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Eigenspace-Based Minimum Variance Combined

with Delay Multiply and Sum Beamformer:

Application to Linear-Array Photoacoustic Imaging
Moein Mozaffarzadeh, Member, IEEE, Ali Mahloojifar*, Member, IEEE, Vijitha Periyasamy, Member, IEEE,

Manojit Pramanik, and Mahdi Orooji, Member, IEEE

Abstract—In Photoacoustic imaging (PA), Delay-and-Sum
(DAS) algorithm is the most commonly used beamformer. How-
ever, it leads to a low resolution and high levels of sidelobe.
Delay-Multiply-and-Sum (DMAS) was introduced to provide
lower sidelobes compared to DAS. To improve the resolution
and sidelobes of DMAS, a novel beamformer is introduced
using Eigenspace-Based Minimum Variance (EIBMV) method
combined with DMAS, namely EIBMV-DMAS. It is shown that
expanding the DMAS algebra leads to several terms which can
be interpreted as DAS. Using the EIBMV adaptive beamforming
instead of the existing DAS inside the DMAS algebra expansion
is proposed to improve the image quality. EIBMV-DMAS is
evaluated numerically and experimentally. It is shown that
EIBMV-DMAS outperforms DAS, DMAS and EIBMV in terms
of the resolution and sidelobes. In particular, at the depth of 11
mm of the experimental images, EIBMV-DMAS results in about
113 dB and 50 dB sidelobe reduction, compared to DMAS and
EIBMV, respectively. At the depth of 7 mm for the experimental
images, the quantitative results indicate that EIBMV-DMAS leads
to improvement in Signal-to-Noise Ratio (SNR) of about 75% and
34%, compared to DMAS and EIBMV, respectively.

Index Terms—Photoacoustic imaging, beamforming, Delay-
Multiply-and-Sum, Eigenspace-based minimum variance, linear-
array imaging.

I. INTRODUCTION

P
HOTOACOUSTIC imaging (PAI) is an emerging medical

imaging modality, having merits of the optical imaging

contrast and the Ultrasound (US) imaging spatial resolution

[1]–[3]. In PAI, short electromagnetic pulse is used to induce

US waves, based on thermoelastic effect [4], [5]. PAI has

been used in various field of studies [6]–[8]. In 2002, for the

first time, Photoacoustic Tomography (PAT) was successfully

used as in vivo functional and structural brain imaging

modality in small animals [9]. Recently, low-cost PAT

systems are extensively being investigated [10], [11]. One

of the challenging matters in PAI is image reconstruction.

Imperfect reconstruction algorithms cause the images having

inherent artifacts. Having these artifacts mitigated would

significantly improve the Photoacoustic (PA) image quality.

In PAI, usually a high optical contrast is more important
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than a good spatial resolution, and it has been investigated

in the different publications [1], [3]. However, having a

good spatial resolution along with a high contrast has not

been extensively investigated. So, it is worth to develop an

algorithm which provides these properties. Beamforming

algorithms used in US imaging can be used in linear-array

PAI as a result of high similarity between US and PA detected

signals. Delay-And-Sum (DAS) and Minimum variance (MV)

are two common beamforming methods [12]. DAS is the

most common beamforming method in linear array PAI

due to its simple implementation. However, it is a blind

beamformer, leading to a wide mainlobe and high level of

sidelobes [13], [14]. Matrone et al. proposed a new algorithm

namely Delay-Multiply-and-Sum (DMAS) as a beamforming

technique, used in medical US imaging [15]. Recently, we

introduced a novel beamforming algorithm, outperforming

DMAS in terms of the contrast and sidelobes [13], [16], [17].

In addition, for linear-array PAI, MV was combined with

DMAS to improve the resolution of the DMAS while the

sidelobes are retained [14], [18], [19]. Two modifications of

Coherence Factor (CF) have been introduced for linear-array

PAI in order to have a lower sidelobes and higher resolution,

compared to the conventional CF [20], [21].

In this paper, a novel beamforming algorithm, namely

Eigenspace-Based Minimum Variance-DMAS (EIBMV-

DMAS), is introduced. DMAS algorithm is expanded, and

it is shown for each term of the expansion, there is a DAS

algebra. Since DAS leads to low resolution images, we

proposed to combine EIBMV with the expansion of DMAS

algebra, which necessitates some modifications discussed

in the paper. A preliminary version of this work has been

already reported in [22]. However, in this paper, we present a

more completed description of this approach and evaluate its

performance and the effects of parameters, numerically and

experimentally. It is shown that using EIBMV-DMAS leads

to resolution improvement and sidelobe levels reduction, at

the expense of higher computational burden, in comparison

with DMAS and EIBMV, respectively.

