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Abstract

This paper incorporates hyperelastic materials, nonlinear kinematics, and preloads in eigenfrequency constrained density–

based topology optimization. The formulation allows for initial finite deformations and subsequent small harmonic

oscillations. The optimization problem is solved by the method of moving asymptotes, and the gradients are calculated

using the adjoint method. Both simple and degenerate eigenfrequencies are considered in the sensitivity analysis. A well-

posed topology optimization problem is formulated by filtering the volume fraction field. Numerical issues associated with

excessive distortion and spurious eigenmodes in void regions are reduced by removing low volume fraction elements. The

optimization objective is to maximize stiffness subject to a lower bound on the fundamental eigenfrequency. Numerical

examples show that the eigenfrequencies drastically change with the load magnitude, and that the optimization is able to

produce designs with the desired fundamental eigenfrequency.

Keywords Topology optimization · Eigenfrequency optimization · Finite strain · Nonlinear hyperelasticity · Element

removal · Degenerate eigenfrequencies

1 Introduction

Topology optimization is extensively used in industry to

guide early design processes. Unfortunately, existing formu-

lations for topology optimization are primarily restricted to

stiffness optimization of linear elastic structures. To allow

for broader applicability, other objectives and nonlinearities

should be considered.

Several studies combine nonlinear elasticity with topol-

ogy optimization. In the work of Bruns and Tortorelli

(2001), finite strain Green-Venant elastic structures and

compliant mechanisms were designed. Different structures

undergoing nonlinear elastic deformations were optimized

for stiffness metrics by Buhl et al. (2000). This subject
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was revisited by Kemmler et al. (2005) where the con-

tribution from geometrical nonlinearities was investigated,

and by Wallin et al. (2018) where a neo-Hookean hyper-

elastic material model was used. Other examples of non-

linear structural topology optimization include the work of

Sigmund (2001a, b) where electromechanical devices with

geometrical nonlinearities were designed using multiple

materials, and the more recent work of Ivarsson et al. (2018)

where the objective was to design impact mitigating struc-

tures while considering the effect of transients and finite

strain viscoplasticity. Bruns et al. (2002) designed struc-

tures exhibiting snap-through behavior by modifying the

basic arc-length algorithm. A phase-field-based topology

optimization formulation that incorporates multi-material

structures and large deformations was developed by Wallin

et al. (2015).

Few have investigated the influence of eigenfrequency

constraints in the topology optimization of structures

undergoing finite deformations. To the authors’ knowledge,

the work of Yoon (2010) is the only example, wherein

the fundamental eigenfrequency optimization of prestrained

structures was considered by utilizing an internal element

connectivity parameterization in contrast to the standard

density-based approach.
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Topology optimization of linear elastic structures subject

to eigenfrequency constraints was first proposed by Dı́az

and Kikuchi (1992), where structural reinforcements were

introduced to increase the fundamental eigenfrequency. Var-

ious optimization formulations that consider eigenfrequen-

cies have subsequently been suggested, e.g. the maximiza-

tion of the fundamental eigenfrequency as done by Pedersen

(2000) or the maximization of the gap between two eigen-

frequencies as performed by Du and Olhoff (2007). In the

work of Niu et al. (2009), a two scale optimization method

was presented to maximize the fundamental eigenfrequency

of multiscale structures. A level set-based topology opti-

mization formulation has been proposed by Allaire and

Jouve (2005) to maximize the fundamental structural eigen-

frequency.

Unlike the aforementioned examples, our topology opti-

mization incorporates frequency constraints of hyperelastic

structures that undergo large deformations. The frequencies

are obtained by linearizing the governing equations about

the deformed state. This results in an eigenvalue problem

which is numerically similar to the conventional linear case,

the only difference being that the stiffness depends on the

deformation. A neo-Hookean model is used to model the

material response, which implies that both geometrical and

material nonlinearities are included, unlike the formulation

proposed by Yoon (2010) which only considers the former.

This choice is made to accurately capture the response dur-

ing finite deformations, since the conventional St. Venant

material model is only applicable to large deformation with

small strain. For additional discussion on hyperelastic mod-

els and topology optimization, see Klarbring and Strömberg

(2013).

As pointed out in e.g. Seyranian et al. (1994), Du and

Olhoff (2007), and Thore (2016), the occurrence of degen-

erate eigenfrequencies is rarely avoided in optimization

studies that consider eigenfrequencies. The treatment of

degenerate eigenfrequencies in topology optimization of

linear elastic structures is well documented, where the non-

differentiability of degenerate eigenfrequencies is generally

resolved by only considering directional derivatives, cf.

Seyranian et al. (1994). This formulation is extended here to

incorporate geometrical and material nonlinearities.

An often encountered issue when performing eigenfre-

quency topology optimization is the presence of spuri-

ous eigenmodes localized in nearly void regions. These

spurious eigenmodes stem from the ersatz material and

SIMP-penalization schemes. To eliminate this issue, Du and

Olhoff (2007) suggested a nonlinear interpolation of the vol-

ume fraction, such that the mass in low volume fraction

elements rapidly tends to zero. Low volume fraction ele-

ments are also known to cause convergence problems in

the Newton-Raphson iterations when performing nonlinear

finite element analyzes as these elements become highly

distorted. To combat this problem, Wang et al. (2014) pro-

posed an energy interpolation scheme which models these

elements via small strain theory. In this work, we cir-

cumvent both of the preceding issues by implementing an

element removal method technique proposed by Bruns and

Tortorelli (2003), whereby the low volume fraction elements

are removed from the finite element discretization.

We formulate the optimization problem as a maximiza-

tion of the stiffness subject to maximum volume and

minimum fundamental eigenfrequency constraints. From

an engineer’s perspective, this formulation is more rele-

vant than the case where the objective is the fundamental

eigenfrequency.

A well-posed topology optimization problem is formu-

lated by using restriction in which a minimum length-scale

is imposed on the design via a filter. The method of mov-

ing asymptotes (MMA) scheme is used to update the design,

where the required gradients are computed using the adjoint

sensitivity analysis. Both simple and degenerate eigenfre-

quencies are considered when performing the sensitivity

analysis. The numerical examples illustrate the influence of

the eigenfrequency constraints on the finalized topology.

2 Preliminaries

In this work, tensors and vectors will be written in bold

faced symbols, e.g. C, and all finite element matrices

will be denoted in bold sans serif symbols, e.g. K.

Lowercase subscripts e indicate quantities associated with

finite element �e
o = 1, ..., ne, where ne denotes the number

of elements in the discretization. The conventional finite

element assembly operation is represented by .

