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Abstract. Recently it was proved that there exist nonisometric planar regions that have identical
Laplace spectra. That is, one cannot “hear the shape of a drum.” The simplest isospectral regions
known are bounded by polygons with reentrant corners. While the isospectrality can be proven
mathematically, analytical techniques are unable to produce the eigenvalues themselves. Further-
more, standard numerical methods for computing the eigenvalues, such as adaptive finite elements,
are highly inefficient. Physical experiments have been performed to measure the spectra, but the
accuracy and flexibility of this method are limited. We describe an algorithm due to Descloux and
Tolley [Comput. Methods Appl. Mech. Engrg., 39 (1983), pp. 37–53] that blends singular finite el-
ements with domain decomposition and show that, with a modification that doubles its accuracy,
this algorithm can be used to compute efficiently the eigenvalues for polygonal regions. We present
results accurate to 12 digits for the most famous pair of isospectral drums, as well as results for
another pair.
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1. Introduction. In 1966 Mark Kac [12] posed the question, “Can one hear the
shape of a drum?” He was referring to the problem of whether the Laplacian operator
with Dirichlet boundary conditions could have identical spectra on two distinct planar
regions. Recently Gordon, Webb, and Wolpert [11] answered the question negatively
via an elegantly constructed counterexample, justifiably attracting a great deal of
attention [7, 8, 15]. The simplest form of their example is a pair of regions bounded
by eight-sided polygons, henceforth called the GWW isospectral drums; see Figure 1.1.
Numerous similar examples have since been discovered [5].

The simplest and most versatile proof of isospectrality employs “transplanta-
tion” [4] of the eigenfunctions. The regions are shown to be (or are constructed to be)
made up of nonoverlapping translations, rotations, and reflections of a single shape,
such as a triangle. Given an eigenfunction on one region, one can prescribe a func-
tion over the other region whose values over each piece are linear combinations of the
eigenfunction values over several of the pieces of the first region. The combinations
are chosen to satisfy the boundary conditions and to match values and derivatives
at interfaces between pieces, and the interior equation is satisfied by superposition.
Hence the result is an eigenfunction of the second region having the same eigenvalue.
To complete the proof of isospectrality, one need only check that the procedure is
invertible. Note that the proof is nonconstructive and other information, particularly
the actual values of the eigenvalues, remains unknown.

To find the eigenvalues, it is natural to turn to numerical computation. However,
straightforward numerical procedures for computing the eigenvalues [14] are ineffi-
cient because of the presence of reentrant corners. Even an adaptive approach, such
as Bank’s PLTMG [3], obtains very slow convergence for the eigenvalue estimates.
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FIG. 1.1. The GWW isospectral drums and subdivisions used for the domain decomposition

method.

Another well-known technique for eigenvalue problems, the method of particular so-
lutions [10], fails to produce estimates of accuracy better than a few percent.

The first successful determination of the spectra of the GWW drums was by
Sridhar and Kudrolli [16], who used an experimental approach. They constructed mi-
crowave cavities in the shapes of the polygons and measured resonances in transverse
magnetic waves, which obey the Helmholtz equation. In this manner they obtained
the first 54 eigenvalues to within about 0.3%. The accuracy and versatility of this
method are limited primarily by the fabrication of the cavities.

More recently, Wu, Sprung, and Martorell [18] used a mode matching numerical
approach to compute 25 eigenvalues of the GWW drums and compared their results to
values extrapolated from finite difference calculations. Their mode matching approach
is efficient, but it depends upon the region being decomposed into simple shapes for
which all the eigenmodes can be explicitly written in closed form. We shall show that
the figures computed by Wu et al. [18] are accurate to about four digits.

A little-known numerical method due to Descloux and Tolley [9] is intended specif-
ically for eigenvalue computations on polygons. This algorithm, which is a combina-
tion of domain decomposition and singular finite-element methods, is applicable to
any planar polygon and can efficiently compute eigenvalues to an accuracy on the or-
der of the square root of machine precision. With a small modification, the accuracy
of the method can be improved to the order of machine precision. Using this improved
method, we have computed the first 25 eigenvalues of the GWW isospectral drums
to an accuracy of at least 12 digits. Each eigenvalue calculation takes a few minutes
on a workstation, and eigenfunctions can be computed just as quickly at arbitrary
domain points.