The rest of the paper is organized as follows. In the section

II, the DMAS and EIBMV beamforming algorithms, along

with the proposed method, are presented. Numerical and

experimental results are presented in the section III and IV,

respectively. The advantages and disadvantages of proposed

method are discussed in the section V, and finally, conclusion

is presented in the section VI.
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II. METHODS AND MATERIALS

A. Beamforming

Beamforming algorithms such as DAS can be utilized to

reconstruct the image from the PA signals, detected by a linear

array of US transducer. DAS formula is as follows:

yD AS (k) =
M∑

i=1

xi (k −∆i ), (1)

where yD AS (k) is the output of the beamformer, M is the

number of elements of array, k is the time index, and xi (k) and

∆i are the detected signals and the corresponding time delay

for detector i , respectively. DMAS calculates corresponding

sample for each element of the array, the same as DAS, but

before summation, samples are combinatorially coupled and

multiplied. The DMAS formula is given by:

yDM AS (k) =
M−1∑

i=1

M∑

j=i+1

xi (k −∆i )x j (k −∆ j ). (2)

To overcome the dimensionally squared problem of (2), fol-

lowing equations are suggested [15]:

x̂i j (k) = sign[xi (k −∆i )x j (k −∆ j )]
√

|xi (k −∆i )x j (k −∆ j )|.

(3)

yDM AS (k) =
M−1∑

i=1

M∑

j=i+1

x̂i j (k). (4)

The procedure of DMAS algorithm can be considered as

a correlation process which uses the auto-correlation of the

aperture. In other words, the output of this beamformer is

the spatial coherence of the PA signals, and it is a non-linear

beamforming algorithm.

B. Eigenspace-Based Minimum Variance

The output of the MV adaptive beamformer is given by:

y(k) =W
H (k)X d (k) =

M∑

i=1

wi (k)xi (k −∆i ), (5)

where X d (k) is time-delayed array detected signals X d (k) =

[x1(k), x2(k), ..., xM (k)]T , W (k) = [w1(k), w2(k), ..., wM (k)]T is

the beamformer weights, and (.)T and (.)H represent the

transpose and conjugate transpose, respectively. The detected

array signals can be written as follows:

X (k) = s(k)+ i (k)+n(k) = s(k)a + i (k)+n(k), (6)

where i (k), s(k) and n(k) are the interference, the desired

signal and noise components received by array transducer,

respectively. Parameters s(k) and a are the signal waveform

and the related steering vector, respectively. MV bemaformer

adaptively weighs the calculated samples using the following

equation:

min
W

W
H

R i+nW , s.t . W
H

a = 1, (7)

where R i+n is the M ×M interference-plus-noise covariance

matrix. The solution of (7) is given by [23]:

W opt =
R

−1
i+n

a

aH R
−1
i+n

a
. (8)

In practical application, interference-plus-noise covariance ma-

trix is unavailable. Consequently, the sample covariance matrix

is used instead of unavailable covariance matrix using N

recently received samples and is given by:

R̂ =
1

N

N∑

n=1

X d (n)X d (n)H . (9)

The diagonal loading, spatial averaging and temporal averag-

ing can also be used to improve the quality of the covariance

matrix estimation [12], [24]. The weights for EIBMV algo-

rithm are generated by projecting the optimal weights for MV

algorithm to a signal subspace constructed from the eigenspace

of the estimated covariance matrix. Eigen decomposition of R̂ l

can be written as follows:

R̂ l =UΛ
−1U H , (10)

where Λ = diag[λ1,λ2, ...,λL] in which λ1 ≥ λ2 ≥ ... ≥ λL are

eigenvalues in the descending order, and U = [u1,u2, ...,uL]

in which ui , i = 1,2, ...,L, are the orthonormal eigenvectors

corresponding to λi , i = 1,2, ...,L. L is the length of sub-

array used in spatial averaging. the signal subspace E s is

obtained using the eigenvectors corresponding to the first

largest eigenvalues, as follows:

E s = [u1, ...,uNum], (11)

where Num is the number of eigenvectors. Finally, the

weights for EIBMV can be generated as follows:

W E I B MV = E s E
H
s W opt . (12)

It should be mentioned that the eigenvectors whose related

eigenvalues were larger than σ times the largest one were

used in this paper. The performance evaluation of EIBMV is

presented in [25] extensively. After estimation of covariance

matrix, the output of EIBMV beamformer is given by:

ŷ(k) =
1

M −L+1

M−L+1∑

l=1

W
H
E I B MV (k)X

l
d (k), (13)

where W E I B MV (k) = [w1(k), w2(k), ..., wL(k)]T , and X
l
d

(k) =

[x l
d

(k), x l+1
d

(k), ..., x l+L−1
d

(k)] is the delayed input signal for the

lth subarray [25].

