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3 Department of Applied Natural Sciences, Lübeck University of Applied Sciences, Mönkhofer Weg 239,
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Abstract

In this report we present a systematic study of the magnonic modes in the disordered
Fe0.5Co0.5 alloy based on the Heisenberg Hamiltonian using two complementary approaches.
In order to account for substitutional disorder, on the one hand we directly average the
transverse magnetic susceptibility in real space over different disorder con�gurations and on
the other hand we use the coherent potential approximation (CPA). While the method of direct
averaging is numerically exact, it is computationally expensive and limited by the maximal
size of the supercell which can be simulated on a computer. On the contrary the CPA does not
suffer from this drawback and yields a cheap numerical scheme. Therefore, we additionally
compare the results of these two approaches and show that the CPA gives very good results for
most of the magnetic properties considered in this report, including the magnon energies and
the spatial shape of the eigenmodes. However, it turns out that while reproducing the general
trend, the CPA systematically underestimates the disorder induced damping of the magnons.
This provides evidence that the physics of impurity scattering in this system is governed by
non-local effects missing in the CPA. Finally, we study the real space eigenmodes of the
system, including their spatial shapes, and analyze their temperature dependence within the
random phase approximation.

Keywords: alloy, eigenmodes, FeCo, magnon, disorder

(Some �gures may appear in colour only in the online journal)

1. Introduction

Over the last few decades, the �eld of magnon spintronics,
or magnonics, gained an ever increasing amount of attention.
This novel strategy of data propagation and processing has
several advantages over the commonly used electronic cir-
cuits, like a lack of energy loss through Joule heating [1].

∗ Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

The elemental information carriers are spin waves (also called
magnons) which can be pictured as a coherent precession of
the magnetic moments in the material [2]. Similar to phonons,
magnons are Bloch waves in periodic systems carrying a crys-
tal momentum and energy. However, in order to construct a
magnonic circuit, one depends on suitable materials, referred
to as magnonic crystals [3, 4]. The most common magnetic
materials are not suited for the use inmagnonics since they lack
desired properties, especially the emergence of a magnonic
bandgap (i.e. frequency bands in which magnon states cannot
propagate in the solid [5, 6]). Combined with the unique spin
wave dispersion close to the band edges, this feature provides
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a rich toolbox for magnon mode engineering, including the
possibility of selective spin wave excitations and propagation,
magnon mode con�nement and deceleration, and bandgap
soliton generation [7–9].

In current research, mostly long wavelength magnons with
energies in the gigahertz band are studied. However, in princi-
plemagnons in the terahertz regime are preferred formagnonic
applications as they warrant faster information transport and
smaller devices [10]. In materials with many magnetic atoms
in the primitive unit cell, one expects the occurrence of sev-
eral magnon modes, which might be separated by a bandgap,
yielding a natural magnonic crystal [11].

Here, we concentrate on the ferromagnetic Fe0.5Co0.5 alloy.
This alloy shows all the necessary properties for a terahertz
magnonic crystal: its typical magnon energies are well within
the terahertz range, it has a high Curie temperature [12, 13],
and coherent potential approximation (CPA) studies suggest
the spectrum to exhibit a bandgap which remains stable at ele-
vated temperatures [14]. It is interesting to note that magnonic
crystals used in gigahertz applications are typically arti�cial
heterostructures obtained from elaborate fabrication processes
[3]. On the contrary, in the terahertz range, the natural micro-
scopic arrangement of atoms in alloys like FexCo1–x would
suf�ce to create cheap magnonic crystals.

In real materials, there are several mechanisms that in�u-
ence the lifetimes of magnons. First, the interaction of
magnons with electronic excitations including a spin �ip,
called Stoner excitations, plays an essential role especially in
metals [15–17]. Thismechanism, called Landau damping,was
shown to be affected by reduced dimensionality of the system
and alloying [18].