Since finite deformations are present, we distinguish

between the undeformed, reference configuration �o, and

the deformed, current configuration �. It is assumed that a

smooth mapping ϕ, between the reference configuration and

the current configuration exists, i.e. the position vector X,

of each particle in the reference configuration is connected

to its position x, in the current configuration via x =

ϕ(X, t) = u(X, t) + X, where u denotes the displacement

field. The local deformation is defined by the deformation

gradient F = ∇oϕ = 1 + ∇ou, where ∇o is the material

gradient operator on �o and 1 is the second-order identity

tensor. The Jacobian representing the volumetric change is

given by J = det(F ) and it is assumed that the mapping ϕ,

satisfies J > 0. The local deformation can also be described

by the right Cauchy-Green deformation tensor C = F T F

and the Green-Lagrange strain tensor E = 1
2
(C − 1).

In absence of body forces, the equation of motion is

∇o · (FS) = ρoü in �o, (1)
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where ρo denotes the mass density in the reference

configuration and the symmetric second Piola-Kirchhoff

stress tensor S is related to the Cauchy stress σ , via S =

JF−1σF−T . The boundary of the body in the reference

configuration ∂�o, with the unit normal no, consists of two

complementary surfaces, ∂�ot and ∂�ou, over which the

traction to = FSno, and the displacement u = ϕ − X = ū,

are prescribed, respectively.

The starting point for the finite element formulation is

the weak form, which is stated as finding the differentiable

u that satisfies the boundary condition u = ū on ∂�ou, such

that

∫

�o

ρoδu · üdv +

∫

�o

δE : Sdv −

∫

∂�ot

δu · tods = 0, (2)

for all smooth virtual displacements that satisfy δu = 0 on

∂�ou. The virtual Lagrangian strain δE, introduced in Eq. 2,

is defined as

δE(ϕ, δu) =
1

2

(

(∇oδu)T F + F T
∇oδu

)

. (3)

3 Constitutive model

Our constitutive assumption uses the isotropic compressible

neo-Hookean strain energy model in which the strain energy

UNH is expressed as

UNH =
1

4
K

(

(J 2−1)−ln(J 2)
)

+
1

2
G(J−2/3tr(C)−3), (4)

where K and G in the limit of infinitesimal strain

correspond to the bulk and shear moduli. Since we assume

a hyperelastic material model, the second Piola-Kirchhoff

stress tensor is obtained from the strain energy as

S =2
∂UNH

∂C
=

K

2
(J 2−1)C−1+GJ−2/3

(

1−
tr(C)

3
C−1

)

.

(5)

The fourth-order stiffness tensor associated with Eq. 4

becomes

D = 2
∂S

∂C
= a1C

−1 ⊗ C−1 + a2

(

1 ⊗ C−1 + C−1 ⊗ 1
)

+a3

(

C−1⊗C−1 + C−1⊗C−1
)

, (6)

where a1 = KJ 2 + 2G
9

J−2/3tr(C), a2 = − 2G
3

J−2/3 and

a3 = G
3
J−2/3tr(C) − K

2
(J 2 − 1), respectively. The dyadic

products ⊗ and ⊗ are defined such that (A⊗T ) : H =

A · H T · T T and (A⊗T ) : H = A · H · T T , where A, T

and H are arbitrary second-order tensors.

4 Filtration and penalization

As is usual in topology optimization, the binary valued

material indicator function c(X) = {0, 1} is replaced

by the continuous varying volume fraction design field

z(X) ∈ [0, 1] that is subsequently penalized so that

z → c. The use of z instead of c convexifies the

design space making the optimization cost and constraint

functionals differentiable. Unfortunately, this representation

of the design still generates an ill-posed optimization

problem resulting in so-called chattering designs1. To obtain

a well-posed optimization problem, we impose a length-

scale restriction on z via the filter proposed by Bruns and

Tortorelli (2003), which is based on studies and proofs

presented by Bourdin (2001) and Bruns and Tortorelli

(2001). Thus, volume fraction field z is replaced by the

filtered volume fraction field

ν(T ) =

∫

�o
ω(X − Y ) z(Y ) dv

∫

�o
ω(X − Y ) dv

≈

ne
∑

s=1

ω(Xe − Ys) zs

ne
∑

s=1

ω(Xe − Ys)

, (7)

where X ∈ �e
o. In our discretization, we assume z is

parameterized to be piecewise uniform over the elements

and hence so is ν. The kernel function ω is a cone filter

function emanating from the element �e
o centroid position

Xe and enveloping the surrounding element �s
o centroid

positions Ys that lie within the filter radius r of Xe, cf. Bruns

and Tortorelli (2003). The filter relation (7) can ultimately

be expressed in discretized format as

ννν = Z z, (8)

where Z is the [ne × ne] filter matrix, z = [z1, z2, ..., zne ]
T

and ννν = [ν1, ν2, ..., νne ]
T are the vectors of element volume

fractions and filtered volume fractions.

Elements possessing νe(X) = 1 and νe(X) = 0

indicate elements full and devoid of material, respectively.

Unfortunately, the filtering produces gray regions consisting

of elements for which νe(X) ∈ (0, 1). To reduce the extent

of these regions, the SIMP scheme-based on the work by

Bendsøe (1989) is used, wherein we replace UNH with

U = χ(ν)UNH , (9)

where

χ(ν) = νp(1 − δ0) + δ0. (10)

Here δ0 represents a lower threshold in the ersatz material

model which ensures the well-posedness of the elasticity

problem and p controls the level of penalization. It is clear

that as χ(ν) → δ0 the material mimics void, whereas as

1The chatter terminology is used by Young (2000) to describe an ill-

posed optimal control problem in which the solution consists of a

nonconverging sequence of infinitesimal pulse loads.
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χ(ν) → 1 the material realizes the neo-Hookean strain

energy function (4).

5 Total Lagrangian FE formulation

The displacement field u is interpolated in each finite

element using the standard finite element polynomial shape

functions N, to define the displacement field u, i.e. u(X) =

N(X)ae(t) where ae(t) is a vector consisting of the nodal

displacements for finite element e at time t . Differentiating

u gives the acceleration ü(X) = N(X)äe(t), and virtual

displacement δu(X) = N(X)δae(t), fields. Using these

approximations, the discrete virtual Lagrangian strain in

Eq. 3 is expressed as

δE(ae, δae) = B(ae)δae = (Bc + B
l(ae))δae, (11)

where B(ae) has been decomposed into constant B
c, and

linear B
l(ae) terms, cf. Crisfield (1993) for details 2. Using

the arbitrariness of the virtual nodal displacement and

the finite element interpolations in Eq. 2 yields the finite

element equation of motion

Mä + Fint (a) − Fext = 0, (12)

where the mass matrix M, internal force vector Fint , and

external force vector Fext , are

(13)

(14)

(15)

In Eq. 13, we emphasize that ρ = νρo.

