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Abstract  

 

Eigenspace-based Face Recognition corresponds to one of the most successful methodologies for the 

computational recognition of faces in digital images. Starting with the Eigenface-Algorithm different 

eigenspace-based approaches for the recognition of faces have been proposed. They differ mostly in the 

kind of projection method used (standard-, differential- or kernel-eigenspace), in the projection algorithm 

employed, in the use of simple or differential images before/after projection, and in the similarity matching 

criterion or classification method employed. The aim of this paper is to present an independent, 

comparative study among some of the main eigenspace-based approaches. We believe that carrying out 

independent studies is relevant, since comparisons are normally performed using the own implementations 

of the research groups that have proposed each method, which does not consider completely equal working 

conditions for the algorithms. Very often, more than a comparison between the capabilities of the methods, 

a contest between the abilities of the research groups is performed. This study considers theoretical aspects 

as well as simulations performed using the Yale Face Database, a database with few classes and several 

images per class, and FERET, a database with many classes and few images per class. 
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1. Introduction 

 

Face Recognition is a high dimensional pattern recognition problem. Even low-resolution face images 

generate huge dimensional feature spaces (20,000 dimensions in the case of a 100x200 pixels face image). 

In addition to the problems of large computational complexity and memory storage, this high 

dimensionality makes very difficult to obtain statistical models of the input space using well-defined 

parametric models. Moreover, this last aspect is further stressed given the fact that only few samples for 

each class (1-3) are normally available for the system training. However, the intrinsic dimensionality of the 

face space is much lower than the dimensionality of the image space, since faces are similar in appearance 

and contain significant statistical regularities. This fact is the starting point of the use of eigenspace-based 

methods for reducing the dimensionality of the input face space. Standard- as well as differential- and 

kernel-eigenspace approaches have been presented in the literature to overcome the mentioned problems. 

Given that similar troubles are normally found in many biometric applications, we believe that some of the 

eigenspace-based methods to be outlined and compared in this work can be applied in the implementation 

of other biometric systems (signature, fingerprint, iris, etc.). 

Eigenspace-based methods, mostly derived from the Eigenface-algorithm [19], project input faces onto 

a dimensional reduced space where the recognition is carried out, performing a holistic analysis of the 

faces. Different eigenspace-based methods have been proposed. They differ mostly in the kind of 

projection/decomposition approach used (standard-, differential- or kernel-eigenspace), in the projection 

algorithm employed, in the use of simple or differential images before/after projection, and in the similarity 

matching criterion or classification method employed. The aim of this paper is to present an independent, 

comparative study among some of these different approaches. We believe that carrying out independent 

studies is relevant, because comparisons are normally performed using the own implementations of the 

research groups that have proposed each method (e.g. in FERET contests), which does not consider 

completely equal working conditions (e.g. exactly the same pre-processing steps). Very often, more than a 
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comparison between the capabilities of the methods, a contest between the abilities of the research groups 

is performed. Additionally, not all the possible implementations are considered (e.g. p projection methods 

with q similarity criteria), but only the ones that some groups have decided to use.  

This study corresponds to an extension of the one presented in [12]. It considers standard, differential 

and kernel eigenspace methods. In the case of the standard ones, three different projection algorithms, 

Principal Component Analysis - PCA, Fisher Linear Discriminant - FLD and Evolutionary Pursuit – EP, 

and five similarity matching criteria, Euclidean-, Cosines- and Mahalanobis-distance, SOM-Clustering and 

Fuzzy Feature Contrast – FFC, were considered. In the case of differential eigenspace methods, two 

approaches were used: the pre-differential [13] and the post-differential [15]. In both cases two 

classification methods, Bayesian and Support Vector Machine – SVM classification, were employed. 

Finally, regarding kernel eigenspace methods [9], Kernel PCA - KPCA and Kernel Fisher Discriminant - 

KFD were used together with the five similarity measures employed in the standard eigenspace methods. 

This comparative study considers theoretical aspects as well as simulations performed using the Yale 

Face Database, a database with few classes and several images per class, and FERET, a database with 

many classes and few images per class. It is important to use both kinds of databases for performing such a 

study, because, as it will be shown in this work, some properties of the methods, as for example their 

generalization ability, change depending on the number of classes taken under consideration.  

Pre-processing aspects as face alignment, masking, illumination compensation and so on, are kept 

unchanged in all the approaches and their different implementations. 

This paper is structured as follows. In section 2 different approaches for the eigenspace-based 

recognition of faces are described. In section 3 a comparative study among these approaches is presented. 

Finally, some conclusions of this work are given in section 4. 

 

 

2. Eigenspace-based Recognition of Faces 
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Standard eigenspace-based approaches project input faces onto a dimensional reduced space where the 

recognition is carried out. In 1987 Sirovich and Kirby used PCA in order to obtain a reduced representation 

of face images [17]. Then, in 1991 Turk and Pentland used PCA projections as the feature vectors to solve 

the problem of face recognition, using the Euclidean distance as similarity function [19]. This system, later 

called Eigenfaces, was the first eigenspace-based face recognition approach and, from then on, many 

eigenspace-based systems have been proposed using different projection methods and similarity functions. 

