce4

Ce3

Ce2

Cet

Ce0

Point IV, X1/2ft = 2x

Se,

Se2

Point V, X1/26 = 5tt/2

C2      11.6198

52      10.1735

A2       8.6537

Ce2

Ce i

Ce0

Point VI, X1/2i» = 3tt

Se2

Se,

Returning now to the problem of finding the roots of Eqs. (3.3) and (3.4), we

observe that the well-known recursive computation of the Bessel functions [12] is

very well suited for our purpose. We need the relation

Jn-¡(s     cosh £) = -y;
In

J„(s,/2 cosh £) —  /„+i(s1/2 cosh £),
s     cosh £

and for the root-finding by Newton's method

J'n(sU2 cosh£) = —/2 " Jn(sU2 cosh£) -  Jn„(s>/2 cosh £).
s     cosh £

Further details will be explained in Problem 2 in the next section.

4. Applications.   For the first two problems to be considered, we choose an

elliptical membrane and compare the following two modes:
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760 B. A. TROESCH AND H. R. TROESCH

(a) The mode without a nodal line along the major axis (this leads to the solutions

Eq. (2.9)), but with three hyperbolas as nodal lines. In Table 1, we find this pattern

under (A» I) with the corresponding curve in Fig. 1.

(b) The mode without a nodal line along the major axis and one elliptical nodal

line, but no hyperbolas. In Table 1, this pattern is (A¡, III).

Problem 1. For the ellipse with major axis a = 4 and minor axis b = 3, which

of the two nodal patterns, (a) and (b) above, has the lower eigenvalue X, and what is

its approximate value?

Solution.   We have b/a = (1 - e2)1/2 = 3/4.

From Fig. 1, we conclude immediately, that the mode (A¡, III) represents the

solution, since this curve lies slightly below the curve (A, !)• We also read off that

X1/2è = 5.25, and hence X = 3.06.

Problem 2. Find the eccentricity e for which the eigenvalues of the two nodal

patterns above are the same, and determine some nontrivial nodal patterns (cf.

Figs. 2 to 4).
Remark. For simple eigenvalues, it is obvious that all nodal lines in an elliptic

membrane must be (nondegenerate or degenerate) confocal ellipses and hyperbolas.

For a multiple eigenvalue, any linear combination of solutions of Eq. (2.1) is again

a solution, and this gives rise to special nodal patterns. Fig. 1 shows that there is an

abundance of multiple eigenvalues for ellipses. This is in contrast to the circular

membrane where there exist no multiple eigenvalues except for the obvious double

eigenvalues. (For a proof of this statement, see [13, p. 484].) Therefore, the nodal

lines in circular membranes are without exception circular or straight lines.

Solution. Let us assume here that the eccentricity and the eigenvalue X are

required to greater accuracy than can be obtained from Fig. 1. The necessary steps

in the computation are then:

(1) Fig. 2 shows that the curves (A, I) and (Ay, III) intersect near

(1 - <?2)1/2 = .73    and    X1/26 = 5.15.

(2) The approximate value of s then becomes (cf. Eqs. (2.11), (2.13), (3.7))

(4.1) s = e2(l - e2r'X62 = 23.3.

This value is not very accurate, as we will see below (s is rather sensitive to errors in

the eccentricity), but still more than adequate for the following step.

(3) Next, we compute the roots of Ce0 and Ce3 (or Je0 and Je3 in the notation

of [1]) for s values around the approximate s, and this is carried out for s = 21, 22,

23, 24, 25, by using Eq. (3.3).
The coefficients are found in [1], on p. 48 for Cea, and on p. 93 for Ce3. The ap-

proximate argument in the Bessel function is (cf. Eqs. (3.5), (3.7))

1/2 .    y ,1/! ,1/2,,, 2-.-1/2     .     -,  nc
s     cosh £0 = X    a = X    ¿>(1 — e )        =7.05.

Newton's method applied to Eq. (3.3) gives the values of \U2a in two to three itera-

tions, and, for the set of s values above, the roots turn out to be between 6.9 and 7.2.

