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W I R E L E S S  N E T W O R K  A C T I V I T Y

I
n the past two decades, wireless net-

works have permeated our public and 

private spaces, their usage shaped by 

the built environment’s impact on user 

activity in the vicinity of transceivers. So, 

unlike unidirectional radio and television infra-

structure, bidirectional wireless data networks 

can act as probes, propagating data about their 

users’ environment back to a network observer. 

This fundamental difference lets us use the vol-

ume, timing, and distribution of packets across 

networks to study the “bricks and mortar” of 

physical space.

In contrast to the mobile 

network, Wi-Fi (IEEE 802.11) 

systems are particularly acces-

sible to researchers because 

they’re more modest in scale 

and are often operated by in-

stitutions with a vested inter-

est in primary research. To 

date, most campus Wi-Fi de-

ployment studies have focused 

on network performance and 

management1 or inferred user 

mobility.2,3 However, as Jong 

Hee Kang and his colleagues note, incorporat-

ing the concept of place allows a more sophis-

ticated analysis and understanding of wireless 

environments.4 We propose a method to ana-

lyze and categorize wireless access points (APs) 

based on common usage characteristics that re-

�ect real-world, place-based behaviors.

We use eigendecomposition to study the Wi-

Fi network at the Massachusetts Institute of 

Technology (MIT), correlating data generated 

as a byproduct of network activity with the 

physical environment. Our approach provides 

an instant survey of building use across the en-

tire campus at a surprisingly �ne-grained level. 

The resulting eigenplaces have implications for 

research across a range of wireless technolo-

gies as well as potential applications in network 

planning, traf�c and tourism management, and 

even marketing.

The MIT Wireless Environment
Like many universities, MIT has covered its 

campus with a uni�ed Wi-Fi network; all APs 

share the MIT network name, enabling 20,000 

users to establish more than 250,000 sessions a 

day. Filippo Dal Fiore and his colleagues found 

that 73 percent of MIT students bring their lap-

tops to the campus either daily or on most days 

of the week.5 So, network activity is a reason-

able proxy for many student activities, making it 

suitable for an aggregate spatial analysis.

During the 14-week 2006 spring semester, we 

polled each of the 3,053 APs in our data col-

lection infrastructure at 15-minute intervals to 

determine the number of connected users. (For 

more information on the collection architecture, 

see “Mapping the MIT Campus in Real Time 

Using WiFi”6 and “Urban Activity Dynam-

ics.”7) Although we couldn’t tell what types of 

content the students, staff, and faculty were ac-

cessing, we hoped that the APs’ spatiotempo-

ral access pro�les would provide an interesting 

Researchers use eigendecomposition to leverage MIT’s Wi-Fi network 

activity data and analyze its correlation to the physical environment.
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window into campus activity while 

maintaining users’ anonymity. 

To control for the signal noise of day-

to-day random variation, we took the 

entire data set, removed the holidays, 

and averaged the remaining data to cre-

ate a composite view of a typical week. 

Therefore, the 10:00 a.m. Monday data 

point for any given AP is an average of 

all 10:00 a.m. Monday observations 

from that location during the term. 

Figure 1 shows a Fourier transform of 

connection data from all APs—repre-

senting the signal as the sum of a set 

of sinusoidal frequencies multiplied by 

coef�cients—and highlights the daily 

and weekly access cycles. 

We also obtained access to extensive 

spatial data that the university’s De-

partment of Facilities compiled. The 

database contained details on 33,000 

campus “spaces,” including their area, 

elevation (�oor number), and use class. 

There were more than 90 usage types—

ranging from classrooms to coat rooms, 

and elevator shafts to exhibition facili-

ties—which we grouped into 10 broad 

spatial types: administrative, audito-

rium, classroom, food/café, library, 

public space, research lab, residential, 

support services, and “do not count.” 