5.1 Displacement controlled Newton-Raphson

In this work, we load the structure quasi-statically by

imposing a displacement u = ū on ∂�ou to obtain the

deformed configuration �. We subsequently evaluate the

natural frequencies on �. The displacement controlled

Newton-Raphson scheme is used to solve the quasi-static

residual equilibrium equation obtained by neglecting inertia

and equating t
o = 0 in Eq. 12, i.e.

rf (a) = Fint,f (a) = 0, (16)

where the subscript f refers to the equations associated

with the unconstrained degrees of freedom, i.e. the

2Voigt notation is used to represent second- and fourth-order finite

element tensors.

free displacements af , as opposed to the prescribed

displacements ap.

To solve (16), we employ the Newton-Raphson scheme

where the residual (16) is linearized to obtain the unknown

increment daf , in each equilibrium iteration as the solution

to

rf (a) +
∂rf (a)

∂af

daf = 0 ⇒ Kff (a)daf = −rf (a),

(17)

where Kff is the partition of the tangent stiffness matrix

(18)

corresponding to the free degrees of freedom. In Eq. 18, G

contains the gradient of the element shape functions, H is a

symmetric block matrix that contains the stress, and D is the

Voigt notation stiffness matrix that corresponds to D. The

explicit format of these matrices appears in e.g. Crisfield

(1993).

6 Eigenfrequency analysis

The conventional eigenvalue problem is formulated for

zero initial strain. In contrast to the conventional problem,

our eigenvalue problem considers nonzero initial strain

wherein the stiffness and eigenfrequencies depend on the

displacement field.

Our structure is preloaded via the constant displacement

ap such that rf = Fint,f (a) = 0 where a is the displacement

field in the equilibrium configuration. To formulate the

eigenvalue problem, we introduce a small time-dependent

perturbation δaf from af so that

a → a + δa ⇒ ä → ä + δä = δä, (19)

where δap = δäp = 0. Insertion of Eqs. 19 into 12 results

in

Mδä + Fint (a + δa) = 0 ⇒ Mff δäf + Fint,f (a + δa) = 0.

(20)

A Taylor series expansion of the internal force and ignoring

higher-order terms yields

Fint,f (a + δa) = Fint,f (a) +
∂Fint,f (a)

∂af

δaf , (21)

which when combined with Eqs. 16 and 18 allows (20) to

be expressed as

Mff δäf + Kff δaf = 0. (22)
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As with the linear problem, we see that δaf is a harmonic

oscillation, i.e. δaf =
n
∑

j=1

φφφje
iωj t where (ω2

j ,φφφj ) are

the eigenpairs that are obtained from the real, symmetric

generalized eigenvalue problem

Kff φφφj = ω2
j Mff φφφj , j = 1, ..., n, (23)

where n denotes the dimension of the problem, i.e. the

number of free nodal degrees of freedom in af , and

ω2
j are the square eigenfrequencies. In our study, the

stiffness and mass matrices are symmetric, real, and positive

semi-definite, and hence the eigenfrequencies are real and

positive, cf. Clough and Penzien (1993). Subsequently, the

eigenvalues are placed in ascending order such that 0 <

ω2
1 ≤ ω2

2 ≤ ... ≤ ω2
j ≤ ... ≤ ω2

n, and their associated

eigenmodes are mass-normalized such that

φφφT
j Mff φφφk = δjk, j, k = 1, ..., n, (24)

where δjk denotes the Kronecker’s delta.

The formulation of the eigenvalue problem for a

nonlinear system (23) is clearly similar to the one obtained

in conventional analyzes, cf. e.g. Du and Olhoff (2007);

however, it is emphasized that the eigenpairs of the

nonlinear system depend on the equilibrium displacement

field a since Kff is a function of the displacement a.

7 Consideration of low volume fraction
elements

In our formulation, void regions are modeled using the

minute volume fraction δ0 which is assumed to have a

negligible influence on the structural response. Unfortu-

nately, for eigenfrequency constrained finite deformation

problems, the existence of low volume fraction elements is

problematic.

Firstly, low volume fraction elements yield so-called

spurious, localized eigenmodes. The issue arises when

solving (23) since the mass scales linearly, i.e. p = 1,

with the volume fraction, whereas the stiffness scales at

p > 1, cf. Eqs. 10 and 13, which implies that the stiffness-

to-mass ratio becomes very small in the void regions where

ν(X) → 0. Several ways to suppress these nonphysical

eigenmodes have been suggested in the literature. By far

the most common method, as proposed by Du and Olhoff

(2007), weights the volume fraction such that the stiffness-

to-mass ratio, i.e. the spurious eigenfrequency, becomes

large.

Secondly, regions consisting of low volume fraction

elements often become highly distorted in our finite

deformation analysis. This causes convergence issues in the

Newton-Raphson equilibrium iterations. Different means

for addressing this issue have also been proposed, e.g. by

introducing an interpolation of the strain energy such that

void regions are modeled using small deformation theory

as done by Wang et al. (2014), or by simply relaxing

the convergence criterion of the Newton-Raphson iterative

scheme as done by Pedersen et al. (2001).

To eliminate the aforementioned problems associated

with low volume fraction elements, we employ the element

removal method proposed by Bruns and Tortorelli (2003).

This procedure is able to both remove and reintroduce the

finite elements. Elements are removed from the analysis if

their filtered volume fraction is smaller than a prescribed

small threshold εr > 0, i.e. if νe < εr ; they are reintroduced

if νe > εr . The threshold εr must be chosen such that

the discontinuities in the gradient information due to the

nonzero tolerance εr do not greatly affect the optimization.

We did not experience any numerical difficulties when using

this method. More details regarding the implementation of

this method are discussed in Bruns and Tortorelli (2003).

Despite using the element removal scheme, the remain-

ing small regions with intermediate volume fractions ν(x) ∈

(εr , 1) gave rise to spurious eigenmodes due to the ersatz

material model. To combat this, we follow Ferrari et al.

(2018) and set the lower bound δ0 to a relatively large value

δ0 = 10−3. This choice of δ0 increases the magnitude of

the spurious eigenfrequencies such that they do not obstruct

the optimization. For most ersatz material models, a large

δ0 leads to significant load-carrying capabilities of void

regions which might adversely affect the resulting design.

However, since we employ element removal, this problem

is avoided as the effected regions are small.

By examining the evolution of the potential energy or the

kinetic energy of the spurious modeshapes, i.e.

Epot = φφφT
j Kff φφφj = Ekin = ω2

jφφφT
j Mff φφφj ,

j = 1, ..., n, (25)

we verify the absence of low energy spurious eigenmodes in

the nearly void interface regions. Indeed, such modes would

be readily identified by low Epot values.

8 Topology optimization

The objective of our topology optimization is to distribute

material to build a stiff structure with fundamental

eigenfrequency greater than ωmin. Following Niu et al.