Second, the scattering on crystal imperfectionsmight in�u-
ence the magnon lifetimes as well. In our recent report [14]
we showed that this effect may lead to non-trivial dependence
of the magnon damping in iron cobalt alloys when the con-
centration of cobalt is varied. Finally, a non zero temperature
is expected to reduce the lifetimes of magnons in the system.
Materials to be used for magnonic devices have to operate
well above room temperature and feature structural imperfec-
tions, as every solid does. Thus, it is interesting to investi-
gate how the magnonic properties evolve in real, imperfect
or alloyed solids at non-zero temperatures. We analyze the
alloy Fe0.5Co0.5 using two different approaches: on the one
hand, we directly average the transverse magnetic susceptibil-
ity over several disordered con�gurations. Only substitutional
disorder is consideredwhich is generated using pseudorandom
numbers. Therefore we resort to this method as Monte Carlo
(MC) method in the following. On the other hand we utilize
a CPA applied to the disordered Heisenberg ferromagnet [19].
This mean �eld approach was successfully applied for the cal-
culation of electronic and magnetic properties in numerous
materials, e.g. [19–21]. The superiority of our CPA method
compared to other treatments of the same problem is the possi-
bility to account for complex crystal structures. To incorporate
�nite temperature effects, we implemented a modi�ed version
of the random phase approximation (RPA) discussed in refer-
ence [22]. While the RPA method accounts quantitatively for
the softening of the magnon modes with temperature, it does

not describe the reduction of the magnon life-time due to the
interaction of these modes with the thermal bath mentioned
above.We show that bothMC and CPAmethods give the same
magnetic spectrum and the spatial shape of the eigenmodes.
The only discrepancy between the two methods appears in
the magnitude of disorder-induced damping which is clearly
underestimated within the CPA. Furthermore, we analyze
the real space representation of the dominant eigenmode at
200 meV and show that, with the RPA, the spatial shape of
the modes are basically unaltered by increasing temperatures.
Our formalism does not include the Landau damping of the
spin waves. This attenuation mechanism can be pronounced
in metallic magnonic crystals and can be described within the
framework of many-body perturbation theory [23] or time-
dependent density functional theory [16, 24, 25]. Although the
dynamical magnetic susceptibility can be calculated for disor-
dered materials within a CPA method [24, 25], the approach
requires careful numerical analysis and is subject of a separate
study.

The paper is organized as follows: in chapter 2, the theoret-
ical background of the RPA–CPA theory and the MC method
for the disordered Heisenberg ferromagnet are discussed. The
obtained results are presented in chapter 3.

2. Theory

We deploy the following form of the Heisenberg Hamil-
tonian

H = −
1
2

∑

i, j

Ji j ei · e j, (1)

where Ji j are the exchange parameters which were obtained
from the magnetic force theorem [26] and ei is a unit vec-
tor in the direction of the magnetization at site i. Anisotropy
terms are neglected on the energy scales relevant for this
study. To calculatemagnon properties, the transversemagnetic
susceptibility [27]

χi j(t, t′) = −iΘ(t− t′)
[

μ+
i (t),μ

−
j (t′)

]

(2)

with μ±
i = μxi ± iμ

y
i , μ

α
i being the α-component of the mag-

netic momentµi on the lattice site i and the overline represents
a thermal average, is computed. It can be found by solving the
equation of motion

zχi j(z) = 2gδi j μi − g
∑

ℓ

μi

μiμℓ

Jiℓ χℓ j(z)

+ g
∑

ℓ

μℓ

μiμℓ

Jiℓ χi j(z) (3)

with the energy z = E + iǫ and the Landé factor g. In the fol-
lowing, we assume a material with a complex structure and use
an argumentR to specify the primitive unit cell, a latin index to
specify the basis site and a greek index to distinguish between
different atomic species. The disorder is modeled by de�ning
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occupation variables

piα(R) =

{

1 species α on basis site i in unit cell R

0 else
(4)

and a species resolved Fourier transformation

χ
αβ
i j (z, k, k

′) :=
∑

R,R′

piα(R) e−ik·R

× χi j(R,R′) pjβ(R′) eik
′·R′ . (5)

We calculate this species resolved susceptibility and average it
using the MC and CPA methods described in more detail later
in this section.

The averaged susceptibility X is used to calculate the loss
matrix

L(z, k) =
1
2i

(

X (z, k)−X
†(z, k)

)

, (6)

which holds the information about the elementary excita-
tions of the system. Its eigenvalues are non zero at the ener-
gies and wavevectors at which elementary excitations, i.e.
magnons, occur. The eigenvectors at the corresponding energy
and wavevector yield the shape of the excitation in ques-
tion. The components of the eigenvectors are to be inter-
preted as the transverse component of the magnetic moments
induced during the moment’s precession (magnon excitation).
The �uctuation-dissipation theorem [28] states that the excited
states of the system are intrinsically related to the linear
response of the system upon application of the corresponding
external perturbation.Therefore, the shape ofmagnonicmodes
can be inferred from the analysis of the response of the mag-
net to an external magnetic �eld, in this case in the direction
perpendicular to the ground state magnetization.