This last group contains uses such as 

animal quarters and vehicle storage, 

which seemed unlikely to have a dis-

tinct usage pro�le or, indeed, any usage 

pro�le. Armed with an appreciation of 

the campus’s complexity, we set out to 

understand how network usage varied 

within these basic categories.

Figure 2 shows the average number 

of connected users by time of week for 

auditorium, research lab, residential, 

and library APs. We can readily identify 

some spaces by their aggregate usage 

pro�le alone. The pro�le for building 

10, room 250, one of the largest audito-

riums on campus, even reveals the days 

it held lectures. This result is consistent 

with earlier research suggesting that ar-

eas containing large, dynamic popula-

tions are readily visible even in compar-

atively coarse wireless-traf�c analyses.8 

Residential spaces such as building 62, 

room 302 are also easy to identify by 

rising weekday evening use and heavy 

weekend use. Figure 2 also reveals the 

cycle of opening hours in the research 

lab in building 10, room 401—our own 

workspace—and building 14, room 

0000—the Hayden Library lobby.

From Eigenvectors  
to Eigenplaces
Adapting a technique drawn from sig-

nal analysis and remote sensing, we 

applied eigendecomposition to extract 

the discriminant features from our 

time-series data (the AP signatures in 

Figure 2). We represented the number 

of connections to an AP over time as a 

vector and assembled the observations 

from all APs into a single covariance 

matrix.9 Following eigendecomposi-

tion, we expressed each AP’s original 

signal as a sum of the matrix’s eigenvec-

tors Vi, i = 1, …, n, each modi�ed by a 

coef�cient Ci, i = 1, …, n particular to 

that AP. So, we describe a signature Si 

observed at a randomly selected access 

point i by the equation Si = Ci1.V1 + Ci2.

V2 + … + Cin.Vn. We would describe a 

second AP signature Sj using the same 

vector set V1 through Vn, but with dif-

fering coef�cients Cj1 through Cjn.

Applying eigendecomposition to 

MIT’s network data yields many eigen-

vector and coef�cient pairs; the latter’s 

magnitude establishes the vectors’ 

ranking according to their value in re-

constituting the original data. Using the 

mean-square-error test, we determined 

that only the �rst four pairs were re-

quired to lower this error below a rea-

sonable threshold of 0.1, letting us dis-

regard the remaining eigenvectors and 

coef�cients. Figure 3 shows the four 

eigenvectors that capture the decom-

posed signals’ most signi�cant aspects. 

Negative values on the y-axis are an un-

avoidable effect of eigendecomposition 

but aren’t signi�cant for this analysis.

The daily cycle in Figure 1—rapidly 

rising usage in the early morning fol-

lowed by a steady decline in the after-

noon and evening—is also evident in 

Figure 3’s �rst eigenvector. The second 

vector shows an evening activity pat-

tern that’s sustained on weekends, sug-

gesting residential usage. As we might 

expect, by the third vector, the plot 

becomes more dif�cult to interpret ho-

listically because these vectors express 

the observed signals’ lesser aspects. 

So, we were surprised to �nd that the 

fourth vector mapped quite clearly onto 

the usage pattern in building 10, room 

250—the large auditorium.

Generating a single set of eigenvectors 

common to all APs has an important an-

alytical bene�t: compression. Because all 

spaces on campus share the same eigen-

vectors, we can capture the differences 

between APs entirely in the coef�cients. 
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Figure 1. A Fourier transform of 

signals from all access points (APs). 

The transformation highlights the 

underlying data’s most important 

cycles—24 hours and one week—by 

representing the signal as the sum of a 

set of sinusoidal frequencies multiplied 

by coef�cients.
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So, we can accurately repre-

sent thousands of different, 

noisy, complex, time-varying 

signals with just four scalar 

values per hotspot. Figure 4 

illustrates how this approach 

captures the usage variation: 

the distinctive plot of the au-

ditorium’s four coefficients 

re�ects its equally distinctive 

usage pattern. The second 

coef�cient is positive for the 

AP in building 62, room 302 

only, reinforcing the residen-

tial inference we drew from 

the raw-signal study.

