
Eigensolver Methods for Progressive

Multidimensional Scaling of Large Data

Ulrik Brandes and Christian Pich

Department of Computer & Information Science, University of Konstanz, Germany
{Ulrik.Brandes,Christian.Pich}@uni-konstanz.de

Abstract. We present a novel sampling-based approximation technique
for classical multidimensional scaling that yields an extremely fast layout
algorithm suitable even for very large graphs. It produces layouts that
compare favorably with other methods for drawing large graphs, and it
is among the fastest methods available. In addition, our approach allows
for progressive computation, i.e. a rough approximation of the layout can
be produced even faster, and then be refined until satisfaction.

1 Introduction

The term multidimensional scaling (MDS) refers to a family of techniques for
dimensionality reduction that are used to represent high-dimensional data in
low-dimensional space while approximately preserving distances. For drawing
graphs, methods based on the objective function of distance scaling are used
widely, but the classical scaling approach has only occasionally been recognized
as a useful alternative [7,21,24]. Indeed the computational complexity of this
method is quadratic in the input size and thus prohibitive for large graphs.

In this paper we propose a sampling-based approximation technique to over-
come this restriction and to reduce time and space complexity essentially to
linearity. The proposed algorithm is simple to implement, yet extremely fast
and therefore applicable to very large graphs. Moreover, it allows for progressive
computation by very quickly producing a rough approximation of the layout,
which can then be improved by successive refinement.

This paper is organized as follows. Background on multidimensional scaling
and derived methods is provided in Section 2. In Section 3 we introduce two
variants of the eigensolver approach, which are evaluated and compared to each
other in Section 4. Section 5 concludes our contribution.

2 Related Work

The first MDS algorithm is due to Torgerson [30] and nowadays referred to as
classical MDS or classical scaling. Its objective is a low-dimensional representa-
tion of high-dimensional data by fitting inner products; it has a global optimum
which can be directly computed by spectral decomposition. The method we pro-
pose in this paper is an efficient approximation of classical scaling.

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 42–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Eigensolver Methods for Progressive MDS of Large Data 43

Another MDS variant best known and most widely used today has been pro-
posed by Kruskal [22] and is sometimes distinguished as distance scaling. The
objective is to directly fit Euclidean distances in the drawing to the given graph-
theoretical distances, typically by minimizing a stress measure. It is performed
by iterative replacement according to a spring model of attracting and repelling
forces or an energy model, as widely known in the graph drawing literature [18],
or by iterative algebraic techniques [12]. Due to their time and space complex-
ity, straightforward implementations of distance scaling methods are restricted
to data sets of moderate cardinality.

In the graph drawing literature, methods based on linear algebra have become
popular in recent years. Examples are High-Dimensional Embedding (HDE) [15],
fast multiscale approaches based on eigenvectors of the Laplacian [20], subspace-
restricted layout [19], and stress majorization [12].

Poor scalability to large data sets due to quadratic complexity is a well-known
problem of all MDS algorithms. It was addressed as early as in the 1960s [23], and
since then, many approaches to speeding up spring-force computations have been
devised [6,16,25,26]. Likewise, methods for speeding up the spectral methods
have been proposed [11,31]. Closest to our approach is Landmark MDS [10];
we give an experimental comparison in Sect. 4. Relationships between these
approaches are discussed in [2,27]. For more general surveys on sparse techniques
for dimensionality reduction and related spectral methods see [5,28].

MDS seems to have been the first computerized layout method used for draw-
ing social networks [17] towards the end of the 1960s. Even in this restricted
application domain there are many extensions and variants, such as incremental
or interactive MDS [1,4,8,32]. For further information about MDS, its history,
and other applications we refer the reader to recent textbooks [3,9].

3 Multidimensional Scaling and Its Approximation

Let ∆ ∈ R
n×n denote a symmetric matrix of metric dissimilarities or distances

δij between items i, j ∈ {1, . . . , n}. The goal of multidimensional scaling is to
find positions xi ∈ R

d in d-dimensional space, d ≪ n, such that ‖xi − xj‖ ≈ δij ,
i.e. distances are represented well in this low-dimensional space. Note that for
notational convenience we write positions xi as column vectors, and that d ∈
{2, 3} for visualization purposes. With ∆(2) we denote matrix ∆ with squared
entries, i.e. [∆(2)]ij = [∆]2ij .