In particular, Belhumeur et al. proposed in 1997 the use of FLD as projection algorithm in the so-called 

Fisherfaces system [1]. In all standard eigenspace-based approaches a similarity function, which works as a 

nearest-neighbor classifier [3], is employed. 

In 1997 Pentland and Moghaddam proposed a differential eigenspace-based approach that allows the 

application of statistical analysis in the recognition process [13]. The main idea is to work with differences 

between face images, rather than with single face images. In this way the recognition problem becomes a 

two-class problem, because the so-called “differential image” contains information of whether the two 

subtracted images belong to the same class or to different classes. In this case the number of training 

images per class increases so that statistical information becomes available, and a statistical classifier can 

be used for performing the recognition. The system proposed in [13] used Dual-PCA projections and a 

Bayesian classifier. Following the same approach, a system using Single-PCA projections and a SVM 

classifier was proposed in [15]. 

In the differential approach all the face images need to be stored in the database, which slows down the 

recognition process. This is a serious drawback in practical implementations. To overcome this drawback a 

so-called post-differential approach was proposed in [15]. Under this approach, differences between 

reduced face vectors instead of differences between face images are used. This allows to decrease the 

number of computations and the required storage capacity (only reduced face vectors are stored in the 
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database), without losing the recognition performance of the differential approaches. Both, Bayesian and 

SVM classifiers were used to implement this approach in [15]. 

On the other hand, kernel eigenspace methods were proposed for increasing the generalization ability of 

eigenspace methods by increasing the dimensionality of the input space instead of using differences of face 

images or reduced vectors. In this case KPCA and KFD, non-linear extensions of PCA and FLD 

respectively, are used as projection algorithms. The main idea behind these projection algorithms is to use 

linear methods applied to high-dimensional mapped vectors instead of the original vectors, and at the same 

time to avoid the explicit mapping of these vectors by means of the so-called “kernel-trick” (same strategy 

is employed in SVM). As in the case of the standard eigenspace methods, a similarity function, which 

works as a nearest-neighbor classifier, is employed. A kernel-based system for the recognition of faces was 

proposed in [10]. This system uses either KPCA or KFD as projection algorithm. 

Standard-, differential- and kernel-eigenspace approaches for the recognition of faces are described in 

the following subsections. 

 

2.1. Standard Eigenspace Face Recognition 

 

Fig. 1 shows the block diagram of a generic, standard eigenspace-based face recognition system. 

Standard eigenspace-based approaches approximate the face vectors (face images) by lower dimensional 

feature vectors. These approaches consider an off-line phase or training, where the projection matrix 

( W ∈ RN ×m), the one that achieve the dimensional reduction, is obtained using all the database face images. 

In the off-line phase, the mean face ( x ) and the reduced representation of each database image (p ) are also 

calculated. The recognition process works as follows. A preprocessing module transforms the face image 

into a unitary vector (normalization module in the case of Fig. 1) and then performs a subtraction of the 

mean face. The resulting vector is projected using the projection matrix that depends on the eigenspace 

method been used (PCA, FLD, etc.). This projection corresponds to a dimensional reduction of the input, 

k
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starting with vectors in  (where N is the dimension of the image vectors) and obtaining projected vectors 

q in , with m<N (usually m<<N). Then, the similarity of q with each of the reduced vectors p  (p

RN

Rm k k ∈ Rm ) 

is computed using a certain criterion of similarity (Euclidean distance for example). The class of the most 

similar vector is the result of the recognition process, i.e. the identity of the face. In addition, a Rejection 

System for unknown faces is used if the similarity matching measure is not good enough. 

 

 

 

Fig. 1. Block diagram of a generic, standard eigenspace-based face recognition system. 

 

2.1.1. Projections Methods 

 

The projection methods employed in this work for the reduction of dimensionality are PCA [19], FLD 

[4] and EP [5]. PCA is a general method for identifying the linear directions in which a set of vectors are 

best represented in a least-squares sense, allowing a dimensional reduction by choosing the directions of 

largest variance. The theoretical solution of this problem is well known and is obtained by solving the 

eigensystem of the correlation matrix R. On the other hand, FLD searches for the projection axes on which 

the input vectors of different classes are far away from each other (similar to PCA), and at the same time 

input vectors of a same class are close to each other. The solution of this problem is obtained by solving the 

general eigensystem for the so-called within-class and between class scatter matrices. Computational 
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aspects of the PCA and FLD algorithm implementation can be found in [12]. The main difference between 

PCA and FLD is that while PCA seeks a projection that best represents data in a least-squares sense (good 

representation), FLD seeks a projection that best separates the data in a least-squares sense (good 

discrimination) [3]. 