(2011), the stiffness of a displacement loaded structure is

defined by

go = F
T
ext,pap, (26)

where Fext,p contains the reaction forces of the degrees

of freedom for which the displacements ap are imposed.
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Constraints on the nc lowest eigenvalues are cast as

gj = ω2
min − ω2

j ≤ 0, j = 1, ..., nc, (27)

and on the maximum volume Vmax as

gV =

∫

�0

ν dv − Vmax ≤ 0. (28)

The optimization problem together with the box constraints

on the components of z is formulated as

P

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
z

− go

s.t

⎧

⎨

⎩

gj ≤ 0, j = 1, ..., nc

gV ≤ 0

0 ≤ ze ≤ 1, e = 1, ..., ne

(29)

where we reformulate the objective as a minimization

problem and consider the three smallest eigenfrequencies,

i.e. nc = 3.

9 Sensitivity analysis

The optimization problem is solved using the gradient-

based MMA, where the sensitivities of the objective

and constraint functions are computed using the adjoint

approach. An example verifying the analytical sensitivities

of the eigenfrequencies is found in the Appendix. In the

subsequent sensitivity analysis, the nondifferentiable effect

of the element removal scheme for elements with νe = εr

is neglected. Fortunately, for small choices of εr , we did not

experience any convergence issues during the optimization.

Since the problem is regularized using a filter, the

sensitivities are obtained using the chain rule and Eq. 8 as

∂gi

∂z
=

(

∂ν

∂z

)T
∂gi

∂ν
= Z

T ∂gi

∂ν
, (30)

where we emphasize that Z is the constant filter matrix.

9.1 Sensitivity analysis of objective

The sensitivity of the objective function as defined in Eq. 26

has previously been outlined by Luo et al. (2017), but for

completeness, it is summarized below. Using the adjoint

method, we augment go and write it equivalently as

go = a
T
p Fint,p + µµµT

Fint,f , (31)

where we utilize Fint,f = 0 and introduce the adjoint vector

µµµ. Differentiation of Eq. 31 with respect to the filtered

volume fraction variables yields

∂go

∂νe

= a
T
p

∂Fint,p

∂νe

+ µµµT ∂Fint,f

∂νe

+

+

(

a
T
p

∂Fint,p

∂af

+ µµµT ∂Fint,f

∂af

)

∂af

∂νe

. (32)

Assigning the adjoint vector µµµ such that

Kff µµµ = −Kfpap, (33)

where Kfp =
∂Fint,f

∂ap
annihilates the

∂af

∂νe
contribution in

Eq. 32. The sensitivity is thus reduced to

∂go

∂νe

= a
T
p

∂Fint,p

∂νe

+ µµµT ∂Fint,f

∂νe

= αααT ∂Fint

∂νe

, (34)

where

ααα =

[

µµµ
ap

]

. (35)

9.2 Sensitivity analysis of simple eigenvalues

If eigenfrequency ωj satisfies ωj−1 < ωj < ωj+1, the

eigenpair (ω2
j ,φφφj ) is said to be simple and the corresponding

normalized eigenmode φφφj is unique. The sensitivity of a

simple eigenvalue with respect to the design variables of a

linear elastic structure is trivially obtained as, cf. e.g. Haftka

and Gürdal (1992)

∂ω2
j

∂νe

= φφφT
j

(

∂Kff

∂νe

− ω2
j

∂Mff

∂νe

)

φφφj , j = 1, ..., nc. (36)

Unfortunately, the corresponding sensitivity analysis for a

nonlinear elastic body is less straight forward since the

stiffness matrix depends on the displacement, i.e. ∂K

∂νe
→

∂K

∂νe
+ ∂K

∂a

∂a

∂νe
. To eliminate the implicitly defined sensitivity

∂a

∂νe
, we utilize the adjoint approach, whereby we manipulate

(16) and (23) to obtain

φφφT
j (Kff −ω2

j Mff )φφφj −λλλT
j Fint,f = 0, j = 1, ..., nc, (37)

where as in Eq. 31 λλλj is the adjoint vector and Fint,f = 0.

Differentiation of Eq. 37 with respect to νe and some

manipulations yield

∂ω2
j

∂νe

= φφφT
j

(

∂Kff

∂νe

− ω2
j

∂Mff

∂νe

)

φφφj +

+

⎛

⎝

∂(φ̂φφ
T

j Kff φ̂φφj )

∂af

− λλλT
j Kff

⎞

⎠

∂af

∂νe

− λλλT
j

∂Fint,f

∂νe

, (38)

where the mass orthonormalization (24) was utilized and the
ˆ( · ) notation indicates quantities to be treated as constant

in the differentiation. To annihilate the implicit sensitivities
∂af

∂νe
from Eq. 38, the adjoint vector λλλj is chosen as the

solution to

Kff λλλj =

⎛

⎝

∂(φ̂φφ
T

j Kff φ̂φφj )

∂af

⎞

⎠

T

, (39)

where the right hand side has been computed by Wallin et al.

(2018). Insertion of λλλj obtained from Eq. 39 into 38 yields
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the sensitivity of the simple eigenvalue ω2
j with respect to

each element volume fraction νe as

∂ω2
j

∂νe

= φφφT
j

(

∂Kff

∂νe

− ω2
j

∂Mff

∂νe

)

φφφj − λλλT
j

∂Fint,f

∂νe

. (40)

9.3 Sensitivity analysis of degenerate eigenvalues

Frequency constrained topology optimization invariably

produces designs with repeated, i.e. degenerate, eigenfre-

quencies. Indeed, N-fold degenerate eigenfrequencies of the

initial design often exist due to domain symmetry of the

body. Additionally, degenerate eigenfrequencies arise dur-

ing the optimization as multiple simple frequencies ωj that

violate the constraint approach the limiting value ωmin. In

either case, the subsequent sensitivity analysis is affected

since the eigenmodes corresponding to the N-fold degen-

erate eigenfrequency are not unique, i.e. any set of vectors

on the N-dimensioned hyperplane will satisfy the origi-

nal eigenvalue problem (23), and consequently degener-

ate eigenfrequencies are not differentiable in the common

(Fréchet) sense.

The phenomena of degenerate eigenfrequencies in struc-

tural optimization have previously been studied in detail

by e.g. Haftka and Gürdal (1992), using the concept of

directional derivatives. Later, Seyranian et al. (1994) cal-

culated the directional sensitivities of degenerate eigenfre-

quencies using a mathematical perturbation method. This

formulation has thereafter been implemented in topology

optimization by e.g. Du and Olhoff (2007) and Pedersen

and Nielsen (2003). The mathematical perturbation-based

sensitivity analysis by Seyranian et al. (1994) is limited to

linear elasticity and extended here to incorporate nonlinear

hyperelasticity.