In this paper we describe some of the limitations of the standard numerical ap-
proaches to computing the eigenvalues of the GWW drums. We then outline the
domain decomposition method of Descloux and Tolley and describe our accuracy-
doubling modification. We present numerical and graphical results of eigenvalue cal-
culations for the GWW drums, comparing our results to the previously published
estimates described above. A comparison is made of the method’s efficiency with
that of finite-element software packages. We also present the results of this method
applied to another pair of polygonal isospectral drums.
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2. Algorithms. Given a planar region Ω with polygonal boundary ∂Ω, our goal
is to find approximations to one or more eigenpairs (λ, u) ∈ (R+, C(Ω)) satisfying

∆u + λu = 0 in Ω,(2.1a)

u = 0 on ∂Ω.(2.1b)

A direct numerical approach to this problem is to use a finite-element software
package. We chose PLTMG [3] because of its widespread availability and automatic
adaptive mesh refinement capabilities. PLTMG regards the linear problem (2.1) as
a nonlinear continuation problem with parameter λ and functional ρ(u) = ||u||L2 .
The procedure, which is outlined in section 4.6.2 of [3], is to track the zero solution
for varying λ until a bifurcation point in the λ-ρ plane is found, at which point
the bifurcating branch with constant λ (the eigenfunction) is followed. The grid is
adaptively improved and the estimate for λ updated until the desired accuracy is
apparently achieved.

Because the use of the nonlinear continuation method is atypical for the linear
eigenvalue problem, we have additionally applied to this problem the PDE Toolbox
for Matlab, which also uses piecewise linear finite elements. Here the eigenvalue
estimates come from the solution of a generalized matrix eigenproblem in the usual
way. As with PLTMG, we adaptively refine the mesh based on a posteriori error
estimates of the most recent solution.

An eigenfunction has a particular singular behavior at a corner of the boundary.
If (u, λ) is an eigenpair and (r, φ) are suitably oriented polar coordinates originating
from a corner of ∂Ω with interior angle π/α, then

u(r, φ) =

∞
∑

n=1

cnJnα(
√

λr) sin(nαφ),(2.2)

where Jν is a Bessel function of the first kind. This expression, which is essentially
just a Fourier series, is valid at least for r less than the distance to the nearest other
corner of ∂Ω. At a reentrant corner, α < 1 and the loss of smoothness in the solution
causes an adaptive mesh to be highly refined at the corner. The direct use of this
expansion leads to much more efficient algorithms for the problem (2.1).

One approach to exploiting this information is the method of particular solutions,
or point matching [14], introduced by Fox, Henrici, and Moler [10], who illustrated its
use with an L-shaped region.1 This method truncates the expansion (2.2) taken about
the reentrant corner(s) and determines eigenvalues by requiring the trial solution to be
zero at collocation points along the boundary ∂Ω. In practice, this reduces to detecting
singularity in a matrix which depends nonlinearly on a parameter λ. However, as the
authors note, this method does not work well for regions with more than one reentrant
corner, and our experience bears this out. The difficulty is that as the number of terms
in the truncated expansion is increased, the matrix becomes very nearly singular for
all values of λ, and detecting the true singularity numerically becomes impossible. In
fact, we have been unable to produce more than two or three accurate digits for a few
of the smallest eigenvalues with this method, even after including expansions about
all of the corners.