The advantage of FLD against PCA is that the information kept in the dimensional reduction is better 

for recognition purposes. However, there are some drawbacks. For example, FLD uses the particular class 

information, so it is recommended to have many images per class in the training process, or at least a good 

characterization of each class. In other words, in PCA the convergence of the R estimator depends mostly 

on the total number of target images, but in FLD the convergence of the scatter matrices estimators depends 

also on the numbers of target images per class. The main drawback of FLD is that it could be over-adjusted 

on the target images, and then the recognition system may have lack of good generalization that may be 

reflected in the resulting system’s recognition rate. 

EP corresponds to an adaptive eigenspace strategy that tries to overcome the drawbacks of PCA and 

FLD. EP searches adaptively for the best set of projection axes in order to maximize a fitness function, 

measuring at the same time the classification accuracy and generalization ability of the system. Because the 

dimension of the solution-space of this problem is too large, it is solved using a specific kind of Genetic 

Algorithm called Evolutionary Pursuit (EP) [5]. EP requires an initial set of axes, which are obtained using 

PCA. 

 

2.1.2. Similarity Matching Methods 

 

The main objective of a similarity measure is to define a value that allows the comparison of feature 

vectors (reduced vectors in eigenspace frameworks). With this measure the identification of a new feature 

vector will be possible by searching the most similar vector into the database. This is the well-known 

nearest-neighbor method. One way to define similarity is to use a measure of distance, d(x,y), in which the 
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similarity between vectors, S(x,y), is inverse to the distance measure. Another form is to use a correlation 

measure between vectors. In this work we have used two well-known distance measures, Euclidean- and 

Mahalanobis-distance, two correlation-like measures, Cosine-distance and SOM-Clustering, and one fuzzy 

measure, FFC [16]. 

It can be proved that in the PCA space the Mahalanobis distance is equivalent to the Euclidean distance, 

weighting each component by the inverse of the correspondent eigenvalue (see demonstration in [11]), and 

it is often called Whitening (PCA) Transformation. The same transformation can be applied to other 

similarity measures. Taking into account this property we finally used 8 similarity measures in our 

comparative study: Euclidean, Whitening Euclidean (same as Mahalanobis), Cosine, and Whitening Cosine 

distances, SOM and Whitening SOM Clustering, FFC and Whitening FFC. 

Given that the EP projection algorithm already includes a Whitening stage, in this case only four 

similarity measures (Euclidean, Cosine, SOM Clustering and FFC) were employed. 

 

2.2. Differential Eigenspace Face Recognition 

 

As mentioned, differential eigenspace-methods work with differences between vectors, rather than with 

vectors. In the pre-differential case the vectors to be subtracted correspond to the face images, while in the 

post-differential case they correspond to reduced face vectors. 

 

2.2.1. Pre-differential Eigenspace Methods 

 

Fig. 2 shows the block diagram of a generic, pre-differential eigenspace-based face recognition system. 

In the off-line phase the projection matrix is computed and in the database the whole face images are stored 

(NT images). Previously, these face images are centered and scaled so that they are correctly aligned. The 

recognition process works as follows. The input face image is preprocessed and subtracted from each 
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database image. The result of each subtraction is called “differential image” ∆  in RN . The “differential 

image” is the key for identification because it contains information of whether the two subtracted images 

are from the same class or from different classes. In this way the original problem of NC-class becomes a 

two-class problem. The so-called differential images (NT images) are projected into a reduced space using 

a certain projection method. Thus, each image is transformed into a reduced differential vector δ in Rm . 

Thereafter the classification of the reduced differential vectors is performed using any statistical classifier. 

The result of each classification (Si) is negative if the subtracted images (each δ) belong to different classes 

and positive otherwise. In order to determine the class of the input face image, the reduced vector with 

maximum positive classification value is chosen, and the class of its corresponding database image is given 

as the result of identification. The rejection system acts just when the maximum classification value is 

negative, i.e. it corresponds to the subtraction of different classes.  

 

 
 

Fig. 2. Block diagram of a generic, pre-differential eigenspace face recognition system. 

 

Dual-PCA and Single-PCA projections have been used as projection methods. Dual-PCA projections 

employ two projection matrices: WI ∈ RN ×mI  for intra-classes Ω I (subtractions within equal classes), and 

WE ∈ RN ×m E  for extra-classes Ω  (subtractions between different classes), while Single-PCA projections 

employ a single projection matrix 

E

W ∈ RN ×m (like normal PCA). In this work we used Dual-PCA 
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projections together with a Bayesian classifier [3] and Single-PCA projections together with a SVM 

classifier [2]. 

 

2.2.2. Post-differential Eigenspace Methods 

 

Fig. 3 shows the block diagram of a generic, post-differential eigenspace-based face recognition 

system. In this approach only the reduced face images (NT vectors) are stored in the database. In the 

recognition process an input face image is preprocessed and then projected into a reduced space using a 

certain projection method. Thereafter, the new reduced face image is subtracted from each database 

reduced face image. The result of each subtraction is called “post-differential image” δ in Rm. This vector 

contains information of whether the two subtracted vectors are from the same class or from different 

classes (intra-classes or extra-classes), and then it works in the same way as a “differential image” 

projected on the reduced space. The classification module performs the classification of the differential 

vectors using any statistical classifier. The class of the reduced database vector that has the maximum 

positive classification value gives the class of the input face image. If the projection module does not 

significantly change the topology of the differential-image space, then the pre-differential and post-

differential approaches should have very similar recognition rates. The rejection system acts just when the 

maximum classification value is negative, i.e. it corresponds to the subtraction of different classes.  