In graph drawing and network analysis, ∆ frequently consists of shortest-path
distances (see, e.g., [8] for an alternative graph distance). In other contexts it is
often induced by a high-dimensional feature space with an associated distance
function.

In this section, we briefly describe a standard technique for multidimensional
scaling, a recently introduced method for its fast approximation, and our new
variant of this approximation. It turns out that, technically, our method is very
similar to one of the fastest algorithms for drawing large graphs [15], but elimi-
nates some of its shortcomings. This is outlined in Sect. 3.5.

44 U. Brandes and C. Pich

3.1 Classical MDS

We briefly describe the scaling method known as Classical MDS [30]. Recall that
we are looking for an embedding in d-dimensional space, i.e. a matrix X ∈ R

n×k

with X = [x1, . . . , xn]T , such that δij ≈ ‖xi − xj‖. Since this implies

δ2
ij ≈ ‖xi − xj‖

2 = (xi − xj)
T (xi − xj) = xT

i xi − 2xT
i xj + xT

j xj ,

consider the matrix B = XXT of inner products bij = xT
i xj . While we do not

know X , it can be shown that

bij = −
1

2

(

δ2
ij −

1

n

n
∑

r=1

δ2
rj −

1

n

n
∑

s=1

δ2
is +

1

n2

n
∑

r=1

n
∑

s=1

δ2
rs

)

,

so that B can also be obtained by double-centering the matrix of squared dis-
similarities ∆(2), i.e. each column and each row of B sums to zero.

Knowing B, positions X are reasonably reconstructed using the eigendecom-
position B = V ΛV T , where Λ is the diagonal matrix of the eigenvalues of B,
and V is the orthonormal matrix of its eigenvectors. Simply let

X = V (d)Λ
1/2
(d) ,

where Λ(d) ∈ R
d×d is the diagonal matrix of the d largest eigenvalues of B and

V (d) ∈ R
n×d is an n × d matrix of associated eigenvectors. Thus, the essence

of classical scaling is to fit inner products rather than distances as in distance
scaling.

It is important to note that the two or three required eigenvectors can be
computed by power iteration, i.e. by repeatedly multiplying a starting vector
x ∈ R

n with B. The iterate is periodically normalized; further eigenvectors
are found by orthogonalization against previously computed eigenvectors. See,
e.g., [13] for background on matrix computations.

The running time for drawing an unweighted graph with n vertices and
m edges by performing classical MDS on its matrix ∆ of shortest-path dis-
tances is thus O(nm) for computing ∆ using breadth-first search, Θ(n2) for
constructing B, and another O(n2) per iteration. Running times and also stor-
age requirements are therefore prohibitive for large graphs.

3.2 Landmark MDS

Landmark MDS (LMDS) [10] is a fast method for approximating the results
of Classical MDS using a sparsification of the transformed distance matrix. It
is based on distinguishing a few items as landmarks, and computing the eigen-
decomposition only on the double-centered matrix of squared distances among
those landmarks. Positions of non-landmarks are then determined as linear com-
binations of landmark positions, i.e. items are placed in the weighted barycenter
of all landmarks where the weights are derived from the original distances.

Eigensolver Methods for Progressive MDS of Large Data 45

The rationale is that a set of appropriate reference points is sufficient to de-
termine the projection into low-dimensional space. To be representative, the
k landmarks, d < k ≪ n, should be distributed well. Common experience shows
that a MaxMin strategy, in which the next landmark maximizes the minimum
distance to the previous landmarks, yields satisfactory results. Note that this
corresponds to a well-known 2-approximation of the k-center problem in facility
location. We have tried other simple strategies such as MaxSum, random selec-
tion, and hybrids, but none proved to be superior consistently. More advanced
techniques are proposed in [29].