It seems more appropriate to treat the eigenfunction expansions in (2.2) locally
rather than globally. To this end, let the polygon Ω be subdivided into several nonover-
lapping pieces Ωj , j = 1, . . . , N . We denote each interface ∂Ωj ∩ ∂Ωk, which may be

1Their calculations are the basis of the logo of The MathWorks, Inc. and can be demonstrated
with the membrane command in Matlab.
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empty, by Γjk. Suppose that, given a scalar λ, we can find a set of N “subfunctions”
uj ∈ C(Ωj) such that (λ, uj) is a certain eigenpair on subregion Ωj :

∆uj + λuj = 0 in Ωj ,(2.3a)

uj = 0 on ∂Ω ∩ ∂Ωj .(2.3b)

(Note the difference between boundary conditions (2.1b) and (2.3b).) It is well known
that λ is an eigenvalue for the whole region Ω if and only if along each nonempty inter-
face Γjk, the subfunctions uj and uk and their normal derivatives match continuously.
This fact is at the root of the transplantation proof of isospectrality, and an analo-
gous observation underlies many domain decomposition methods from the numerical
solution of elliptic PDEs [6].

The method of mode matching described by Wu, Sprung, and Martorell [18] is
one way to exploit this idea. In this method, the expansion (2.2) is not used. In-
stead, analytic expressions of the solutions to (2.3) must be known throughout each
subdomain Ωj . For the GWW drums of Figure 1.1, it is possible to accomplish this
by dividing each drum into five pieces, each of which is a square or a (45◦, 45◦, 90◦)
triangle. Because of the simple shapes, the eigenfunctions are differences between
products of sine functions. A subfunction uj is expanded as a combination of these
functions with unknown coefficients, the expansions are truncated, and the require-
ment of functions and derivatives matching at interfaces becomes a linear system in
these coefficients. As with the method of particular solutions, an eigenvalue is a value
of λ for which the matrix of this system becomes singular. In this case, however, Wu
et al. report no difficulty with numerical near-singularity.

A shortcoming of the mode matching method is that it is not universally appli-
cable. In general, we cannot expect Ω to admit a simple decomposition for which the
eigenfunctions of the individual pieces can be explicitly written in a convenient and
usable form. A universal algorithm ought to return to the expansion (2.2), which is
always available.

Now let us assume that the boundary of each Ωj includes a portion of the
boundary of the whole region Ω in such a way that exactly one vertex Vj with in-
terior angle θj of the original polygon is in ∂Ωj . Let rj = maxz∈Ωj

|z − Vj | and
ρj = mink 6=j |Vk − Vj |. To guarantee convergence, we require that rj < ρj . We may
add extra vertices to ∂Ω with θj = π. (Some polygons, such as a regular hexagon,
require one or more interior elements to meet this condition, but this is easily ac-
commodated; see [9].) In Figure 1.1 we illustrate one such subdivision for the GWW
isospectral polygons.

We could now enforce the matching conditions at collocation points on the in-
terfaces, in the manner of the method of particular solutions. However, Descloux
and Tolley [9] again find the problem with numerical singularity of the resulting
matrix and instead propose a method that employs finite-element ideas within the
domain decomposition framework. At the heart of their algorithm are the function-
als

R(λ;u1, . . . , uN ) =
∑

j<k

∫

Γjk

[

(uj − uk)2 + |∇uj − ∇uk|2
]

ds,(2.4)

M(λ;u1, . . . , uN ) =

N
∑

j=1

∫ ∫

Ωj

u2
j dx dy.(2.5)

For fixed λ, let µ(λ) be the minimum of the quotient R/M over all choices of sub-
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FIG. 2.1. Comparison of µ(λ) with µ̇(λ) near a minimum λ̃, which is an estimate of the first

GWW eigenvalue.

functions. Now µ(λ) = 0 if and only if λ is an eigenvalue of (2.1) and each uj is the
restriction of the eigenfunction u to Ωj .

2

We now use the finite-element idea of replacing a minimization over infinite-
dimensional function spaces by minimization over a nested family of finite-dimensional
approximations. As bases for these spaces we choose terms of the local Fourier–Bessel
expansions; that is, each subfunction uj is expressed as a combination of nj terms of
the expansion (2.2) about Vj . This guarantees that the subproblem (2.3) is satisfied,
even when λ is not an eigenvalue of Ω.3 For optimal performance, nj should be
proportional to θj , the interior angle at Vj .