 

 
 

Fig. 3. Block diagram of a generic, post-differential eigenspace face recognition system. 
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In this work two different systems were implemented following this approach. The first one uses 

Single-PCA projections together with a Bayesian classifier, while the second employs Single-PCA 

projections together with a SVM classifier. 

 

 

2.3.Kernel Eigenspace Face Recognition 

 

Kernel-eigenspace algorithms correspond to non-linear generalizations of linear eigenspace algorithms. 

This generalization is carried out using kernels and it works as follows. If the algorithm to be generalized 

uses the training vectors only in the form of Euclidean dot-products, then it can be “kernelized”, and all the 

dot-products like xTy are replaced by a so-called kernel function K(x,y). If K(x,y) fulfills the Mercer’s 

condition, i.e. the operator K is semi-positive definite, then the kernel can be expanded into a series 

K(x, y) = i φ i(x)φ i(y)∑  [10]. In this way the kernel represents the Euclidean dot-product on a different space, 

called feature space F, on which the original vectors are mapped using the eigenfunctions φ: ℜN→F. 

Depending on the kernel function used, the feature space F can be even of infinite dimension, as it is in the 

case of Radial Basis Function (RBF) kernel, but the algorithm never works directly in such space. 

Kernel-eigenspace face recognition systems employ a kernel-eigenspace algorithm like KPCA or KFD 

for projecting the input face images. They work in the same way as standard-eigenspace methods, but using 

a non-linear projection, which is implemented in two steps. Fig. 4 shows the block diagram of a generic, 

kernel-based face recognition system.  
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Fig. 4. Block diagram of a generic, kernel-based face recognition system. 

 

Under the kernel approach the projection of the input face images should be carried out in two steps: 

kernel projection and kernel machine projection [9]. In the kernel projection step, each preprocessed input 

face image  (mapped onto the feature space x ∈ℜN φ(x) ∈ F ) is projected on the NT support images 

(mapped in the same feature space), using the kernel function K :ℜN × ℜN →ℜNT  (see computational details 

in [9]). For doing that, the NT face images need to be stored in the face database. This is due to the fact that 

kernel machines need all the image vectors in order to reproduce the eigenvectors in the feature space F 

[10]. In the kernel machine projection step, the parameters of the given kernel machine AT∈MNT×m (see 

computational details in [9]) are applied to the kernel projection vector k∈ℜNT, in order to obtain the 

feature vector q∈ℜm. After projection, the similarity of the feature vector q with the reduced vectors pk, 

pk∈ℜm, is computed using a certain criterion of similarity. The class of the most similar vector is the result 

of the recognition process, i.e. the identity of the face. In addition, a Rejection System for unknown faces is 

used if the similarity matching measure is not good enough. 

In the off-line phase the matrices K() and AT are computed, and using these matrices the reduced 

vectors pk are calculated by projecting the face images. The main drawback of this approach is that all NT 

face images and all NT reduced vectors should be stored in the database. 
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In this work we have used KPCA and KFD as projection algorithms. As similarity measures we used 

the same 10 similarity measures used for the standard eigenspace approaches (see section 2.1.2). 

 

 

3. Comparative Study 

 

The comparative study presented in this section considers theoretical aspects as well as simulations 

performed using the Yale Face Database, a database with few classes and several images per class, and 

FERET, a database with many classes and few images per class. It is important to use both kinds of 

databases, because some properties of the methods, as for example their generalization ability, change 

depending on the number of classes under consideration. Pre-processing aspects in all the approaches are 

kept unchanged. 

 

3.1. Pre-processing 

 

The preprocessing stage used in this work includes the following sequential operations: 

- Face alignment by centering the eyes in the same relative positions. 

- Window resizing by scaling input face images using fixed proportions to obtain face images of 

100×200 pixels. 

- Image Masking by cutting the image corners to avoid processing border pixels not corresponding to 

the image face. 

- Illumination gradient compensation by subtracting a best-fit brightness plane to each image. This 

method allows to compensate heavy shadows caused by extreme lighting angles. 

- Histogram equalization by spreading the energy of all intensity pixel values in the image. 