By definition, the N-fold degenerate eigenvalue satisfies

ω̄2 = ω2
j , j = 1, .., N, (41)

and its corresponding M-orthonormalized eigenmodes φφφ
span an N-dimensional hyperplane. To begin the sensitivity

analysis, we express an eigenmode φ̄φφ in this hyperplane as

φ̄φφ =

N
∑

j=1

βjφφφj . (42)

The choice βj of Eq. 42 is made to obtain eigenmodes

that remain continuous with respect to design changes in

the subsequent sensitivity analysis, cf. Courant and Hilbert

(1953).

As done above, we invoke the adjoint method to

eliminate the implicit displacement derivatives ∂a

∂νe
. The

augmented version of the original eigenvalue problem (23)

for the degenerate case is cast as

φ̄φφ
T
(Kff − ω̄2

Mff )φ̄φφ − λ̄λλ
T

Fint,f = 0 (43)

; however, the adjoint vector λ̄λλ is now ornamented with a
¯( · ) to emphasize the degeneracy, cf. the notation in Eq. 41.

Next, we consider the variation of Eq. 43 which yields

φ̄φφ
T

(

δKff − δω̄2
Mff − ω̄2δMff

)

φ̄φφ − λ̄λλ
T
δFint,f

+
∂

(

ˆ̄φφφT
Kff

ˆ̄φφφ
)

∂af

δaf − λ̄λλ
T ∂Fint,f

∂af

δaf = 0, (44)

upon utilizing (23). Rearranging the above (44) results in

φ̄φφ
T

(

δKff − ω̄2δMff

)

φ̄φφ − δω̄2φ̄φφ
T

Mff φ̄φφ − λ̄λλ
T
δFint,f

+

⎛

⎜

⎝

∂
(

ˆ̄φφφT
Kff

ˆ̄φφφ
)

∂af

− λ̄λλ
T

Kff

⎞

⎟

⎠
δaf = 0. (45)

To annihilate the implicit sensitivities, we require that

Kff λ̄λλ =

⎛

⎜

⎝

∂
(

ˆ̄φφφT
Kff

ˆ̄φφφ
)

∂af

⎞

⎟

⎠

T

=

N
∑

j=1

N
∑

k=1

βj βk

⎛

⎜

⎝

∂
(

φ̂φφ
T

j Kff φ̂φφk

)

∂af

⎞

⎟

⎠

T

, (46)

is fulfilled. In Eq. 46, the definition of the N-fold

eigenmode φ̄φφ cf. Eq. 42, is used and in a similar fashion,

we now express the adjoint vector λ̄λλ as a function of the

to-be-determined vectors λλλjk , i.e.

λ̄λλ =

N
∑

j=1

N
∑

k=1

βj βkλλλjk, (47)

which allows (46) to be expressed as

N
∑

j=1

N
∑

k=1

βj βkKff λλλjk =

N
∑

j=1

N
∑

k=1

βj βk

⎛

⎜

⎝

∂
(

φ̂φφ
T

j Kff φ̂φφk

)

∂af

⎞

⎟

⎠

T

.

(48)

Thus, the implicit sensitivity in Eq. 45 is annihilated for any

choice of βj and βk , j, k = 1, ..., N if the λλλjk satisfy

Kff λλλjk =

⎛

⎜

⎝

∂
(

φ̂φφ
T

j Kff φ̂φφk

)

∂af

⎞

⎟

⎠

T

. (49)

We solve these j, k = 1, ..., N adjoint equations for λλλjk ,

j, k = 1, ..., N . So in all we have to solve N × N adjoint

problems, but due to the symmetry of the right-hand side

of Eq. 49, we note that λλλjk = λλλkj and hence we only

solve N(N + 1)/2 adjoint problems. Also notable is that

the computational cost for solving the N(N + 1)/2 adjoint
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problems is negligible when using direct solvers since Kff

is identical in all k, j -combinations.

Upon inserting (49) into (45), we obtain

φ̄φφ
T

(

δKff − ω̄2δMff

)

φ̄φφ − δω̄2φ̄φφ
T

Mff φ̄φφ − λ̄λλ
T
δFint,f = 0.

(50)

Use of Eqs. 24, 42, and 47 in Eq. 50 subsequently yields

N
∑

j=1

N
∑

k=1

βj

[

φφφT
j

(

δKff − ω̄2δMff

)

φφφk − λλλT
jkδFint,f +

−δω̄2δjk

]

βk = 0. (51)

The above can be arranged as

βββT
[

S − δω̄2
1

]

βββ = 0, (52)

where βββ = [β1, β2, ..., βN ]T and the components of the

N × N matrix S are

Sjk = φφφT
j

(

δKff − ω̄2δMff

)

φφφk − λλλT
jkδFint,f . (53)

Due to symmetries K
T = K, M

T = M and λλλjk = λλλkj , we

see that S is real and symmetric. To satisfy (52), the matrix

S − δω̄21 must be rank-deficient, i.e.

det
[

S − δω̄2
1

]

= 0, (54)

and thus we see that the eigenvalues of S provide the

directional sensitivities δω̄2
j , j = 1, ..., N of the degenerate

eigenvalue ω̄2.

The directional derivatives δω̄2
j , j = 1, ..., N of the

degenerate eigenvalues are nonlinear functions of the design

perturbations δMff , δKff , and δFint,f and do not admit

a usual linearization in contrast to simple eigenvalues.

However, if S is diagonal, the directional derivative δω̄2
j can

be computed using the simple eigenvalue (37).

Standard gradient-based methods for optimization are

not directly applicable for the solution of optimization

problems in which degenerate eigenvalues are present due

to the lack of differentiability. To combat this, we follow

Fig. 1 Double clamped beam. The prescribed displacement uy is

uniformly applied to 14 nodes on the center-top surface in the negative

y-direction

Krog and Olhoff (1999) and Lund (1994), and require S to

be diagonal by imposing the constraints

gjk = Sjk = 0, j �= k, j, k = 1, ..., N, (55)

on our optimization problem. In this way, we can always

use Eq. 40 to evaluate the derivatives
∂ω2

j

∂νe
of simple

eigenvalues and directional derivatives δω̄2
j , j = 1, ..., N

of degenerate eigenvalues. In the MMA, this constraint is

easily accommodated in the subproblem wherein 
M, 
K,


r and hence S are linear in the update 
z. As such the gjk

sensitivities are trivially evaluated. The final optimization

problem P is thus stated as

P

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
z

− go

s.t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

gj ≤ 0, j = 1, ..., nc

gjk = 0, j �= k, j, k = 1, ..., N

gV ≤ 0

0 ≤ ze ≤ 1, e = 1, ..., ne

(56)