Time and space complexity of LMDS are significantly smaller than for Clas-
sical MDS. Landmark selection and distance computations are carried out in
O(k · |E|) time, each power iteration step requires only O(k2) time, and the final
positioning is done in O(kn) time. Since, in general, choosing k < 100 yields
satisfactory results on most practical instances, LMDS can be regarded a linear-
time algorithm. Moreover, it is only necessary to store the Θ(kn) distances to
landmarks.

3.3 Pivot MDS

We now introduce a new variant of sparse MDS which we call Pivot MDS

(PMDS). It is motivated by a potential shortcoming of the LMDS strategy to po-
sition landmarks only with respect to each other: it is possible that the (already
available) distance information to non-landmarks can be utilized to improve the
quality of the result.

Recall that Classical MDS is based on an eigendecomposition of the double-
centered n×n-matrix of squared distances B, and that Landmark MDS is based
on the corresponding decomposition of the double-centered k × k-submatrix of
squared distances among selected items only. Pivot MDS is based on the double-
centered n × k-submatrix C of squared distances from every item to those se-
lected, having entries

cij = −
1

2

(

δ2
ij −

1

n

n
∑

r=1

δ2
rj −

1

k

k
∑

s=1

δ2
is +

1

nk

n
∑

r=1

k
∑

s=1

δ2
rs

)

,

where i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, and thus contains all distance informa-
tion available.

Note that the n-dimensional left singular vectors of C ∈ R
n×k are equal to

the eigenvectors of CCT ∈ R
n×n. If they are computed using power iteration,

an iteration consists of two steps: first, positions of pivots are determined using
the current positions of all items (multiplication with CT ∈ R

k×n), and then all
items are positioned relative to the pivots (multiplication with C ∈ R

n×k).1

1 This interpretation motivates the name “pivot,” in contrast to “landmarks” which
are first assigned their final location and then used to determine the position of all
other items.

46 U. Brandes and C. Pich

An intuitive interpretation is that the eigenvectors of CCT approximate the
eigenvectors of B2, and thus of B. This follows from the assumption

[

B2
]

ij
=

[

BBT
]

ij
=

n
∑

ℓ=1

biℓbjℓ ≈

k
∑

ℓ=1

ciℓcjℓ =
[

CCT
]

ij
,

so matrix entries [B2]ij and [CCT]ij represent the same type of transformed
distance sums, though in the latter case with a truncated list of intermediaries.
If these are sufficiently well distributed, the relative size of entries in CCT is
representative for those in B2.

At face value the iteration time of PMDS is O(kn). However, we can rewrite
(CCT)i = C(CT C)i−1CT so that the iteration is performed only on the k × k-
matrix CT C. The initial multiplication with CT can be omitted (in Sect. 3.4 we
will argue, though, that it is sometimes desirable), since the starting vector is
arbitrary. The final multiplication with C is similar to the final projection step
of LMDS. The algorithm is summarized in Alg. 1.

Except for the additional O(kn+k2n) cost of double-centering and computing
CT C, the running time is therefore essentially the same as in LMDS.

Algorithm 1: Pivot MDS

Input: undirected graph G = (V, E), number k ∈ N of pivots
Output: coordinates x, y ∈ R

n

select k pivots from V

for i ∈ {1, . . . , k} do
i-th column of ∆(k) ← BFS(i-th pivot)

C ← doublecenter
(

∆(k)(2)
)

(v1, v2) ← poweriterate(CT C) // 2 largest eigenvectors
x ← Cv1, y ← Cv2

3.4 Progressive MDS

When using pivot approximation there is a natural trade-off between running
time and memory usage; users might have to experiment with various numbers of
pivots and different strategies. Instead of iteratively re-executing the algorithm
with a larger set of pivots for layout improvement, we propose to use a progressive
form of MDS computation that we shall describe in the following.

Let ∆(k) ∈ R
n×k denote a submatrix of the matrix of pairwise distances, and

let x ∈ R
n be a component in the placement computed by PMDS based on it.

To improve approximation quality, ∆(k) can be extended by a certain number of
new pivot columns to ∆(k′) ∈ R

n×k′

(k′ ≥ k). Note that all operations for com-

puting the new columns in ∆(k′), double-centering of ∆(k′)
(2)

to obtain C′, and

determination of matrix C′T C′ can be implemented to run in O ((k′ − k) · |E|).
The new vector x′ ∈ R

n is computed by replacing C with C′ in Algorithm 1.