The corresponding approximation to µ(λ) now becomes the solution to a gener-
alized matrix eigenproblem:

A(λ)v(λ) = µ(λ)B(λ)v(λ).(2.6)

The matrix A is computed by evaluating (2.4) by Gauss–Legendre quadrature with q
nodes on each interface, and (2.5) is approximated by integrals over circular sectors
so as to make the mass matrix B diagonal. This diagonality makes it convenient to
replace the generalized eigensystem by the standard eigenproblem for B−1/2AB−1/2.
Finally, a value of λ which minimizes our approximation to µ is taken as an estimate
of an eigenvalue of (2.1a)–(2.1b).

Here is where we improve upon Descloux and Tolley’s original algorithm. Suppose
we can compute µ only to accuracy ǫ, which is on the order of machine precision.
Because of the quadratic nature of µ near a minimum, a straightforward minimization
gives an accuracy in λ of only order

√
ǫ. If instead we seek solutions to µ̇(λ) = 0,

the linearity of µ̇ near a minimum allows us to find λ to an accuracy comparable to
that of µ. Figure 2.1 illustrates the situation for an estimate λ̃ of the first eigenvalue

2Descloux and Tolley were able to prove convergence of their algorithm only when gradients,
rather than normal derivatives, appear in (2.4).

3Actually, ∂Ω ∩ ∂Ωj may contain isolated points where the boundary condition (2.3b) is not
explicitly satisfied. However, the matching conditions do enforce this condition, and experiments
show that slight changes in the Ωj that avoid this problem do not substantially affect the performance
of the algorithm.
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TABLE 3.1
The first 25 eigenvalues of the GWW isospectral drums. All digits shown are believed to be

correct.

2.53794399980 9.20929499840 14.3138624643 20.8823950433 24.6740110027
3.65550971352 10.5969856913 15.8713026200 21.2480051774 26.0802400997
5.17555935622 11.5413953956 16.9417516880 22.2328517930 27.3040189211
6.53755744376 12.3370055014 17.6651184368 23.7112974848 28.1751285815
7.24807786256 13.0536540557 18.9810673877 24.4792340693 29.5697729132
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FIG. 3.1. Integrated eigenvalue density for the GWW drums. The solid stairstep is the actual

density, compared with the dashed line representing Weyl’s formula (3.1).

of the GWW drums. By differentiating (2.6) with respect to λ and left-multiplying
through by vT , we see that

µ̇(λ) =
vT (Ȧ − µḂ)v

vT Bv
.(2.7)

The matrices Ȧ and Ḃ can be computed in a straightforward manner.
To summarize, the algorithm can be viewed as an iteration in the parameter λ

whose convergence is dictated by domain decomposition considerations. Each step of
the iteration is computed approximately by a large singular finite-element method,
where the basis functions depend nonlinearly on the parameter λ. Improved accuracy
is achieved by increasing the number of basis functions in the inner step, as with
p-type finite-element methods.

3. Results. In Table 3.1 we list our estimates of the first 25 eigenvalues of the
GWW isospectral drums. For these calculations we used nj = 36/αj = 36θj/π basis
functions in region Ωj and q = 40 Gauss quadrature points on each interfacial line
segment. The results for the two drums agree with each other nearly to machine
precision.

In Figure 3.1 we compare N(λ), the number of eigenvalues (counting multiplicity)
less than λ, to the corrected Weyl formula, which for a polygon is [2]
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FIG. 3.2. Convergence of the eigenvalue estimates. The dotted line shows the theoretically worst-

case convergence ωm, with ω given by (3.2). See the text for comments about the two dramatically

decreasing curves.

N(λ) ≈ A

4π
λ − P

4π

√
λ +

N
∑

j=1

1

24

(

αj − α−1
j

)

,(3.1)

where A is the area of the region Ω and P is its perimeter. (By isospectrality, A and
P are necessarily the same for the two drums.) The formula agrees excellently with
the exact N(λ).