We term the combination 

of coefficients describing 

each AP an eigenplace be-

cause it encapsulates the prin-

cipal components of a space’s 

telecommunications pro�le. 

The eigenplace’s key analyti-

cal bene�t is that it’s quanti-

tatively comparable to any 

other place described with the 

same characteristic vector set. 

Because the coef�cients are 

simple scalars, we can cluster 

APs solely on the basis of the 

similarities and differences 

between the coef�cients, then 

examine the groups’ distribu-

tions across campus.

Although many clustering 

methods exist, we wanted a 

bottom-up mapping to avoid 

imposing our own expecta-

tions about campus life on 

the usage data, so we chose 

an unsupervised k-means 

clustering. This approach 

partitions data such that 

each observation is as much 

like its own group’s mem-

bers, and unlike other groups’ 

members, as possible. However, the k-

means method requires researchers to 

specify the desired number of clusters, 

which can allow other preconceptions 

to intrude. In “Urban Activity Dynam-

ics,” the authors imposed a constraint 

of three clusters, re�ecting MIT’s own 

tripartite categorization of buildings 

into academic, residential, and service 

categories, and found that they could 

perfectly recreate this classi�cation.7

Fortunately, we can gauge clusters’ 

appropriateness both mathematically 

and visually using the silhouette plot.10 

Each AP’s silhouette value (s-

value) measures how suited it 

is to its assigned cluster and 

how far—by whatever mea-

sure is appropriate—it is from 

any other cluster. We calcu-

lated the s-value using the 

squared Euclidean distance 

across the four dimensions 

abstracted from the eigen-

decomposition process using 

the following formulation in 

Matlab: S(i) = (min(b(i,:),2))/

max(a(i),min(b(i,:),2)) where 

a(i) is the average distance 

from the ith point to all other 

points in the cluster, and each 

b(i,k) is the average distance 

from the ith point to all points 

in another cluster k. 

The silhouette plot simply 

shows the s-value for each 

cluster element, and the aver-

age silhouette measures how 

appropriately we clustered the 

data. An s-value close to +1 

means that the element is ap-

propriately clustered, whereas 

an s-value close to -1 suggests 

the element is quite different 

from the other elements in the 

cluster as measured by its dis-

tance from the centroid.

When we subjected our 

results to fitness tests, we 

were surprised to �nd that 

three clusters wasn’t the op-

timal solution suggested by 

the data. We now wanted to 

investigate why evidence ex-

isted of more than three dis-

tinct Wi-Fi usage types, and 

determine whether these ad-

ditional usage types had real-

world behavioral correlates.

Cluster Training  
on a Partial Data Set
The APs’ complex physical environ-

ment makes our clustering algorithm 

quite sensitive to initial conditions. To 

manage this risk, we employed a train-

ing process to create and calibrate pro-
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Figure 2. Aggregate network usage by location:  

(a) auditorium, (b) research lab, (c) residential, and  

(d) library. The academic spaces—auditorium, research lab, 

and library—all show evidence of typical working hours and 

days, whereas the residential access point in building 62, 

room 302 shows little variation across the week. 
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totype clusters using a subset of the 

data. Selecting APs from three repre-

sentative buildings—10 (auditorium, 

classroom, and administrative), 62 

(residential), and the Stata Center (au-

ditorium, food/café, and administra-

tive)—we found that �ve clusters maxi-

mized the average silhouette value; only 

the fourth cluster showed signi�cant 

within-cluster distances (see Figure 5a).

The centroid signals in Figure 5b 

show the clusters’ average signal, which 

we calculated for each cluster centroid 

eigen place and then recombined with 

the original vectors to generate a com-

posite signal. The cluster 1 centroid sug-

gests residential origins because it main-

tains relatively heavy weekend usage; 

cluster 2 demonstrates the large audito-

riums’ impact. Clusters 3, 4, and 5 are 

more dif�cult to interpret solely on the 

basis of the centroid. Cluster 3 suggests 

public spaces because of a low-intensity 

pattern during both weekends and 

weekdays. The silhouette plot suggests 

that cluster 4 will be problematic regard-

less of our approach. Finally, cluster 5 

appears to serve classroom and admin-

istrative functions because of the much 

lower average number of weekend users.