Eigensolver Methods for Progressive MDS of Large Data 47

Fig. 1. Progressively drawing the finan512 graph (|V | = 74752, |E| = 261120) with
increasing pivot set (k = 3, 6, 12, 25, 50, 100) using the minmax strategy

To prevent artificial effects through rotation and reflection in the transition
from x to x′ due to indeterminacies in the basis of the eigenspace of C′T C′,
the initial solution y ∈ R

k for the power iteration is derived from the previous
layout by y = C′T x. Compared to random initialization, the iteration process for
computing the new layout x′ is thus more likely to converge towards a solution
close to x, and we have observed that transitions between intermediate layouts
tend to become smoother and visually more pleasing.

For smaller graphs, pivots may be added in batches before computing the
layout, while it can make more sense for very large graphs to extend ∆(k) col-
umn by column, after each insertion computing the layout anew. In Sect. 4 our
experiments indicate that most of the running time of Pivot MDS is consumed
by the distance computations, while a layout based on these distances can be
computed quickly. It is thus worthwhile to progressively compute the layout until
the quality does not improve significantly.

3.5 Pivot MDS vs. HDE

In retrospect, our proposed method is reminiscent of another fast algorithm for
drawing large graphs, the high-dimensional embedder (HDE) of [15].

HDE proceeds as follows: From a set of k selected nodes (the pivots), distances
to all other nodes are determined. These distances are, however, neither squared
nor double-centered, but directly interpreted as coordinates in a k-dimensional
space. In this space, they are centered to place the mean at zero coordinate, and
yield a high-dimensional embedding X ∈ R

n×k. This k-dimensional embedding
is then projected into two dimensions by Principal Component Analysis (PCA),

48 U. Brandes and C. Pich

i.e. by computing the two largest eigenvectors of the covariance matrix 1
nXT X ∈

R
k×k. The final coordinates are then obtained by matrix multiplication with X

analog to PMDS.
While this appears technically similar to PMDS, it is important to note that

both approaches are motivated by different intuitions and produce different re-
sults: HDE transforms k possibly correlated variables (the embedding X) into
two uncorrelated variables (the layout). In contrast, the objective of PMDS is
to directly find low-dimensional coordinates with inner products complying with
the given dissimilarities δij . More details about the fundamental differences of
the two approaches and experiments can be found in [21].

Both PMDS and HDE have approximately the same running time complexity
of O(k · |E| + k2n), while PMDS appears to yield drawings of superior quality.

4 Evaluation

The algorithms were implemented in Java SDK 1.4.1. All experiments were con-
ducted under MS Windows XP Version 2002 SP2 on an Intel Pentium-M CPU
with 1.6GHz and 512MB of main memory.

We used a set of test graphs for drawing and for evaluating the scalability of
our approach. We measured the CPU running times for distance computation
and the layout algorithm. Descriptions of the test graphs are given in [14,15].

4.1 Running Time

Figure 2 shows for both Pivot and Landmark MDS that the running time for the
breadth-first searches for matrix C in O(km) time indeed dominates over the
computation times for spectral decomposition of CT C and the final coordinates,
which together are in O(k3 + k2n) time. The larger the graph and the smaller k

in relation to n, the more apparent this effect becomes. LMDS is slightly faster
than Pivot MDS because it does not require the construction of CT C.

We have used straightforward, non-optimized implementations for distance
computations and matrix operations. Therefore, we expect that using special-
ized libraries with sophisticated algorithms and data structures yields significant
improvements on the absolute values of the measured times.

One important consequence from our observation is that the number of pivots
used for the approximation and the pivot strategy can be crucial for the ratio
between quality and running time. The next subsection gives more details on
the quality of the approximation relative to (full) Classical MDS.