From Eq. (3.6), we obtain

X1/26 = (s cosh2 £o — s)U2,

and these values are listed in Table 2.
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Table 2.    Values of X1/2bfor the modes (a) and (b)

761

21

22

23
24

25

\U2b for Ce0 = 0        X1/26 for Ce3 = 0

5.167083
5.160278
5.153762
5.147514
5.141516

285691
221560
157058
092291
027364

(4) The intersection of the two X1/2b curves is found to be at

4q0 = So = 23.05654,

and the remaining quantities follow easily:

X1/2b = 5.153402

X1/2a = 7.043727,

b/a = (1 e2)1/2 = .7316300,

£„ «  .932226,

e = .6817019.

(5) In order to find the nodal patterns shown in Figs. 2, 3, and 4, we need the

four functions O0(£, qo), C,e3(£, q0), ce0(v, Qo), ce3(t], q0) or, since the amplitudes are

irrelevant, solutions proportional to them. The coefficients De for Ce0 and Ce3 are

interpolated from [1] for the s0 given above, and the left-hand side of Eq. (3.3) com-

puted for 0 = £ = £o. The computation of the functions cea(r), q0), ce3(r¡, q0) uses

the same coefficients (cf. [1, Eqs. (1.6), (1.7)])

co oo

ce0(v, q) =   23 ^2* cos 2Acr),        ce3(r¡, q) =   ^ De2k+1 cos(2/c + l)?j.
k-0 t-0

If we now write the solution of Eq. (2.1) as

<f> =  Kce3(v, tfo)Ce3(£, q0) + ce0(v, 9o)Ce0(£. <7o),

and find for the assumed constant K the roots <p = 0, we obtain the nodal lines.

The three special patterns in Figs. 2, 3, and 4 are readily found by varying K and

observing the effect. The six points obtained from the intersections of the nodal lines

in the modes (a) and (b) do not change with K. The plotting is best carried out by

using Eq. (2.3).

Figure 2.   Example of a nodal pattern for Problem 2
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Figure 3.    Example of a nodal pattern for Problem 2

It can be shown that the special points P in Figs. 3 and 4 occur at

V — Vo — 1.16    and    r¡ = x — jj0 >

where rj0 is the solution of

ce0(vo)ce3(Vo) ~ ce'0(vo)ce3(vo) = 0.

Problem 3.   Find the fundamental eigenvalue X for the ellipse with b = a/2.

Solution.   The fundamental eigenvalue belongs to the root of Ce0 or the curve

(A0, I) in Fig. 1. For e = 31/2/2 or (1 - e2)1/2 = \ we read off

Xi/2b = 1.9,

hence (cf. Eq. (4.1))

j = 3(XU2bf = 10.8,

and, proceeding as above, the results in Table 3 are obtained.

The result

X1/2a = 3.77715 ± MO"5

for e = 31/2/2 furnishes the answer to the open entry in [10, p. 6].

5. Expansion for Small Eccentricity.   For nearly circular membranes, the table

of coefficients in [1] makes it easy to find the eigenvalues by the general method

Figure 4.    Example of a nodal pattern for Problem 2
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1.00

.95

.90

.85

i-1-1-^ «

0 .5 1.0

Figure 5.    X(l /a2 + 1 /b2)~* for the fundamental eigenvalue of ellipses

described above. But it is still desirable to have an expansion of the eigenvalues for

small eccentricity. As it turns out, the trend of the eigenvalues at e = 0 can be described

very simply, particularly in the variables Xl/2b and e* = 1 — (1 — e2)1/2 used in

Fig. 1:
(a) the slope of all the curves is negative; all the tangents meet at the same point

on the e*-axis, except for Ce, and Se,;

(b) the curvature of all the curves is negative, except for Ce0, Ce¡, Se,, Se2, where

the curvature is always positive;

(c) for m = 0 and m = 3 the curves for Cem and Sem agree in the first three terms

(see Eq. (5.1) below). Therefore, more terms would be needed for eccentricities for

which Cem and Sem are observed to differ in Fig. 1.