10 Numerical examples

To illustrate the influence of the eigenfrequency constraints,

we design 2D beam-like structures. To connect with

previous related work, the material parameters are based on
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Fig. 2 Optimized design a, first three eigenmodes b–d, and evolutions

of the eigenvalues and compliance ratio e for the geometry in Fig. 1

when uy = 1000 mm without eigenvalue constraints. Scaled b—

φφφ1, c—φφφ2, and d—φφφ3 are plotted for uy = 0 mm. Every 5th

iteration is marked in e, where red—ω2
1, blue—ω2

2, green—ω2
3, and

black—go/g
init
o
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Fig. 3 Optimized designs and evolutions of the three smallest eigen-

values and compliance ratio for the geometry in Fig. 1 subject to the

eigenvalue constraints ω2
j > ω2

min = 250 kHz2. a uy ≈ 0 mm, b

uy = 200 mm, c uy = 500 mm, d uy = 850 mm, and e uy = 1000

mm. In the right hand side plots, every 5th iteration is marked, where

red—ω2
1, blue—ω2

2, green—ω2
3, and black—go/g

init
o

the choices by Du and Olhoff (2007), i.e. density ρg =

1.000 kg/m3, Young’s modulus E = 10.00 MPa, and

Poisson’s ratio υ = 0.300 which provides the bulk and

shear moduli K = E
3(1−2υ)

and G = E
2(1+υ)

. A continuation

scheme is utilized for the penalty factor p, cf. Eq. 10, where

the initial value p = 2 is increased by 0.05 every fifth
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Fig. 4 Optimized Fig. 3 a and e

designs in their undeformed

configurations

design iteration up to the maximum value p = 3. The

maximum allowed volume is set to Vmax = 0.5V where V

denotes the volume of the design domain in the reference

configuration �o. The initial volume fraction distribution is

uniform such that νe = 0.5, e = 1, ..., ne. The threshold εr

for determining when to remove an element is set to εr =

0.01, i.e. the same choice as Bruns and Tortorelli (2003).

The numerical parameters used in the MMA algorithm are

those proposed by Svanberg (1987).

Two different boundary conditions are considered,

namely a double clamped beam and a simply supported

beam. The length, width, and out-of-plane thickness of the

beam are 10000 mm, 1000 mm, and 100 mm, respectively.

The beam is discretized using 250 × 25 × 1 = 6250 eight

node fully integrated 3D brick elements, i.e. one element in

thickness. Plane strain is assumed and thus the out-of-plane

displacement is zero. The filter radius of Eq. 7 is r = 60

mm, i.e. 1.5 times the element side length.

10.1 Double clamped beam

The design domain and boundary conditions for the double

clamped 2D beam are shown in Fig. 1.

0
0 200 400 600 800 1000

50
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250

Fig. 5 The smallest eigenvalue as a function of the deflection uz for

the Fig. 3e design

As reference, we first investigate the design, structural

response, and mode shapes for a uy = 1000 mm load level

when omitting the eigenvalue constraints, with the results
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Fig. 6 Optimized designs a, c and evolutions of the eigenvalues and

compliance ratio b, d for the geometry in Fig. 1 subject to the

eigenvalue constraints ω2
j > ω2

min. a, b ω2
min = 400 kHz2 and c, d

ω2
min = 450 kHz2. Every 5th iteration is marked in b and d, where

red—ω2
1, blue—ω2

2, green—ω2
3, and black—go/g

init
o
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Fig. 7 Scaled first three eigenmodes of the Figs. 3e and 6 designs plotted for uy = 0 mm. a–c Fig. 3e design, d–f Fig. 6a design, and g–i Fig. 6c

design

depicted in Fig. 2. Note that the φφφj (X) = 0, j = 1, 2, 3 over

the 240 mm top center surface over which the displacement

is prescribed.

To investigate the influence of the prestrain in con-

junction with the eigenfrequency constraints, we provide

examples for five load levels uy with ω2
min = 250 kHz2

fixed. The optimized designs along with the evolutions of

the eigenvalues are shown in Fig. 3, where we also plot the

compliance ratio go/g
init
o .

In Fig. 4, the optimized design corresponding to the

ω2
j > ω2

min = 250 kHz2 eigenvalue constraint for the linear

uy ≈ 0 mm and nonlinear uy = 1000 mm cases is shown

in their undeformed configurations. The difference between

the designs demonstrates the impact of the prestrain on

the structural response. To further illustrate this effect,

we compute the smallest eigenvalue of the Fig. 3e design

corresponding to different load levels, cf. Fig. 5. As

expected, the structure’s stiffness increases under load,

causing the lowest eigenvalue to increase until it ultimately

equals the 250 kHz2 constraint limit when uy = 1000

mm.

Figure 6 illustrates designs subject to minimum eigen-

value constraints ω2
min = 400 kHz2 and ω2

min = 450 kHz2

at the load level uy = 1000 mm. The mode shapes associ-

ated with the designs in Figs. 3e and 6 are depicted in Fig. 7.

From Figs. 2, 3e, and 6, we conclude that the designs are

highly influenced by the eigenvalue constraints.

A comparison of the modal shapes in Figs. 2 and 7 indi-

cates that mode switching occurs during the optimization.

Our experience is that this phenomena did not system-

atically affect the convergence of the optimizer, cf. the

evolutions of the eigenvalues and the compliance ratio in

Figs. 2, 3, and 6.

In Table 1, the values of go, ginit
o , ω2

1, ω2
2, and ω2

3 for each

design are given. An interesting observation is the absence

of degenerate eigenfrequencies. The smallest observed

relative difference between two eigenfrequencies during all

design iterations is ≈ 10−5, i.e. the eigenfrequencies are

always treated as simple. The last row in Table 1 shows the

performance for the Fig. 6a design which is optimized for

uy ≈ 0 mm when it is subjected to the uy = 1000 mm

displacement. A comparison with the performance of the

Table 1 Resulting values for

the double clamped beam

designs

The volume constraint is active for all examples
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Fig. 8 a Evolution of the ratio of removed finite elements nrem with

respect to the total number of elements. b The number of reintroduced

elements nrein during a design update. Both (a) and (b) correspond to

the Fig. 3b design. Every 5th iteration is marked in (a)

Fig. 6d design clearly illustrates the impact of the nonlinear

framework.

The evolution of the number of removed and reintro-

duced finite elements is depicted for the Fig. 3b design in

Fig. 8. We note that the percentage of removed elements

reaches a terminal value of ≈ 30%, and that the number of

Fig. 9 Simply supported beam. The prescribed displacement uy is

uniformly applied to 14 nodes on the center-top surface in the negative

y-direction

elements that are reintroduced during a design update rarely

exceeds 10 elements in a 6250 element mesh.

10.2 Simply supported beam

In the last example, we consider the simply supported beam

shown in Fig. 9.

Again, we initially apply the uy = 1000 mm load

level and omit the eigenvalue constraints which yields the

design and mode shapes depicted in Fig. 10. Thereafter,

we investigate the influence of the prestrain and use the

load uy ≈ 0 mm to mimic a linear design. Imposing the

constraint ω2
j > ω2

min = 150 kHz2 renders the design and

its mode shapes illustrated in Fig. 11.