4.2 Quality

To assess their approximation quality, we compared the approximated layouts
with those given by full Classical MDS. Procrustes analysis (see, e.g., [9]), a
technique popular in data analysis and statistics, is used to assess how similar
two configurations X, Y ∈ R

n×d with X = [x1, . . . , xn]T , Y = [y1, . . . , yn]T are
up to translation, dilation, and rotation. It is the sum of squared distances

Eigensolver Methods for Progressive MDS of Large Data 49

name |V | |E| BFS layout total

ug380 1104 3231 0.05 0.03 0.08
fidap006 1651 23914 0.16 0.01 0.17
esslingen1 2075 4769 0.07 0.01 0.08
3elt 4720 13722 0.22 0.05 0.27
power 4941 6594 0.17 0.05 0.22
add32 4960 9462 0.15 0.02 0.17
bcsstk33 8738 291583 1.96 0.05 2.01
whitaker3 9800 28989 0.34 0.04 0.38
crack 10240 30380 0.45 0.05 0.50
4elt2 11143 32818 0.41 0.06 0.47
4elt 15606 45878 0.78 0.08 0.86
sphere 16386 49152 0.81 0.09 0.90
fidap011 16614 537374 3.52 0.08 3.60
bcsstk31 35588 572914 4.36 0.19 4.54
bcsstk32 44609 985046 7.09 0.25 7.34
finan512 74752 261120 4.11 0.40 4.50
ocean 143437 409593 10.24 0.82 11.06

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 40 60 80 100 120 140 160 180 200

ru
n

n
in

g
 t

im
e

 i
n

 m
ill

is
e

c
o

n
d

s

pivot number

esslingen1

Pivot MDS
Landmark MDS

distance computation

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 20 40 60 80 100 120 140 160 180 200

ru
n
n
in

g
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

pivot number

bcsstk32

Pivot MDS
Landmark MDS

distance computation

Fig. 2. Left: Pivot MDS running times in seconds using 50 pivots, measured for the set
of test graphs. Right: Total running times required by distance computations, Pivot
MDS, and Landmark MDS (the latter two including distance computation) with in-
creasing pivot numbers, as measured for esslingen1 and bcsstk32.

R2 =

n
∑

i=1

(xi − yi)
T (xi − yi) ,

where both configurations consist of two-dimensional coordinates (i.e., d = 2).
Procrustes analysis translates, dilates, and rotates X such that R2 is minimized
with respect to Y . It can be shown (see, e.g., [3]) that 0 ≤ R2 ≤ 1 and that the
minimum value is given by the Procrustes statistic

R2 = 1 −

(

tr(XT Y Y T X)1/2
)2

tr(XT X)tr(Y T Y)
,

which is the sum the squared distances between X after the best possible trans-
formation (with respect to Y), and Y . If the two configurations can be per-
fectly matched, R2 = 0; if they cannot be matched at all by any transformation,
R2 = 1. We may assume that both configurations have the centroid in the origin.

We computed the R2 value for the esslingen1 graph with Pivot and Land-
mark MDS, using the maxmin and the random pivot strategy, as depicted in
Figure 3 with respect to the layout by full MDS. It can be seen that our method
is almost consistently superior to Landmark MDS and that it seems to give more
stable results. An interesting observation for both algorithms is that using the
minmax pivot strategy yields good results with a small number of pivots, while,

50 U. Brandes and C. Pich

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250 300 350 400

P
ro

c
ru

s
te

s
 s

ta
ti
s
ti
c

number of pivots

maxmin strategy

Pivot MDS
Landmark MDS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250 300 350 400

P
ro

c
ru

s
te

s
 s

ta
ti
s
ti
c

number of pivots

random strategy

Pivot MDS
Landmark MDS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 500 1000 1500 2000

P
ro

c
ru

s
te

s
 s

ta
ti
s
ti
c

number of pivots

maxmin strategy

Pivot MDS
Landmark MDS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 500 1000 1500 2000

P
ro

c
ru

s
te

s
 s

ta
ti
s
ti
c

number of pivots

random strategy

Pivot MDS
Landmark MDS

Fig. 3. Procrustes statistic vs. number of pivots for esslingen1. Upper row: Quality
of PMDS and LMDS for practical use (3 ≤ k ≤ 400). Lower row: the same for the full
scope (3 ≤ k ≤ n, larger step size in the plot). All curves reach 0 at k = n.

starting from a certain point, systematic pivot selection creates an unbalanced
approximation leading to deterioration of quality. In contrast, using a random
pivot strategy initially requires a larger number of pivots to obtain the same
approximation quality, but displays a more monotonic behavior.