- Normalization to make all input image vectors of the same energy. 
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3.2 Simulations using the Yale Face Image Database 

 

The first simulations were carried out using the Yale University - Face Image Database [20]. We 

employed 150 images of 15 different classes (10 images per class). In table 1 we show the results of several 

simulations for the standard eigenspace approaches. For each simulation we used a fixed number of 

training images, using the same type of images per class, according with the Yale database specification. In 

order to obtain representative results we take the average of 20 different sets of images for each fixed 

number of training images. All the images not used for training were used for testing. In tables 2 and 3 we 

show the results of several simulations using pre-differential and post-differential approaches. We used 

equal a priori probabilities for the Bayes-based methods, P(ΩI)= P(ΩE ), and a penalty for non-separable 

cases, , in the SVM classification method (see details in [15]). In table 4 we show the results of 

several simulations for the kernel approaches. The selected kernel function was a RBF with σ=0.5. In KFD 

the regularization parameter was µ=0.05 (see details in [10]). In tables 1-4 the best results obtained in each 

experiment, for each approach (standard, pre- and post-differential and kernel), are indicated in bold. 

C = 0.01

 

3.3 Simulations using FERET 

 

In order to test the described approaches using a large database, we made simulations using the FERET 

database [14]. We used a target set with 762 images of 254 different classes (3 images per class), and a 

query set of 254 images (1 image per class). Using these sets we carried out two different simulations. In 

the first simulation (tables 5-8), we split the target and query sets in two disjoint sets, and we performed the 

experiments considering 127 classes. In the second simulation (tables 9-12), we employed the full target 

and query sets, and we carried out the experiments considering the 254 classes. In tables 5 and 9 we show 

the results of simulations for the standard approach. In these tables the SOM-based clustering was not 
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included since in these tests the number of classes (127 or 254) is much larger than the number of images 

per class (3), and the SOM training process (self-organization) is very difficult. In tables 6, 7, 10 and 11 we 

show the results of simulations using pre-differential and post-differential approaches. The same 

parameters as before were used for the Bayesian and SVM classifiers (see 3.2). In tables 8 and 12 we show 

the results of simulations for the kernel approaches. The selected kernel function was a RBF with σ=0.5. In 

KFD the regularization parameter was µ=0.05 (see details in [10]). In tables 5-12 the best results obtained 

in each experiment, for each approach (standard, pre- and post-differential and kernel), are indicated in 

bold. 
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Tables 1, 2, 3 and 4. Mean recognition rates using the Yale database (15 classes) and different numbers of training images per 

class, and taking the average of 20 different training sets. The small numbers are standard deviations. All results consider the top 

1 match. Whitening is equivalent to use a Mahalanobis distance in a projection space [9]. The EP projection algorithm already 

includes a Whitening stage. 

 

Table 1. Standard Eigenspace. 

 

projection images whitening whitening whitening whitening

method per class Euclidean cos() SOM FFC

95,7 95,8 94,2 81,8 83,3 89,3 88,8 81,8
2,7 2,7 2,8 5,4 5,9 4,1 3,8 5,4

94,6 95,2 93,5 85,9 97,2 97,0 96,7 90,8
2,1 2,5 2,4 5,2 2,2 2,5 3,5 5,5

89,8 94,3 92,7 85,2 - - - -
4,1 4,0 4,2 3,8

94,0 94,1 92,5 76,8 82,2 87,7 87,3 76,8
2,5 2,5 3,1 10,4 7,2 5,6 5,8 10,4

94,0 94,3 92,8 87,3 95,0 94,2 93,7 87,7
3,2 2,6 2,8 5,8 3,9 4,7 4,5 6,1

93,7 93,9 92,1 88,2 - - - -
3,2 2,6 3,3 3,6

93,4 93,4 91,6 78,7 85,4 88,0 79,2 78,7
1,9 2,1 2,3 5,5 4,0 4,0 5,3 5,5

92,9 93,5 93,8 84,7 94,4 92,9 93,1 85,1
2,4 2,4 2,5 3,8 2,1 3,9 4,2 5,7

92,3 92,9 91,8 85,3 - - - -
2,6 2,5 2,6

91,9 92,4 88,5 78,6 84,2 86,0 84,0 78,6
2,5 2,2 2,7 6,8 4,0 4,5 5,6 6,8

89,8 90,9 85,7 81,6 93,0 92,0 92,1 83,9
4,5 4,4 4,6 5,5 2,2 2,8 2,8 5,0

84,2 91,2 88,5 82,1 - - - -
3,5 4,4 4,4 5,1

88,9 88,9 79,1 75,5 83,4 85,1 75,2 75,5
5,0 5,0 6,1 6,9 6,3 4,0 6,6 6,9

88,5 88,1 77,2 79,6 89,9 88,1 86,6 77,2
3,4 4,2 4,2 6,1 4,1 2,8 3,4 7,2

77,9 88,4 78,5 78,4 - - - -
4,8 5,1 3,9 5,3

cos() SOM FFC

PCA

6

49

FLD 14

EP 21

axes Euclidean

PCA

5

42

FLD 14

EP 16

PCA

4

35

FLD 14

EP 14

PCA

3

28

FLD 14

EP 14

PCA

2

21

FLD 14

EP 14
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Table 2. Pre-differential Eigenspace.  

(i)/(e) indicates intra/extra-classes. 

Table 3. Post-differential Eigenspace. 