In the linear regime, the small angle θ between themagnetic
moments and the z axis (giving the direction of the ground state
magnetization) depends on the strength of the external pertur-
bation, cf �gure 1. It is zero in the ground state. Suppose the
projection of the tilted moments to the xy plane be ǫμ̃iα with
a small parameter ǫ linearly dependent on the strength of the
external �eld. The component of the (normalized) eigenvector
of the loss matrix is μ̃iα. Then

θiα ≈ sin(θiα) =
ǫμ̃

xy
iα

μiα
. (7)

The ratio between the angles θiα of different constituents is
independent of ǫ.

θiα

θ jβ
=

μ̃iαμ jβ

μ̃ jβμiα
. (8)

We model the temperature dependence by a generalized
version of the RPA introduced by Callen [22] for simple
ordered systems. The thermally averaged magnetic moments
are evaluated by calculating

μ = g

(

μ
g
− Φ

)

(1+Φ)μ+1 +

(

μ
g
+ 1+Φ

)

Φ
μ+1

(1+Φ)μ+1 − Φ
μ+1 (9)

Figure 1. Angles in the case of the iron cobalt alloy.

once for every species for CPA, and once for every site in the
system for MC calculations. Here

Φ =

∞
∫

−∞

− z
D(z)

e
z

kBT − 1
, (10)

with the density of states D(z) for the species or lattice site in
question.

2.1. MC calculations

For the direct numerical averaging of the susceptibility, we
use a supercell with 20 × 20 × 20 primitive unit cells and
periodic boundary conditions. The generation of the random
occupation is done by means of pseudorandom numbers. The
obtained real space susceptibility is averaged over 30 differ-
ent con�gurations. With these parameters, the results are con-
verged. They will be presented in chapter 3. The susceptibility
of each con�guration is given in real space by

χ = M
−1
µ, (11)

where bold symbols denote matrices in the site basis and

μi j = 2gδi j μi

Mi j = zδi j + g
μi

μiμ j

Ji j − g
∑

m

μm

μiμm
Jimδi j . (12)

2.2. Coherent potential approximation

Within the CPA formalism, the equation of motion 3 is used
to generate a series expansion of the susceptibility. The series
is the Fourier transformed using equation (5), which leads to
the series written diagrammatically in �gure 2(a)) [29]. The
following symbols are used:

• The τ -matrix

τ
(ℓ)
(i)( j)(k, k

′) = gμ−1
( j)

(

J( j)(ℓ)(k− k
′)
μ̄(ℓ)

μ(ℓ)
δ(i)( j)

− J(ℓ)( j)(k
′)
μ̄(i)

μ(i)
δ(i)(ℓ)

)

, (13)
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Figure 2. Diagrammatic representation of the main results of the
CPA-theory. (a) Fourier transformation of series (3), (b) average of
the second term in (a), (c) the averaged susceptibility X written as a
product of the effective medium propagator Ξ (thick line) and the
spin weight W, (d) Dyson equation for the effective medium
propagator, (e) de�nition of the self-energy Σ and (f) de�nition of
the spin weight W.

where
J(i)( j)(k) =

∑

R

J(i)( j)(R) e−ik·R (14)

is represented by a �lled square.
• The �lled circle represents a T- matrix

T(i)( j)(k, k
′) =

∑

(ℓ)

̺(ℓ)(k− k
′) τ (ℓ)(i)( j)(k, k

′). (15)

• An empty square stands for a σ-matrix:

σ
(ℓ)
(i)( j) = 2gδ(i)( j)δ(i)(ℓ)μ(ℓ). (16)

• The S-matrix is depicted as an empty circle and is given
by

S(i)( j)(k, k
′) =

∑

(ℓ)

̺(ℓ)(k− k
′) σ(ℓ)

(i)( j). (17)

• The propagator of uncoupled magnetic moments, repre-
sented by a solid line, is given as

Γ(i)( j)(z) = z−1δ(i)( j). (18)

• A cumulant of order n is represented by a crossed circle,
where the order is given by the number of dashed lines
ending at it.