As the Procrustes statistic can be computed efficiently, it is suitable for com-
paring intermediate layouts when increasing the number of pivots, and may be
used as a termination criterion. Progression may be stopped when the value of
R2 for consecutive layouts falls below a given threshold, indicating that little to
no quality improvement can be expected by adding more pivots.

It is important to note that there are graphs for which Classical MDS (even
without approximation) may be of poor quality due to the fact that the two
dimensions in the layout are not sufficient for expressing the higher-dimensional
structure of the data. In contrast, graphs with a very regular structure, such as
finite-element meshes, often have a direct relation between coordinates in a low-
dimensional space and graph-theoretical distances, and therefore almost surely
yield useful layouts.

This is frequently referred to as the intrinsic dimensionality of the data. It can
be estimated by the eigenvalue distribution: Few large positive and a large num-
ber of “almost zero” (hence rather uninformative) eigenvalues suggest a small
number of intrinsic dimensions (which can be captured in a low-dimensional
representation well); many large positive eigenvalues indicate a high intrinsic di-
mensionality and that there is little hope to get a feasible low-dimensional layout
with any distance-based method.

Eigensolver Methods for Progressive MDS of Large Data 51

Fig. 4. Layouts of the esslingen1 graph using Pivot MDS approximation with 50
pivots (left), and by full Classical MDS (or, equivalently, 2075 pivots). The Procrustes
statistic yields R2 = 0.0085, indicating an excellent “fit”.

Fig. 5. The US power grid graph (|V | = 4941, |E| = 6594). Left: Pivot MDS using
100 pivots. Right: The same after postprocessing by a spring embedder. Pivot MDS
appears to give a better layout of the grid structure, while the spring embedder displays
regional density better. This suggests the use of our method for efficient generation of
initial placements for further processing, which is crucial for many algorithms.

Fig. 6. Drawings of the graphs bcsstk31 (|V | = 35588, |E| = 572914) and bcsstk32

(|V | = 44609, |E| = 985046) with 200 pivots. In the experimental study of [14] these
graphs posed serious difficulties for most methods.

52 U. Brandes and C. Pich

5 Conclusion

We have proposed a simple and efficient method for drawing very large undi-
rected graphs based on MDS. With pivot approximation it can be implemented
to run in linear time and with linear memory.

The graph layout can be made progressive by extending the set of pivots incor-
porated in the layout computation. This allows for quick generation and display
of a decent preview layout, which can then be refined by further computation
carried out in the background.

In our experiments, we found that generally a very small number of pivots is
sufficient and that running time for computing the eigenvectors was negligible
with respect to setting up the distance-submatrix C. The essential difference to
LMDS is that CT C contains more relations than just those between landmarks.
LMDS and PMDS are therefore equally efficient in practice. We also noted,
however, that PMDS indeed requires fewer pivots in general to reach the same
quality level, while offering greater overall stability.

Even though our prototypical implementation is written in Java, and we did
not perform any optimization, the running times compare favorably with the
fastest methods available, and are likely to be reduced significantly in a dedicated
implementation.

References

1. W. Basalaj. Incremental multidimensional scaling method for database visualiza-
tion. In Proc. VDA, pages 149–158, 1999.

2. Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet.
Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral cluster-
ing. In NIPS, pages 307–311, 2004.

3. I. Borg and P. Groenen. Modern Multidimensional Scaling. Springer, 2005.
4. A. Buja and D. F. Swayne. Visualization methodology for multidimensional scaling.

J. Classification, 19:7–43, 2002.
5. C. J. C. Burges. Geometric methods for feature extraction and dimensional reduc-

tion. Technical report, Microsoft Research, 2004.
6. M. Chalmers. A linear iteration time layout algorithm for visualizing high-

dimensional data. In Proc. InfoVis, pages 127–132. IEEE, 1996.
7. A. Civril, M. Magdon-Ismail, and E. Bocek-Rivele. SDE: Graph drawing using

spectral distance embedding. In Proc. Graph Drawing, pages 512–513, 2005.
8. J. D. Cohen. Drawing graphs to convey proximity. ACM Transactions on

Computer-Human Interaction, 4(3):197–229, 1997.
9. T. Cox and M. Cox. Multidimensional Scaling. CRC/Chapman and Hall, 2001.