C. Proposed Method

In this paper, it is proposed to combine the EIBMV adaptive

beamformer with expansion of DMAS algorithm to improve

the resolution and levels of sidelobes in DMAS. To illustrate,

consider the expansion of the DMAS algorithm which can be

written as follows:

yDM AS (k) =
M−1∑

i=1

M∑

j=i+1

xi d (k)x j d (k) =

x1d (k)
[

x2d (k)+x3d (k)+x4d (k)+ ...+xMd (k)
]

︸ ︷︷ ︸

first term

+ ...+
[

x(M−1)d (k).xMd (k)
]

︸ ︷︷ ︸

(M-1)th term

.

(14)
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where xi d (k) and x j d (k) are delayed detected signals for

element i and j , respectively, and we hold this notation all over

this section. In (14), in every terms, there exists a summation

procedure which is a type of DAS algorithm. It is proposed

to use EIBMV adaptive beamformer in each term instead

of the DAS. In order to use EIBMV instead of every DAS

in the expansion, we need to carry out some modifications

and prepare the expansion in (14) for the proposed method.

Following section contains the essential modifications.

1) Modified DMAS: The quality of covariance matrix es-

timation in EIBMV is highly affected by the selected length

of subarray. M/2 and 1 are considered as upper and lower

boundary, respectively. In (14), each term can be considered as

a DAS algorithm with different number of elements of array.

Limited number of entries in each term causes problem for

EIBMV algorithm due to the limited length of the subarray.

This problem can be addressed by adding the unavailable

elements in each term in order to acquire large enough number

of available elements and consequently high quality covariance

matrix estimation. The extra terms, needed to address the

problem, are given by:

yextr a(k) =
2∑

i=M−2

1∑

j=i−1

xi d (k)x j d (k)+ yextr a∗ (k)

= x(M−2)d (k)
[

x(M−3)d (k)+ ...+x2d (k)]+x1d (k)
]

+ ...

+x3d (k).
[

x2d (k)+x1d (k)
]

+x2d (k)x1d (k)+ yextr a∗ (k),

(15)

where yextr a∗ (k) = xMd (k)
[

x(M−1)d (k)+ ...+ x2d (k)+ x1d (k)
]

.

(15) is used to make the terms in (14) ready to adopt an

EIBMV algorithm. By adding (14) and (15), a modified ver-

sion of DMAS algorithm namely modified DMAS (MDMAS)

is obtained as follows:

yMDM AS (k) = yDM AS (k)+ yextr a(k)

=

M∑

i=1

M∑

j=1, j 6=i

xi d (k)x j d (k) =

= x1d (k)
[

x2d (k)+x3d (k)+ ...+x(M−1)d (k)+xMd (k)
]

︸ ︷︷ ︸

first term

+ ...+xMd (k)
[

x1d (k)+x2d (k)+ ...+x(M−2)d (k)+x(M−1)d (k)
]

︸ ︷︷ ︸

Mth term

.

(16)

Since all the cross-products are considered twice in (16),

this equation leads to images the same as DMAS. Now, the

combination of MDMAS algorithm and EIBMV beamformer

is mathematically satisfied. The expansion of MDMAS com-

bined with EIBMV beamformer can be written as follows:

yMDM AS_2(k) =
M∑

i=1

xi d (k)
(

W
H
i ,M−1(k)X i d ,M−1(k)

)

=

M∑

i=1

xi d (k)
([

(
M∑

j=1

w j (k)x j d (k)
]

−wi (k)xi d (k)
)

=

M∑

i=1

xi d (k)
( M∑

j=1

w j (k)x j d (k)
)

︸ ︷︷ ︸

E I B MV

−

M∑

i=1

xi d (k)
(

wi (k)xi d (k)
)

,

(17)

where, in W i ,M−1 and X i d ,M−1, the ith element of the array

is ignored in calculation and as a result, the length of these

vectors becomes M − 1 instead of M . Considering (17), the

expansion can be written based on a summation which is

considered as a DAS algebra. To illustrate, consider following

expansion:

yMDM AS_3(k) =
M∑

i=1

[

xi d (k)
( M∑

j=1

w j (k)x j d (k)
)

︸ ︷︷ ︸

E I B MV

−wi (k)x2
i d (k)

︸ ︷︷ ︸

ith ter m

]

.

(18)

It is proved that DAS leads to low quality images and high

levels of sidelobe and obviously in (18), expansion leads to

a summation and this summation can be considered as a

DAS. As the final step of EIBMV-DMAS development, it

is proposed to use another EIBMV instead of DAS (having

EIBMV instead of outer summation in (18)) in order to reduce

the contribution of off-axis signals and noise of imaging

system. EIBMV-DMAS formula can be written as follows:

yE I B MV −DM AS (k) =

M∑

i=1

wi ,new

(

xi d (k)
( M∑

j=1

w j (k)x j d (k)
)

−wi (k)x2
i d (k)

︸ ︷︷ ︸

ith ter m

)

, (19)

where wi ,new is the calculated weight for each term in (19)

using (12) while the steering vector is a vector of ones. In the

section III, it is shown that EIBMV-DMAS beamformer results

in resolution improvement and sidelobes level reduction.