Furthermore, two rules for the interpretation of the dia-
grams need to be followed:

(a) The elements brought together in a diagram undergo a
matrix multiplication in the (i)( j)-space. The correspond-
ing matrix indices are written as subscripts in the de�ni-
tions above.

Figure 3. Calculated temperature dependence of the magnetic
moments’ z component. The critical temperature lies at
TC = 1569 K.

(b) Every internal free propagator is assigned a momentum
which is integrated over:

1
ΩBZ

∫

ΩBZ

d3 k1. (19)

Averaging over all possible con�gurations needs to be done
carefully to obtain correct magnetic properties of the mate-
rial. The average of the Fourier transformed second term in
series 3 is depicted in �gure 2(b). Starting from the fourth order
diagrams, diagrams with crossed dashed lines will appear.
These diagrams correspond to correlations between the occu-
pation of different sites. In our approach, these diagrams are
neglected. Since the averaged diagrams consist of two differ-
ent types of vertices (�lled and empty squares), the averaged
susceptibility X can be written as a product of two quanti-
ties as shown in �gure 2(c). These two quantities are de�ned
in �gures 2(d)–(f). It can be shown that all non-crossed dia-
grams can be constructed with these de�nitions. The self con-
sistency of the method is evident from the fact that the self
energy (�gure 2(e)) depends on the effective medium propa-
gator which in turn depends on the self energy. Further details
of the theory are given in references [14, 19, 30].

3. Results

Magnetic moments μα
i and exchange parameters Ji j of

iron–cobalt alloys at various concentrations were evaluated
using a �rst-principles Green-function method within a gen-
eralized gradient approximation of density functional theory
[31]. The method is designed for bulk materials, surfaces,
interfaces and real space clusters [32–34]. The resulting mag-
netic moments read μFe = 2.65 μB and μCo = 1.83 μB. The
average magnetic moment per atom is given by the arithmetic
mean of the constituents magnetic moments (for 50:50 alloys)
and reads μ = 2.24 μB, which is in good agreement with
experimental results [35]. The impact of disorder on the elec-
tronic structure was taken into account within the electronic
CPA [36] implemented within multiple scattering theory [37].
Exchange interaction was estimated using the magnetic force
theorem [26] formulated for substitutional alloys within the

4
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Figure 4. Comparison of the magnonic spectra (left) obtained through the CPA (blue lines) and MC (orange and red dots) calculations. The
errorbars for the MC-results represent the width of the peaks as does the line width for the CPA results. In the right �gure the absolute values
of the peak widths are shown.

CPA approach [38]. Although both iron and cobalt are known
for long ranged interaction between themagneticmoments, the
results presented in this section use only 12 shells of neighbors
because of computational limits. To ensure the convergence
of spin waves with the number of neighbor shells and super-
cell size, several calculations were performed for 30 neighbor
shells showing essentially the same results as with 12 shells.
We consider only the disordered alloy Fe0.5Co0.5.

For better comparability the bcc structure was taken in
all calculations. Furthermore, the interaction parameters Ji j
are held constant (at their value at T = 0 K). Both MC and
CPA calculations are done at complex energies with a small
imaginary part ǫ = 10−4Ry.

The resulting temperature dependence of the magnetic
moments is shown in �gure 3. Although the RPA is known to
underestimate the Curie temperature [39], we obtain a Curie
temperature above the experimental values of TC ≈ 1250 K
[12, 13]. This behavior can be partly explained by the fact that
the real FeCo systemwill performa structural phase transition,
while in the calculations the structure (bcc) was �xed.

3.1. Eigenmodes at T = 0

The magnonic spectra (cf �gure 4) obtained using both meth-
ods are basically identical. In the left plot of �gure 4, the den-
sity plot in the background represents the imaginary part of
the CPA susceptibility while the dots stand for the position of
the susceptibility peaks within the MC. The errorbars at the
points represent the full width at half maximum of the peaks.
The same holds for the width of the line and the CPA results.
Due to the �nite size of the supercell, the MC can only give
meaningful results for a discrete set of points within the Bril-
louin zone (BZ). The spectra are in good agreement with other
results for ordered FeCo systems [40, 41] (note that the spectra
in these references are calculated for a CsCl structure).