10. V. de Silva and J. Tenenbaum. Global versus local methods in nonlinear dimen-
sionality reduction. In Proc. NIPS, pages 721–728, 2003.

11. C. Faloutsos and K. Lin. FastMap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. In Proc. ACM SIGMOD,
pages 163–174, 1995.

12. E.R. Gansner, Y. Koren, and S. North. Graph drawing by stress majorization. In
Proc. Graph Drawing, pages 239–250, 2004.

Eigensolver Methods for Progressive MDS of Large Data 53

13. G. H. Golub and C. F. van Loan. Matrix computations. Johns Hopkins University
Press, 1996.

14. S. Hachul and M. Jünger. An experimental comparison of fast algorithms for
drawing general large graphs. In Proc. Graph Drawing, pages 235–250, 2005.

15. D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. In Proc.

Graph Drawing, pages 388–393, 2002.
16. F. Jourdan and G. Melançon. Multiscale hybrid MDS. In Proc. IV, pages 388–393.

IEEE, 2004.
17. Charles Kadushin. Personal communication.
18. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.

Information Processing Letters, 31:7–15, 1989.
19. Y. Koren. Graph drawing by subspace optimization. In Proc. VisSym, pages 65–74,

2004.
20. Y. Koren, L. Carmel, and D. Harel. ACE: A fast multiscale eigenvectors compu-

tation for drawing huge graphs. In Proc. InfoVis, pages 137–144. IEEE, 2002.
21. Y. Koren and D. Harel. One-dimensional layout optimization, with applications to

graph drawing by axis separation. Computational Geometry: Theory and Applica-

tions, 32:115–138, 2005.
22. J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a non-

metric hypothesis. Psychometrika, 29(1):1–27, 1964.
23. J. B. Kruskal and R. E. Hart. A geometric interpretation of diagnostic data from a

digital machine: Based on a study of the Morris, Illinois, Electronic Central Office.
Bell Sys. Tech. J., 45(8):1299–1338, 1966.

24. J. B. Kruskal and D. Seery. Designing network diagrams. In Proc. First General

Conference on Social Graphics, pages 22–50, 1980.
25. A. Morrison and M. Chalmers. Improving hybrid MDS with pivot-based searching.

In Proc. InfoVis, pages 85–90. IEEE, 2003.
26. A. Morrison, G. Ross, and M. Chalmers. A hybrid layout algorithm for sub-

quadratic multidimensional scaling. In Proc. InfoVis, pages 152–158. IEEE, 2002.
27. J. C. Platt. FastMap, MetricMap, and Landmark MDS are all Nyström Algorithms.

Technical report, Microsoft Research, 2004.
28. L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee. Spectral methods

for dimensionality reduction. In B. Schölkopf, O. Chapelle, and A. Zien, editors,
Semi-Supervised Learning. MIT Press, 2006. To appear.

29. J. G. Silva, J. S. Marques, and J. M. Lemos. Selecting landmark points for sparse
manifold learning. In Proc. NIPS, 2005.

30. W. S. Torgerson. Multidimensional scaling: I. Theory and Method. Psychometrika,
17:401–419, 1952.

31. J. T.-L. Wang, X. Wang, K. Lin, D. Shasha, B. A. Shapiro, and K. Zhang. Eval-
uating a class of distance-mapping algorithms for data mining and clustering. In
Proc. KDD, pages 307–311, 1999.

32. M. Williams and T. Munzner. Steerable, progressive multidimensional scaling. In
Proc. InfoVis, pages 57–64. IEEE, 2004.

	Introduction
	Related Work
	Multidimensional Scaling and Its Approximation
	Classical MDS
	Landmark MDS
	Pivot MDS
	Progressive MDS
	Pivot MDS vs. HDE

	Evaluation
	Running Time
	Quality

	Conclusion