Figure 12 illustrates designs at the uy = 1000mm

prestrain subject to the eigenvalue constraints ω2
j > ω2

min

with ω2
min = 150 kHz2 and ω2

min = 250 kHz2. Similar

to the previous example, we observe great influences of

the eigenvalue constraints on the final designs. We again

emphasize the lack of degenerate eigenfrequencies.

The mode shapes associated with the Fig. 12 designs

are plotted in Fig. 13. We observe that a local eigenmode

20 40 60 80 100 120 140
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Fig. 10 Optimized design a, evolutions of the eigenvalues and

compliance ratio b, and first three eigenmodes c–e for the geometry

in Fig. 9 when uy = 1000 mm without eigenvalue constraints. Scaled

c—φφφ1, d—φφφ2, and e—φφφ3 are plotted for uy = 0 mm. Every 5th

iteration is marked in b where red—ω2
1, blue—ω2

2, green—ω2
3, and

black—go/g
init
o
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Fig. 11 Optimized design a, evolutions of the eigenvalues and com-

pliance ratio b, and first three eigenmodes c–e of a simply supported

beam when uy ≈ 0 mm subject to the eigenvalue constraints ω2
j >

ω2
min = 150 kHz2. Scaled c—φφφ1, d—φφφ2, and e—φφφ3 are plotted for

uy = 0 mm. Every 5th iteration is marked in (b) where red—ω2
1,

blue—ω2
2, and green—ω2

3
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Fig. 12 Optimized designs and evolutions of the eigenvalues and com-

pliance ratio for the geometry in Fig. 9 subject to the eigenvalue

constraints ω2
j > ω2

min. a ω2
min = 150 kHz2 and b ω2

min = 250

kHz2. In the right hand side plots, every 5th iteration is marked, where

red—ω2
1, blue—ω2

2, green—ω2
3, and black—go/g

init
o

Fig. 13 First three eigenmodes of the Fig. 12 designs in their undeformed configurations. a–c Fig. 12a and d–g Fig. 12b. f, g The third eigenmode

for two different design iterations. First row—φφφ1, second row—φφφ2, and third row—φφφ3
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Fig. 14 Optimized Figs. 11 and

12a designs in their undeformed

configurations.

Table 2 Resulting values in the

last design iteration for the

simply supported beam

The volume constraint is active for all examples

highlighted in Fig. 13f has emerged, whereas for a previous

design iteration, the global mode displayed in Fig. 13g

was found instead. This phenomena can be identified by

the small drops in the evolution of the third eigenvalue in

Fig. 12.

We compare the optimized designs corresponding to

uy ≈ 0 mm and uy = 1000 mm subject to the ω2
j >

ω2
min = 150 kHz2 eigenvalue constraint in the undeformed

configurations in Fig. 14. The impact of the prestrain on the

optimized topology is clear.

In Table 2, the values of the response quantities of interest

are listed for the various designs. It is concluded that the

optimization problem P succeeds in drastically increasing

the fundamental eigenfrequency. Again, we evaluate the

impact of the nonlinear framework by analyzing the

performance of the Fig. 11 design obtained for uy ≈ 0

mm at a uy = 1000 mm load level, cf. the last row in

Table 2. As expected, the Fig. 12a design outperforms its

linear counterpart at this load level.

11 Conclusions

The mathematical framework for performing topology opti-

mization considering eigenfrequencies is extended to finite

strain hyperelastic structures subjected to small harmonic

oscillations about a prestrained equilibrium configuration.

A stiff structure is obtained, while constraining the low-

est eigenfrequencies and the maximum allowable volume.

The low volume fraction element removal method proposed

by Bruns and Tortorelli (2003) is implemented to miti-

gate problems associated with nearly void regions in finite

deformation eigenfrequency topology optimization, i.e.

gross distortion and spurious eigenmodes. The problem in

the sensitivity analysis associated with the nondifferentia-

bility of degenerate eigenfrequencies is treated by extending

the perturbation method of Seyranian et al. (1994) to include

both geometrical and material nonlinearities.

The numerical examples show that the fundamental

eigenfrequency of prestrained structures can be increased

significantly using the proposed framework. The sensitivity

analysis implementation works for both simple and degen-

erate eigenfrequencies. As expected, the magnitude of the

prestrain significantly affects the optimized designs.
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Appendix

Verification of sensitivities

The accuracy of the analytical sensitivity expression is

verified by numerical differentiation using the forward

finite difference method. Due to the finite precision in

the eigenfrequency computations, the degeneracy must be

determined to within a given tolerance εtol , cf. Seyranian

et al. (1994). To set this tolerance, we compare the analytical

directional derivative obtained when assuming simple or

degenerate eigenfrequencies, i.e.
S

δω2
j when using Eq. 40

or
D

δω2
j when using Eq. 54, to the forward finite difference

derivative approximation

FD

δω2
j ≈

ω2
j (z1, ..., ze + ε, ..., zne) − ω2

j (z1, ..., zne)

ε
, (57)

where ε denotes the perturbation of variable ze. Three

different scenarios are then possible. Firstly, if
S

δω2
j ≈

FD

δω2
j and

D

δω2
j �=

FD

δω2
j , the eigenfrequency is treated as

Fig. 15 Simply supported 3D plate. The prescribed displacement uz is

applied to the top-center surface in the negative z-direction
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Fig. 16 Optimized design a and first three eigenmodes b–d of simply

supported 3D plate when uz = 280 mm without eigenvalue cons-

traints. Scaled b—φφφ1, c—φφφ2, and d—φφφ3 are plotted for uz = 0 mm

20 40 60 80 100 12 140
0

200

400

600

800

1000

1200

1400

1600

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 17 Evolutions of the eigenvalues and compliance ratio value for

the Fig. 16 design. Every 5th iteration is marked. Red—ω2
1, blue—ω2

2,

green—ω2
3, and black—go/g

init
o

Fig. 18 Optimized design a and first three eigenmodes b–d of simply

supported 3D plate when uz = 280 mm subject to the eigenvalue

constraints ω2
j > ω2

min = 900 kHz2. Scaled b—φφφ1, c—φφφ2, and d—φφφ3

are plotted for uz = 0 mm
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Fig. 19 Evolutions of the eigenvalues and compliance ratio value for

the Fig. 18 design. Every 5th iteration is marked. Red—ω2
1, blue—ω2

2,

green—ω2
3, and black—go/g
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o

Table 3 Resulting values for

the 3D plate designs

For both designs uz = 280 mm and ginit
o = 0.560 kNm
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simple. Secondly, if
D

δω2
j ≈

FD

δω2
j and

S

δω2
j �=

FD

δω2
j , the

eigenfrequency is treated as degenerate. Finally, if both
S

δω2
j ≈

D

δω2
j ≈

FD

δω2
j , S is diagonal and the eigenvalue is

degenerate, but Eqs. 40 and 54 yield identical result, cf.