The expansion for small eccentricity is given in [9, Section 2.85, Eqs. (9) and (10)],

and reads (in our notation)

(5.1) sl/2 cosh £o = Xl/2a = uk + c,s/uk + c2s2/u2k + 0(s3)

for the fcth eigenvalue of the radial Mathieu functions Cem and Sem. The constants

c, and c2 are listed in [9], and uk denotes the fcth positive root of the Bessel function

Jm(uk). For m = 1 and m = 2 the constant c2 depends on uk. It is rather straight-

forward to write Eq. (5.1) in terms of X1/2¿> and e*. From this form of the result,

the trends described above then become obvious. An expansion of the fundamental

eigenvalue to even higher terms is given in [4].

6. Expansion for Large Eccentricity. Since the values of the coefficients De and

Do in [1] do not extend beyond s = 100 (cf. the gaps in Fig. 1), the connection to

e = 1 (i.e., s = oo ) is best accomplished by an expansion. Indeed, the expansion below

Table 3.   Fundamental X1/2afor an elliptic membrane with b = a/2

e XU2a

849864 3.626708
857016 3.689871
863560 3.752341
869566 3.814114
875096 3.875192

^

s

9.5
10.0
10.5
11.0
11.5
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gives accurate results for s = 100, except for Cet, Set, and Ce5, where the error is

between 1% and 2%. But even then, it is easy to connect the expansion smoothly

with the numerically computed curves.

The expansions of the roots of the modified Mathieu functions for large eccentricity

are known. As a starting point, we choose the formulas in [8, p. 385] (cf. also [9, p. 211,

p. 213], [11, p. 8]) which read in our notation

(a   i       2m + l_\jcos\( ,/2   . . ,        2m + 1 .    -i   ■ u r\
\1+4?-cosh2£0AsinAS     -nh£0-—^—tan    smh £„ )

- ml+1>+tl ^ *inhSoH^f1 tan"'sinh£« - *1/2 sinh&) = 0.
4s cosh £0 UosJ \      2 /

where the upper alternative is valid for Cem, the lower alternative for Sem+,. A reason-

ably straightforward transformation to an expansion for the kth root in terms of

(1 - e2)1/2 leads then to

XI/2ft = s1/2 sinh £t = (* + |)tt + (m + J)(l - e2)

i2 + m +

(4k + 2)ir
+ "^ 7t 1 (1 - e2) + 0((l - e2)-2)

for Cem(£t, q), and

\U2b = s1/2 sinh £t = kit + (m + f)(l - e2)'

2

+ m   +™ + J (1 - e2) + 0((\ - eT2)
4kir

for Sem+1(£t, q).

Appendices.

A. A Numerical Approximation for the Two Lowest Eigenvalues. It is sometimes

convenient to have an approximate formula available for use on a computer. We give

here possible polynomial approximations for the two lowest modes in terms of
e* = 1 - (1 - e2)1/2:

X'/26 =   Z ak(e*)\
k = 0

where the coefficients are listed in Table 4.

These approximations are correct at the endpoints and have a maximum relative

error of about 2-10"4.

B. Combinations of Dimensionless Quantities. In [10], G. Pólya and G. Szegö

list on pp. 265-270 dimensionless combinations involving the fundamental eigenvalue

Table 4.   A polynomial approximation

Coefficients for a0 a, a2 a3 at a5

fundamental mode     2.4048     -1.1924     .1768 .3923      -.2107 0

first harmonic        3.8317     -2.8826     .3897     -.2749       1.1417     -.6348
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EIGENFREQUENCIES OF  AN  ELLIPTIC  MEMBRANE 765

X of a membrane. We have evaluated these combinations numerically, and also the

combinations multiplied by b/a, where this factor is required to keep the limit e —* 1

bounded. Without exception, the particular combinations change monotonically

with the eccentricity of the elliptical membrane, and it can be safely conjectured

that this is indeed the case mathematically. But there exist, of course, less natural

dimensionless expressions where monotonicity no longer holds.

Incidentally, one of the combinations is somewhat remarkable in that it stays

within \% of the value for the circle up to an eccentricity as large as e = .65 (see

Fig. 5). It is the dimensionless quantity XA/B, or, in the case of ellipses,

(B.l) X(l/a2+l/b2y\

This observation may, however, not be so surprising, if we note [10, p. 99] that the

expression (B.l) is constant for rectangles of any shape.
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