The Department of Facilities-supplied 

usage type classi�cations in Figure 5c 

reinforce our understanding of Figures 

5a and 5b. The public spaces in cluster 1 

are from the second �oor and higher in 

building 62. The public spaces in cluster 

3 are from the ground �oors and base-

ments of buildings 10 (academic) and 

62 (residential). Cluster 5 is exclusively 

academic, incorporating classroom and 

administrative functions. Interestingly, 

all APs in cluster 4 come from just one 

building—the mixed-use Stata Center. 

We aren’t sure why this building shows 

up in our training data this way, but we 

speculate that the complex �oor plan 

and mix of uses create dif�culties in our 

clustering approach.

Cluster Analysis  
of the Full Data Set
Using the centroids we obtained from 

the testing data to populate a second 

k-means clustering of the entire cam-

pus reduces the risk of nonoptimal so-

lutions by ensuring that the test results 

respect the intercluster differences we 

identi�ed in Figure 5. The issue arises 

because of the probability that usage at 

some outlying APs deviates so far from 

the norm that it skews the clustering 

process toward solutions in which most 

clusters contain just a few extreme APs. 

Figure 6 suggests that although the data 

�t is slightly weaker, the overall group-

ing remains remarkably coherent and 

the centroids are still quite distinct.

Because we added the rest of the 

campus, the average s-value of 0.58 in 

Figure 6a is lower than the training da-

ta’s s-value. The centroids for clusters 

1 and 3 in Figure 6b demonstrate sus-

tained weekend loads, suggesting im-

portant residential components. Clus-

ter 2 has signi�cant peaks every day of 

the week, indicating that it contains a 

variety of large-group spaces, which 

likely caused the large in-group varia-

tion in Figure 6a. We expected differ-

ent departments to use their classroom 

spaces differently, leading to a lower 

in-cluster consistency for those APs, 

and this is the case for cluster 4.

Because public spaces are an impor-

tant component of each cluster, we 

analyzed this use category in more de-

tail and found that the spaces varied by 

cluster in speci�c ways. Cluster 1 con-

tains public APs with very high traf-

fic levels from buildings 62, 64, and 

79 (Simmons Hall), all of which are  

undergraduate dormitories. Cluster 2 in-

corporates a small number of high-traf�c 

public spaces, including some from the 

Sloan School of Management. Cluster 3’s 

public APs come primarily from residen-

tial blocks, but almost exclusively from 

the second �oor and higher, indicating 

that these aren’t areas open to the general  
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public or nonresident stu-

dent body. Cluster 4 public 

APs are principally from the 

�rst through �fth �oors of 

the core research, adminis-

trative, and classroom build-

ings. Finally, public spaces 

from cluster 5 incorporate 

activity from the most acces-

sible ground and �rst �oors 

of academic buildings. 

Our analysis of Figure 6c 

implies that researchers need 

a priori knowledge of each 

cluster’s constituent APs to 

extract meaningful infor-

mation from the data set. 

However, Figure 7 makes it 

clear that our approach can 

impart important informa-

tion about activity distribu-

tion across campus without 

recourse to any reference 

data. In effect, Figure 7 is 

a user-generated campus 

map, created entirely from 

anonymous, aggregate wire-

less data. The features that 

emerge—the graduate tow-

ers and highly connected 

undergraduate dorms, the 

academic core, and the lec-

ture halls—are entirely the 

product of the clustering.

We’ve classified more 

than 3,000 APs for an en-

tire campus without having 

to inspect each one in per-

son, and we’ve done so using 

a method that can provide 

continuously updated results 

over time at minimal cost. 