We believe that the entries of Table 3.1 are accurate to all digits shown. As
support for this claim, in Figure 3.2 we present the convergence history of the estimates
with respect to nj = 4m/αj . For each value of m, we find that the estimates of any
eigenvalue for the two drums agree essentially to machine precision, and we use λ(m)

to denote this common number. Figure 3.2 shows the relative change in the successive
estimates λ(m) as m varies. Descloux and Tolley prove geometric convergence of their
algorithm and identify a lower bound on the rate:

ω = max
j

[

(

rj

ρj

)njαj/m
]

= max
j

[

(

maxz∈Ωj
|z − Vj |

mink 6=j |Vk − Vj |

)njαj/m
]

.(3.2)

Here, ω = 1/4. However, the observed rate of convergence is much better, about ω2.
In general, curves which are higher on the graph correspond to higher eigenvalues,
the two “superconvergent” curves being exceptions which are discussed below. Note
that all the convergence curves end at less than 10−12.

As mentioned previously, a feature of the results is the dramatic agreement for
all the estimates of the two drums, regardless of their accuracy. In fact, all the
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FIG. 3.3. An alternate subdivision of the GWW drums.
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FIG. 3.4. Difference in estimates for the two drums at each m when using the subdivisions of

Figure 3.3.

eigenvalues of the generalized system (2.6), and hence µ(λ), are numerically identical
for the two regions for any m. Presumably this occurs because the subdivisions of
Figure 1.1 respect the transplantation symmetries between the regions. To further
check our results, we applied the algorithm using the less regular subdivisions, selected
arbitrarily, depicted in Figure 3.3. The estimates for the two regions now differ by
amounts consistent with their apparent accuracy. In Figure 3.4 we compare the
differences between estimates for the two drums to the predicted convergence ωm,
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where for this subdivision ω ≈ 0.52. Again, the observed convergence is about twice
as fast. The estimates for m = 11 all agree with the numbers of Table 3.1 to the
full 12 digits.

Figures 3.5 and 3.6 show in detail the first eight eigenfunctions of the GWW
drums, including the nodal lines. For comparison, in Figure 3.7 we reproduce the
results of microwave measurements made by Sridhar and Kudrolli [16] for modes 1, 3,
and 6. The microwave results, while noisy, do recognizably represent the shapes of
the modes.

Figure 3.8 shows contours for the ninth mode, which is clearly equivalent to the
first mode on a (45◦, 45◦, 90◦) triangle. This triangle is the fundamental shape that
forms the basis of the transplantation proof. The exact eigenvalue in this case is
5π2/4, which agrees with our computed values to 15 digits. A similar phenomenon
occurs at the 21st mode, which is equivalent to the second mode on the triangle
with eigenvalue 10π2/4. In fact, these two modes account for the “superconvergent”
curves of Figures 3.2 and 3.4. We hypothesize that the accelerated convergence occurs
because the symmetries of these eigenfunctions about the corners cause many of the
Fourier coefficients in (2.2) to be exactly zero.

In Figure 3.9 we compare our results to other published determinations of the
first 25 eigenvalues. Based on their microwave experiments, Sridhar and Kudrolli
report these eigenvalues to an rms relative accuracy of about 0.3%. We observe that
the error in their estimates is frequently much larger than the agreement between their
values, but there is no clear explanation for this phenomenon [13]. The eigenvalues
obtained by Wu, Sprung, and Martorell [18] by an extrapolation of results from finite
differences and mode matching agree with our results to about three and four digits,
respectively.4

In Figure 3.10 we compare the efficiency of the domain decomposition method to
the computation of the eigenvalues in PLTMG and the PDE Toolbox for Matlab.
Figure 3.11 shows the adaptive grid process in PLTMG for the first eigenvalue on the
first drum. The finest structure occurs near the corner where the eigenfunction is large.
At this stage, there are 966 triangles and 402 vertices, and the eigenvalue estimate is
about 2.5659. If one were to try to obtain 12 digits via either of the finite-element
methods, storage as well as computational time would become a serious obstacle.