97,5 96,8
3,6 3,4

95,5 94,6
3,7 4,1

93,2 92,1
3,0 3,4

90,4 91,8
3,2 4,4

89,5 90,3
3,7 4,6

images per
class

axes
Single-PCA

+SVMSingle-PCADual-PCA

6 168 (i) / 182 (e) 334

5 115 (i) / 126 (e) 153

4 85 (i) / 84 (e) 121

3 39 (i) / 41 (e) 74

2 12 (i) / 14 (e) 23

Dual-PCA
+Bayesian

images per
class

95,6 97,4
4,3 3,6

92,1 93,8
5,3 4,5

92,3 92,6
4,2 3,0

87,9 91,5
3,7 3,8

86,7 88,9
4,8 5,1

axes

6 342

5 151

4 115

3 81

2 22

Dual-PCA
+Bayesian

Single-PCA
+SVM

 

 

Table 4. Kernel Eigenspace. 

 

projection images whitening whitening whitening whitening
method per class Euclidean cos() SOM FFC

96,1 96,1 95,1 82,7 92,6 90,7 88,3 82,7
2,7 2,7 2,6 8,9 4,6 5,9 6,3 8,9

96,9 96,8 95,1 92,4 96,3 93,9 94,5 89,8
2,2 1,9 1,9 4,2 2,6 3,6 4,2 6,0

94,5 94,5 92,3 82,9 88,9 87,7 87,9 82,9
2,5 2,5 2,6 9,9 7,5 7,6 9,2 9,9

94,9 95,4 91,4 89,4 94,5 92,3 91,8 87,6
4,1 2,8 2,9 5,2 4,1 5,4 5,6 6,1

93,7 93,7 90,6 84,6 89,9 88,1 83,4 84,6
1,9 1,9 2,2 6,2 4,9 4,6 5,8 6,2

94,1 95,7 91,5 89,1 92,9 91,5 91,5 84,3
3,4 2,4 3,4 4,3 2,6 3,7 4,1 4,9

92,5 92,5 90,5 82,6 90,3 88,1 83,8 82,6
1,9 1,9 2,5 5,5 3,3 3,6 5,4 5,5

92,7 94,0 90,3 87,1 93,0 91,3 90,2 82,3
2,6 1,8 2,0 5,2 2,4 3,0 3,3 4,8

89,9 89,9 85,2 76,2 90,2 87,7 83,3 76,2
4,3 4,3 4,4 7,8 3,7 3,2 7,5 7,8

90,4 92,3 88,4 82,0 89,1 87,3 84,5 77,5
2,6 3,6 3,6 4,7 4,1 4,1 5,4 5,7

FFC

KPCA
6

89

KFD 14

axes Euclidean cos() SOM

KPCA
5

74

KFD 14

KPCA
4

59

KFD 14

KPCA
3

44

KFD 14

KPCA
2

29

KFD 14
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Tables 5, 6, 7 and 8. Mean recognition rates for standard approaches using FERET, 127 different classes, and taking the average 

of two different training sets. The small numbers are standard deviations. All results consider the top 1 match for recognition. 

Whitening is equivalent to use a Mahalanobis distance in a projection space [9]. The EP projection algorithm already includes a 

Whitening stage. 

 

Table 5. Standard Eigenspace. 

 

projection images whitening whitening whitening

method per class Euclidean cos( ) FFC

95.3 95.7 90.9 81.9 93.3 90.9
2.2 1.7 2.8 4.5 0.6 2.8

95.3 95.3 92.9 86.6 89.0 90.6
3.3 2.2 1.1 12.2 8.9 5.6

94.8 94.8 90.3 - - -
2.4 2.9 0.8

86.8 87.0 84.1 78.0 86.6 84.1
2.5 2.8 3.1 2.2 1.1 3.1

88.2 87.6 86.6 81.9 88.8 87.4
3.9 4.2 3.9 3.3 3.1 2.8

86.9 87.9 85.7 - - -
3.0 3.2 2.1

axes Euclidean cos( ) FFC

PCA

3

192

FLD 126

EP 109

PCA

2

149

FLD 126

EP 107

 

 

Table 6. Pre-differential Eigenspace.  

(i)/(e) indicates intra/extra-classes. 

Table 7. Post-differential Eigenspace. 

 
 

Dual-PCA Single-PCA
 

93.1 95.5
0.9 1.4

86.6 86.7
0.5 1.3

2 95 (i) / 103 (e)

 

2243 122 (i) / 124 (e)

125

Single-PCA+ SVMimages per class
axes

Dual-PCA+ 
Bayesian

93.4 94.3
1.3 0.5

87.6 88.6
2.1 1.8

126

2 211

3

Single-PCA + 
SVM

Dual-PCA + 
Bayesianimages per class axes

 

 

Table 8. Kernel Eigenspace. 

projection images whitening whitening whitening
method per class Euclidean cos( ) FFC

95.7 95.7 91.7 90.6 95.7 91.7
1.7 1.7 1.7 5.6 0.6 1.7

96.5 96.5 94.9 89.8 83.9 86.6
1.7 1.7 2.8 3.3 3.9 1.1

88.0 88.0 86.4 90.0 90.2 86.4
3.1 3.1 1.9 3.6 3.9 1.9

89.4 89.0 89.6 86.0 80.5 83.3
2.8 3.3 1.4 0.8 1.4 0.3

KPCA
2

253

KFD 126

KPCA
3

380

KFD 126

axes Euclidean cos( ) FFC
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Tables 9, 10, 11 and 12. Mean recognition rates for standard approaches using FERET and 254 different classes. All results 

consider the top 1 match for recognition. Whitening is equivalent to use a Mahalanobis distance in a projection space [9]. The EP 

projection algorithm already includes a Whitening stage. 