In combination with obser-

vations at a small, strati�ed 

sample of hotspots, a large 

network operator could use 

an eigenplace analysis to understand 

the drivers of resource usage across an 

urban- or national-scale network. 

Limitations
One challenge when working with wire-

less network analysis is signal propaga-

tion through walls and across �oors. 

We had hoped that the Wi-Fi base sta-

tions’ modest footprints would mean 

that they spanned fewer distinct uses 

and had correspondingly higher corre-

lation between signature and function. 

However, abundant evidence indicates 

that APs in a café might also 

serve adjacent classrooms or 

labs. And as the mixed re-

sults from the Stata Center 

suggest, coverage also varies 

with con�guration because 

signals can propagate in 

unexpected ways. Nonethe-

less, correlating against only 

the use class of the room in 

which the AP is mounted 

still yields remarkable results 

using nothing more than ag-

gregate wireless activity.

As Andres Sevtsuk and 

his colleagues detailed, there 

are important constraints 

on the activities that we can 

understand solely through 

network usage.6 At some 

places and times, such as 

during examinations or 

sporting events, network 

access is either banned out-

right or simply uncommon. 

We also can’t account for 

Wi-Fi usage demographics, 

although evidence suggests 

that staff, graduates, and 

undergraduates use the net-

work differently.11,12 How-

ever, this approach’s power 

is that none of these issues 

is strictly relevant—we can 

search for similarities in net-

work node usage without 

worrying about this differ-

ence’s underlying drivers.

W
hat’s par-

ticularly in-

teresting to 

us as built-

environment researchers is 

that our method is a user-

generated classi�cation of space. Until 

recently, researchers have had dif�culty 

investigating these aspects of human 

activity without extensive—and expen-

sive—in-person studies, and this ap-

proach enables us to move toward a more 

nuanced vision of the environment as a 

E
ig
e
n
p
la
ce

−40

−20

0

20

40

60 Building 10, room 250 (auditorium)

−40

−20

0

20

40

60 Building 10, room 401 (research lab)

−40

−20

0

20

40

60 Building 62, room 302 (residential)

1 2 3 4 5 6 7

−40

−20

0

20

40

60

Eigenvector number

Building 14, room 0000 (library)

(a)

(b)

(c)

(d)

Figure 4. The eigenvectors’ coef�cients by location:  

(a) auditorium, (b) research lab, (c) residential, and (d) library. 

The �rst seven eigenvalues highlight the way that lesser values 

contribute almost nothing to the observed signal. However, 

the auditorium’s extreme signal is much more dif�cult to fully 

capture with just four eigenvalues.
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dynamic system, not as a set of static, 

discrete spaces. Our approach has poten-

tially valuable applications beyond the 

campus. For example, large advertising- 

supported systems, whether public or 

private, have had to balance targeted 

advertising’s bene�ts against the privacy 

risks of snooping on individual users. 

Our approach offers an alternative that 

could be both anonymous and sensitive 

to activity context, including location, 

time of day, week, and year.  
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Figure 5. Results from clustering of the training data set. (a) The silhouette test shows the �ve k-means clusters (average s-value 

= 0.61). For instance, cluster 1 (blue) contains relatively few members and forms a fairly coherent grouping. (b) The clusters’ 

average centroid signals. (c) Department of Facilities’ classi�cations of access points by usage type.

Figure 6. Results from clustering of the testing data set. (a) The silhouette test shows the �ve k-means clusters (average s-value = 

0.58). (b) The clusters’ average centroid signals. (c) Department of Facilities’ classi�cations of access points by usage type. As we 

expected, within-group distances are somewhat larger, but the overall �t is still remarkably good.
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Figure 7. A 3D plot of campus clusters. Note the similarities between MIT’s of�cial building classi�cation and the eigenplace 

analysis clusters. The Wi-Fi probes also pick up differences at a �ner spatial scale in terms of usage, highlighting within-building 

usage differences.
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