One advantage of the domain decomposition method over physical experiment
and mode matching is its flexibility in application to other polygons. We have applied
the domain decomposition method to another pair of isospectral drums, depicted in
Figure 3.12. These regions were constructed using the techniques of Buser et al. [5].
The fundamental unit of the construction is a (30◦, 70◦, 80◦) triangle, which renders
the mode matching method impractical. The first 10 eigenvalues of these regions are
listed in Table 3.2 to nine digits. In Figure 3.13 we present the convergence history
analogous to Figure 3.2. The convergence is again much faster than the minimum
rate of ω ≈ 0.48. Selected eigenfunctions for these drums are displayed in Figure 3.14.

4. Conclusions. Elliptic problems on regions with corners, especially reentrant
corners, are recognized as numerically difficult. Indeed, general-purpose packages such
as PLTMG do not use known information about the singularities of solutions near the
corners, and the method of particular solutions uses this information only globally,
restricting its usefulness. There is a mode matching method that exploits certain
special geometries, but this method does not apply to arbitrary polygons.

4In the mode matching method, the degenerate modes 9 and 21 are not computed but are taken
exact.
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FIG. 3.5. First four eigenfunctions of the GWW isospectral drums. Each is normalized to have

unit amplitude. The contours are at levels −0.8, −0.6, . . . , 0.8.
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FIG. 3.6. Eigenfunctions 5–8 of the GWW isospectral drums.
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FIG. 3.7. Eigenfunctions 1, 3, and 6 of the GWW isospectral drums, as measured by Sridhar

and Kudrolli in their microwave experiments. Reprinted with permission from S. Sridhar and A.

Kudrolli.

The domain decomposition method described above exploits the corner infor-
mation in an appropriately local and completely general fashion. The method has
exponential convergence as the size of the approximation basis increases. Using this
algorithm, we have made the first high-precision determinations of the eigenvalues of
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FIG. 3.8. The ninth mode of the GWW drums. This corresponds to the first mode on a

(45◦, 45◦, 90◦) triangle.
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FIG. 3.9. Comparison of our results with other determinations of the spectra. Shown are the two

sets obtained by Sridhar and Kudrolli by microwave experiments and the results of finite differences

and mode matching reported by Wu et al.

the GWW drums. We have also demonstrated that the method is flexible enough to
be applied to other instances of polygonal isospectral regions.

We do not claim that the algorithm presented here is the only efficient method
possible for the polygon eigenvalue problem. For example, we have not explored
the application of h-p finite-element methods [1] or integral equation techniques [17].
We do believe, however, that any competitive method will make explicit use of the
solutions’ behavior at the corners.
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FIG. 3.10. Comparison of PLTMG with the domain decomposition method. The data are based

on the computation of the first eigenvalue of the first GWW drum on a Sun SPARCstation 2.

FIG. 3.11. Adaptive mesh refinement by PLTMG. The mesh is most refined near one of the

reentrant corners.
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method.

TABLE 3.2
First 10 eigenvalues of the isospectral drums of Figure 3.12.

5.63126379 18.8537757
7.18148848 19.8509471
12.7905748 24.1803291
13.0935554 27.5379471
17.0680091 30.0098327
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FIG. 3.13. Convergence of the eigenvalue estimates for the second pair of drums. Solid lines

are for the first drum, dashed lines are for the second drum, and the dotted line is a multiple of ωm,

where ω ≈ 0.48.
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FIG. 3.14. Eigenmodes 1, 3, 4, and 6 of the second pair of isospectral drums. Modes have unit

amplitude and contours are drawn at −0.8, −0.6, . . . , 0.8.
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To see more of the eigenfunctions of the GWW drums and some animations of
vibrations arising from selected combinations of the modes, use a WWW browser to
open the URL http://amath.colorado.edu/appm/faculty/tad.

Acknowledgments. I would like to thank David Webb, Peter Doyle, Jean
Descloux, S. Sridhar, and Arshad Kudrolli for their cooperation and pointers to rel-
evant literature. I am also grateful to Steve Vavasis and Nick Trefethen for their
valuable comments and suggestions.

REFERENCES
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