 

Table 9. Standard Eigenspace. 

 

projection images whitening whitening whitening

method per class Euclidean cos() FFC

94,1 94,1 87,4 77,6 92,5 87,4

92,5 92,1 91,7 79,9 92,9 90,9

92,3 91,8 91,5 - - -

86,4 86,8 81,5 73,2 85,6 81,5

85,2 85,0 82,9 73,4 79,9 83,1

85,7 86,3 83,7 - - -

cos() FFC

PCA

3

316

FLD 253

EP 218

axes Euclidean

PCA

2

252

FLD 253

EP 194
 

 

Table 10. Pre-differential Eigenspace.  

(i)/(e) indicates intra/extra-classes. 

Table 11. Post-differential Eigenspace. 

images per
class

axes

3 148 (i) / 156 (e) 247 94,2 94,8

88,72 106 (i) / 128 (e) 192 89,0

Single-PCA
+SVM

Dual-PCA
+BayesianDual-PCA Single-PCA

images

per cla ss

199 87,3 88,5

3 253 92,1 95,2

axes

2

Dual-PCA
+Bayesian

Single-PCA
+SVM

 
 

 

Table 12. Kernel Eigenspace. 

 

projection images whitening whitening whitening
method per class Euclidean cos() FFC

94,5 94,5 85,4 79,5 95,3 85,4

95,3 94,5 95,7 82,7 75,2 60,2

86,6 86,6 83,3 89,6 89,4 83,3

87,8 87,8 88,6 77,2 71,9 62,0

FFC

KPCA
3

761

KFD 253

axes Euclidean cos()

KPCA
2

507

KFD 253
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3.4 Analysis of Results  

 

By analyzing the Yale-database simulations (tables 1 - 4), the following can be concluded: 

- When using the standard approach (table 1), the best results are obtained with the FLD-Whitening-

Euclidean combination. Using other FLD combinations very similar results are obtained (consider 

the standard deviation information). These results confirm the better theoretical discrimination 

ability of FLD over PCA, and the results reported when Fisherfaces was proposed for the first time 

[1]. It should be remembered that the FLD algorithm obtains projection axes that best separates the 

input data in a least-squares sense (see 2.1.1). Practical problems of FLD, as for example the “small 

sample size” problem [7], produced when the number of target images per class is small, cannot be 

observed in these experiments. 

- Considering the differential approaches (tables 2 and 3), the results obtained using the pre-

differential approach are slightly better than the ones obtained with the post-differential approach. 

When the number of images per classes is low (2 or 3) the results for both approaches are very 

similar (consider the standard deviation information). The Bayesian classifier and SVM give similar 

results in both cases. 

- Regarding the kernel approaches (table 4), KFD gives better results than KPCA using less 

projection axes. As in the case of FLD, the reason seems to be the better theoretical discrimination 

ability of KFD over KPCA. In both cases very similar results are obtained using Euclidian or 

Cosines distances. 

- The Yale database contains few classes (15) and several images per class (2-6), and in general the 

best results obtained with each approach are very similar. Differences are seen only when the 

number of images per classes is low (2 or 3). In this last case, the approaches with better 

generalization ability, that is the kernel ones, obtains better results. By looking at the standard 

deviation information it can also be noted that the kernel approaches have a smaller variability in 
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their results. Regarding the number of projection axes employed, FLD and KFD use less axes (14). 

This number corresponds to the number of classes (15 in this case) – 1 (see demonstration in [3]). 

 

As explained before, two different simulations where performed with the FERET-database, one using 

127 classes and two disjoint training and two disjoint target sets (tables 5 - 8), and another one using 254 

classes and just one training and one target set (tables 9 - 12). By analyzing these simulations, the following 

can be concluded: 

- When using the standard approach and 127 classes (table 5) the results obtained with PCA and FLD 

are very similar (consider the standard deviation information). However, when 254 classes are 

employed (table 9) the best results are obtained with PCA. The reason seems to be the better 

generalization ability of PCA over FLD. As mentioned in 2.1.2, while in PCA the convergence of 

the correlation matrix estimator depends on the total number of samples, in KFD the convergence of 

the scatter matrices estimators depends on the number of target images per class. These results are 

in concordance with the ones obtained in [8], which concludes that PCA might outperform LDA 

when the number of samples per class is small or when the training data non-uniformly sample the 

underlying distribution, which seems to be the case in these experiments. 