We obtain a spin wave stiffness of C ≈ 675 meV Å at
T = 0 K. Experimental values range from C ≈ 500 meV Å
[42] (at T = 0 K) to C ≈ 800 meV Å [43] (thin �lm at room
temperature). We note that the long range interaction between
magnetic moments which was neglected in this work due to
computational limits may in�uence the magnonic spectrum,

especially close to theΓ point and therefore also affect the spin
stiffness.

It can clearly be seen that the CPA systematically under-
estimates the width of the peaks. In the right plot of �gure 4,
we show the full width at half maximum γ for the acoustic
and optic modes within the CPA and the MC calculations.
Although the absolute values of the damping is different, the
general trend of γ through the considered paths in the BZ
is very similar. The fact that the MC calculations give much
larger widths indicates that non-local effects play an essen-
tial role in the damping of magnons. Recent studies [44–46]
reveal, that non-local effects also play an important role in
the Ising model. Although the Ising model only captures near-
est neighbor spin interaction, in 3D a term with an effective
long range interaction appears in the partition function [45].
Although the results of these studies cannot be directly applied
to our model, they represent a further hint at the presence and
in�uence of non-local effects.

The CPA predicts [14] that at the 50% concentration of
cobalt the bandgap is still present. However, the more realis-
tic estimation of the magnon damping using the MC method
tends to suggest that the signi�cant widening of the magnon
modes might lead to effective closing of the gap.

The red dots in �gure 4 mark the k-points for which the
spatial shapes of the magnon modes will be analyzed in more
detail now. In �gure 5 the eigenvalues and eigenvectors of the
loss matrix are shown at different symmetry points in the BZ
and T = 0. The maximal eigenvalue at the Γ point for T = 0
(�gure 5, top left) exhibits the Goldstone mode at zero energy,
i.e. the mode where the moments of both constituents are tilted
by the same amount.

As already mentioned, we explain the larger width of the
MC peaks with the in�uence of correlation effects between
different sites, which the CPA cannot account for. The appear-
ance of smaller peaks at regions where the CPA susceptibility
is effectively zero is a further effect caused by non local effects.
An interesting fact is that at the N point (cf bottom right plot
in �gure 5) essentially only one of the constituents precesses
for both the acoustic and the optic mode. Unfortunately, the
direct measurement of the shape very challenging but recent
studies suggest that it could be realized on the surface of a 2D
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Figure 5. Maximal eigenvalue of the loss matrix at Γ (top left), ΓH
3 (top right), H (bottom left) and N (bottom right). All results are

calculated at T = 0 K within the MC (orange solid line) and CPA (blue dashed line). The spatial shape of the modes is drawn near the peaks.
Starting from a blue empty circle (CPA) or an orange �lled circle (MC), the magnetic moments of iron are drawn as brown pointy vectors
while the moments of cobalt are visualized as green edgeless vectors.

magnet using atomic resolution inelastic scanning tunneling
microscopy [47].

Generally, we come to the conclusion that the CPA is able
to precisely give the magnetic properties of this iron cobalt
alloy apart from a systematic underestimation of the magnon
damping.

3.2. Spatial form of the eigenmodes

Through the diagonalization of the susceptibility in real space
(equation (3)), the spatial eigenvectors at a certain energy can
be directly found through the loss matrix (equation (6)). We
did so calculating the real space susceptibility of one spe-
ci�c random con�guration in a 30 × 30 × 10 atom supercell.
The eigenmode corresponding to the highest eigenvalue of the
loss matrix at E ≈ 200 meV is depicted for this speci�c ran-
dom con�guration in �gure 6. This �gure shows one plane of
the supercell corresponding to R = λ1a1 + λ2a2 + 5a3 with
the primitive lattice vectors ai, λ1,λ2 ∈ N and λ1,λ2 � 30.

Figure 6. Real space mode of the susceptibility (corresponding to
the highest eigenvalue) at E = 200 meV. The blue/orange dots
represent iron/cobalt atoms.