Seyranian et al. (1994).

Based on the analysis above, we conclude that N > 1

eigenvalue is N-fold degenerate when they agree to within

the tolerance of εtol = 10−8. This choice is smaller than

the tolerance used by e.g. Seyranian et al. (1994). Surely,

this is a case-by-case choice. For example, here we are

dealing with nonlinear boundary value problem, and thus

structural equilibrium is only ensured to within a given

tolerance. Another factor affecting the value of εtol is the

eigensolver; We use the FEAST Eigenvalue Solver 2.0, cf.

Polizzi (2009).

The problem considered for verification of the sensitivity

computation is a simply supported 3D plate-like structure

cf. the design domain in Fig. 15. The length, width, and

thickness of the plate are, 2000 mm, 2000 mm, and 100

mm, respectively. We use a coarse mesh that consists of

20 × 20 × 1 = 400 fully integrated 3D brick elements. The

filter radius, cf. Eq. 7, is r = 150 mm, i.e. 1.5 times the

element side length.

This geometry is chosen due to its inherent domain

symmetry which is ideal for verifying the sensitivities of

degenerate eigenfrequencies. First, we obtain an optimized

design without constraining the eigenvalue. The resulting

design and associated mode shapes appear in Fig. 16, the

evolutions of the eigenvalue and the compliance ratio are

plotted in Fig. 17, and the compliance and the total volume

fraction
(

∫

�0
ν dv

)

/V = V ∗/V are denoted in Table 3.

Next, we repeat the previous problem, but now we

enforce the eigenvalue constraints ω2
j > ω2

min = 900 kHz2.

The resulting design is depicted in Fig. 18, where the mode

shapes also are seen.

0.45

0.46

0.47

0.48

0.49

0.5

0.51

20 40 60 80 100 120 140

Fig. 20 Evolution of the total volume fraction V ∗/V for the Fig. 18

design. Every 5th iteration is marked.

As is shown in Fig. 19, the twofold degenerate

fundamental eigenvalue is increased to fulfill the lower

bound ω2
min = 900 kHz2 constraint. Since a coarse

mesh is used to discretize the domain, the optimization

algorithm is working in a relatively small design space,

which might explain such small differences between the

Figs. 16 and 18 designs. An interesting phenomenon is

noted as the Fig. 18 design does not utilize all available

material, cf. Fig. 20. Similar observations are made in Stolpe

(2010), who discusses the nonnecessity of an active volume

constraint at an optimal solution for continuous and discrete

design problems. The terminal values of the constrained

eigenvalues and go are denoted in Table 3.
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Klarbring A, Strömberg N (2013) Topology optimization of hypere-

lastic bodies including non-zero prescribed displacements. Struct

Multidiscip Optim 47(1):37–48
Krog LA, Olhoff N (1999) Optimum topology and reinforcement

design of disk and plate structures with multiple stiffness and

eigenfrequency objectives. Comput Struct 72(4-5):535–563
Lund E (1994) Finite element based design sensitivity analysis

and optimization. Ph.D. Dissertation. Inst. Mech Engrg. Aalborg

University, Denmark
Luo Y, Li M, Kang Z (2017) Optimal topology design for stress-isolation

of soft hyperelastic composite structures under imposed boundary

displacements. Struct Multidiscip Optim 55(5):1747–1758
Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous

optimum cellular material for maximum fundamental frequency.

Struct Multidiscip Optim 39(2):115
Niu F, Xu S, Cheng G (2011) A general formulation of structural

topology optimization for maximizing structural stiffness. Struct

Multidiscip Optim 43(4):561–572
Pedersen CB, Buhl T, Sigmund O (2001) Topology synthesis of large-

displacement compliant mechanisms. Int J Numer Methods Eng

50(12):2683–2705
Pedersen NL (2000) Maximization of eigenvalues using topology

optimization. Struct Multidiscip Optim 20(1):2–11
Pedersen NL, Nielsen AK (2003) Optimization of practical trusses

with constraints on eigenfrequencies, displacements, stresses, and

buckling. Struct Multidiscip Optim 25(5-6):436–445
Polizzi E (2009) Density-matrix-based algorithm for solving eigen-

value problems. Phys Rev B 79(11):115112
Seyranian A, Lund E, Olhoff N (1994) Multiple eigenvalues in

structural optimization problems. Struct Optim 8(4):207–227
Sigmund O (2001a) Design of multiphysics actuators using topology

optimization-Part I: One-material structures. Comput Methods

Appl Mech Eng 190(49-50):6577–6604

Sigmund O (2001b) Design of multiphysics actuators using topology

optimization-Part II: Two-material structures. Comput Methods

Appl Mech Eng 190(49-50):6605–6627

Stolpe M (2010) On some fundamental properties of structural topol-

ogy optimization problems. Struct Multidiscip Optim 41(5):661–

670

Svanberg K (1987) The method of moving asymptotes—a new method

for structural optimization. Int J Numer Methods Eng 24.2:359–

373

Thore CJ (2016) Multiplicity of the maximum eigenvalue in structural

optimization problems. Struct Multidiscip Optim 53(5):961–965

Wallin M, Ivarsson N, Ristinmaa M (2015) Large strain phase-field-

based multi-material topology optimization. Int J Numer Methods

Eng 104(9):887–904

Wallin M, Ivarsson N, Tortorelli D (2018) Stiffness optimization of

non-linear elastic structures. Comput Methods Appl Mech Eng

330:292–307

Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation

scheme for fictitious domain techniques and topology optimiza-

tion of finite strain elastic problems. Comput Methods Appl Mech

Eng 276:453–472

Yoon GH (2010) Maximizing the fundamental eigenfrequency of

geometrically nonlinear structures by topology optimization based

on element connectivity parameterization. Comput Struct 88(1-

2):120–133

Young LC (2000) Lectures on the calculus of variations and

optimal control theory, vol 304. American Mathematical Society,

Providence

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

2594


	Eigenfrequency constrained topology optimization of finite strain hyperelastic structures
	Abstract
	Introduction
	Preliminaries
	Constitutive model
	Filtration and penalization
	Total Lagrangian FE formulation
	Displacement controlled Newton-Raphson

	Eigenfrequency analysis
	Consideration of low volume fraction elements
	Topology optimization
	Sensitivity analysis
	Sensitivity analysis of objective
	Sensitivity analysis of simple eigenvalues
	Sensitivity analysis of degenerate eigenvalues

	Numerical examples
	Double clamped beam
	Simply supported beam

	Conclusions
	Appendix 
	Verification of sensitivities
	References