- When analyzing the number of axes employed in the standard methods (tables 5 and 9), it can be 

seen that EP employs a lower numbers of axes than PCA and FLD. Considering that the results 

obtained with EP are just slightly lower than the ones obtained with PCA and FLD, EP obtains the 

best compromise between a high recognition rate and a low processing time, which depends on the 

number of axes. 

- In the standard approaches, Euclidian or Cosines distances can be used as similarity measures with 

comparable results. It is worth noticing that in most of the cases the non-whitening distances 

outperform their whitening counterparts.  
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- Considering the differential approaches (tables 6, 7, 10 and 11), the results obtained using the pre- 

and the post-differential approaches are almost identical. In both cases the Bayesian classifier and 

SVM give similar results. When comparing the differential approaches against the standard ones, it 

can be observed that the results are rather similar when 127 classes were considered. However, 

when 254 classes were employed, the differential approaches outperform the standard ones. The 

reason seems to be the better generalization ability of the differential approaches, derived from the 

fact that more data is available for training, because by using differential images or differential 

vectors the recognition task becomes a two-class problem.  

- Regarding the kernel approaches (tables 8 and 12), results obtained with KFD and KPCA are very 

similar. However, KFD gives better results when the number of images per class is 3, and KPCA 

gives better results when the number of images per class is 2. The reason seems to be the better 

generalization ability of KPCA over KFD, which is tested when the identification of either 127 o 

254 classes is solved using just 2 training images per class. By analyzing the number of employed 

axes, it can be seen that KFD employs a much lower numbers of axes than KPCA. In this way KFD 

obtains the best compromise between a high recognition rate and a low processing time.  

- The FERET database contains many classes and few images per class (2-3), for this reason the best 

results are obtained when using the approaches with better generalization capabilities, i.e. the kernel 

ones. Kernel approaches achieve better generalization ability by increasing the dimensionality of the 

input space [10]. Pre- and post-differential approaches obtain also good generalization results. 

However, we believe that further theoretical and practical comparative studies between kernel and 

differential approaches are required. 

 

Other issues that should also be considered: 
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- Post-differential approaches are 2 to 5 times faster than the pre-differential ones. Taking into 

account their similar recognition rates, post-differential approaches are the best differential 

alternative. 

- Kernel-projections are 2 to 3 times slower than linear projections due to the use of the support 

images (all the database images). Another drawback of these methods is that the kernel parameters 

adjustment is very difficult and data dependant.  

- In all approaches the selection of the number of employed axes is a very important issue. Normally, 

the number of selected axes for each algorithm corresponds to the minimal number of axes required 

for obtaining an acceptable recognition rate. In the special case of FLD and KFD the employed 

number of axes is the number of classes – 1 [3]. However, there are some quantitative criteria for 

choosing the right number of axes, as for example the RMSE – Residual Mean Square Error [18] 

for the PCA algorithm and the RFP – Residual Fisher Parameter [12] for the FLD algorithm. In this 

last case choosing the number of axes equal to the number of classes – 1 gives a very small RFP. 

 

 

4. Conclusions 

 

The aim of this paper was to present an independent, comparative study among different eigenspace-

based approaches. The study considered standard, differential and kernel eigenspace methods. In the case 

of the standard ones, three different projection algorithms (PCA, FLD and EP) and eight different similarity 

measures (Euclidean, Whitening Euclidean (Mahalanobis), Cosine, and Whitening Cosine distances, SOM 

and Whitening SOM Clustering, FFC and Whitening FFC) were considered. In the case of the differential 

methods, two approaches were used, the pre-differential and the post-differential. In both cases Bayesian 

and SVM classification were employed. Finally, regarding kernel methods, KPCA and KFD were used 

together with the eight similarity measures employed for the standard approaches. 
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Simulations were performed using the Yale Face Database, a database with few classes and several 

images per class, and FERET, a database with many classes and few images per class. By looking at the 

obtained results it can be concluded: 

- Considering recognition rates, generalization ability as well as processing time, the best results were 

obtained with the post-differential approach, using either a Bayesian Classifier or SVM. 

- In the specific case of the Yale Face Database, where the requirements are not very high, any of the 

compared approaches gives rather similar results. Thanks to their simplicity, Eigenfaces or 

Fisherfaces are probably the best alternatives. 

- Although kernel methods obtain the best recognition rates, they suffer from problems such as low 

processing speed and the difficulty to adjust the kernel parameters. The first drawback could be 

overcome by using a kind of support vectors in the KPCA and KFD algorithms, like the ones used 

in SVM. The problem is that these support vectors do not exist at this time. For sure this is a 

problem to be tackled by kernel-machine researchers in the next few years. 

As future work we would like to extend our study by considering other kernel approaches and 

algorithms, as for example ICA (Independent Component Analysis), Kernel-ICA, and new algorithms as F-

LDA (Fractional-step Linear Discriminant Analysis) [6] and DF-LDA (Direct F-LDA) [7] that improve 

standard FLD. 
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