6
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Figure 7. Fourier components of the eigenmode corresponding to the highest eigenvalue ξ1 (left) and the loss matrix projected on plain wave
states (right) for different reciprocal lattice vectors. The plane shown in the �gure correspond to the space spanned by the reciprocal lattice
vectors b1 =

(

0, 2π
a
, 2π
a

)

and b2 =
(

2π
a
, 0, 2π

a

)

.

Figure 8. Maximal eigenvalue of the loss matrix at Γ (top left), ΓH
3 (top right), H (bottom left) and N (bottom right). All results are

calculated at T = 0.45TC and T = 0.9TC within the CPA. The spatial shape of the modes is drawn near the peaks. Starting from a blue
empty circle (T = 0.45TC) or an orange �lled circle (T = 0.9TC), the magnetic moments of iron are drawn as brown pointy vectors while
the moments of cobalt are visualized as green edgeless vectors.
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The orange dots correspond to Co atoms while the blue
dots represent Fe atoms. It is assumed that in the magnetic
ground state all magnetic moments are oriented orthogonal
to the plane depicted. The in-plane components of the mag-
netic moments μ̃i of this particular mode are represented by
the arrows. Interestingly, we observe that the mode shown
in �gure 6 features multiple small clusters of precessing
moments.

We further analyze the eigenmode by performing a Fourier
analysis of the μ̃i

μ̃k =
1
N

N
∑

i=1

eik·Ri μ̃i (20)

with the positions of the atoms Ri and the number of atoms
N = 9000 in our case. The result is depicted in �gure 7 for
a plane in the BZ. The dominant contributions arise from
wavevectors lying on an circle. In an ordered system, the cir-
cle would be the cross section of the constant energy surface
in reciprocal space. Due to the disorder, Bloch waves cease to
be eigenstates of the system (the corresponding peaks acquire
�nite widths) and the eigenstates pick up Fourier components
outside of a single energy surface. Finally, we further analyze
the loss matrix by writing its spectral representation

Li j(E) =
∑

λ

ξλ|μ̃
λ
i 〉〈μ̃

λ
j | (21)

with the eigenvalues ξλ and eigenvectors |μ̃
λ
i 〉. The projection

of the loss matrix to plain wave states is then given by

〈k|L(E)|k〉 =
∑

λ

ξλ(E)
∣

∣μ̃λ
k

∣

∣

2
(22)

which represents a weighted sum of Fourier components. The
plain wave projection for all eigenvalues larger than ξ1

100 , with
the highest eigenvalue ξ1, is given in �gure 7. Considering all
the modes with signi�cant eigenvalues at this energy recovers
the picture of the constant energy surface similar to the one
of an ordered system. While a single eigenmode is clearly dif-
ferent from a Bloch wave, the dynamics of the entire system
resembles the one of the ordered system. In a sense, the Fourier
transformation recovers the self-averaging property of the spin
dynamics in disordered magnets.

3.3. Eigenmodes at finite temperatures

Next, we investigate the change of the eigenmodes with tem-
perature. It turned out that our realization of the RPA in combi-
nation with the MC calculations is computationally too expen-
sive for the system size we are considering here. Therefore,
we restrict this discussion to the CPA+ RPA results and stress
again the agreement of CPA and MC shown in the previous
section especially when it comes to the spatial form of the
modes. We recall that the widely used RPA [48–50] cannot
account for the temperature broadening of the magnon modes
[14] such that we must restrict ourselves to the analysis of the
impact of the temperature on the shapes of magnetic modes, cf
�gure 8. Our calculations suggest that the spatial shape of the
modes is independent of temperature.

4. Summary

We provided a thorough analysis of the magnonic modes in a
disordered iron cobalt alloy using two complementary numer-
ical schemes. The MC and the CPA give basically the same
magnonic properties apart from the disorder induced width of
the peaks in the magnonic spectrum. We explain this discrep-
ancy with non-local effects which the single site CPA cannot
account for. Interestingly, we found that the acoustic and optic
mode at the N point features the precession of only one of the
constituents’ magnetic moments. The eigenspectrum analysis
of the loss matrix in real space reveals that the eigenmodes
involve many small clusters of precessing magnetic moments.
We are convinced that such real space effects can be used to
effectively excite only de�ning parts of the magnonic crystal
and thus gain additional precise control over the spin dynam-
ics of the system. Finally, it turns out that the spatial shape of
the modes is basically invariant with respect to temperature.
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