III. NUMERICAL RESULTS AND PERFORMANCE

ASSESSMENT

In this section, numerical results are presented to illustrate

the performance of the proposed algorithm in comparison with

DAS, DMAS and EIBMV.

A. Simulated Point Target

1) Simulation Setup: The K-wave Matlab toolbox was used

to simulate the numerical study [26]. Ten 0.1 mm radius

spherical absorbers as initial pressure were positioned along

the vertical axis every 5 mm beginning 25 mm from trans-

ducer surface. Imaging region was 20 mm in lateral axis and

50 mm in vertical axis. Linear array having M=128 elements

operating at 4 M H z central frequency and 77% fractional

bandwidth was used to detect the PA signals generated from

defined initial pressures. Speed of sound was assumed to be

1540 m/s during simulations. Sampling frequency was 50

M H z, subarray length L=M /2, K =5 and ∆ = 1/10L for all

simulations. Also, a band-pass filter was applied by a Tukey

window (α=0.5) to the beamformed signal spectra, covering

6-15 M H z, to pass the necessary information, generated

after these non-linear operations, while keeping the one

centered on 2 f0 almost unaltered. At the end, the obtained

lines are normalized and log-compressed to form the PA

images. The temporal averaging for covariance matrix

estimation is performed over 2K + 1 [12].
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Fig. 1: Reconstructed PA images using (a) DAS, (b) DMAS, (c) EIBMV (L = M/2, K = 5, σ= 0.7), (d) EIBMV-DMAS (L =

M/2, K = 5, σ= 0.7). All images are shown with a dynamic range of 60 dB . Received signals have an SNR = 50 dB .
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Fig. 2: Lateral variation of DAS, DMAS, EIBMV and EIBMV-DMAS at the depths of (a) 35 mm and (b) 45 mm.
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Fig. 3: Reconstructed PA images using (a) DAS, (b) DMAS, (c) EIBMV (L = M/2, K = 5, σ= 0.7), (d) EIBMV-DMAS (L =

M/2, K = 5, σ= 0.7). All images are shown with a dynamic range of 60 dB . Received signals have a SNR = 15 dB .

2) Qualitative Evaluation: Fig. 1 shows the output of DAS,

DMAS, EIBMV and EIBMV-DMAS beamformers. As can be

seen, DAS leads to a low quality image having high levels

of sidelobes and low resolution. DMAS reduces the levels

of sidelobes and improves the image quality. However, the

resolution of the reconstructed image using DMAS is well

improved compared to DAS. EIBMV improves the resolution,

but the levels of sidelobes suffer the image, as can be seen

in Fig. 1(c). The reconstructed image using EIBMV-DMAS

is shown in Fig. 1(d), and it can be seen that the levels

of sidelobes in EIBMV is reduced. To assess the different

beamforming algorithms in details, lateral variations of the

formed images are shown in Fig. 2. Lateral variations at

the depth of 35 mm is shown in Fig. 2(a), and it can be

seen that DAS, DMAS, EIBMV and EIBMV-DMAS result in

about -30 dB , -52 dB , -82 dB and -120 dB sidelobes levels,

respectively. Moreover, width of mainlobe in EIBMV-DMAS

earns the narrowest shape compared to other beamformers, and

the valley of the lateral variations is highly reduced. Proposed

method has been evaluated at the presence of high levels of

noise, and the reconstructed images, along with the lateral

variations are shown in Fig. 3 and Fig. 4, respectively. As

demonstrated, the presence of noise is reduced, the resolution

is improved, and the sidelobes are further degraded using

EIBMV-DMAS, compared to other methods.

3) Quantitative Evaluation: To quantitatively compare

the performance of the beamformers, the full-width-half-

maximum (FWHM) in -6 dB and signal-to-noise ratio (SNR)

are calculated in all imaging depths using point targets in the

reconstructed images, presented in TABLE I. As can be seen,

EIBMV-DMAS results in the narrowest -6 dB width of main-

lobe in all imaging depths compared to other beamformers. In

particular, consider depth of 40 mm where FWHM for DAS,

DMAS, EIBMV and EIBMV-DMAS is about 2.04 mm, 1.43
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TABLE I: SNR (dB) and FWHM (mm) Values at Different Depths Using Targets in Fig. 1.

SNR (dB) -6dB FWHM (mm)

Depth(mm) DAS DMAS EIBMV EIBMV-DMAS DAS DMAS EIBMV EIBMV-DMAS

25 18.89 20.99 25.85 26.68 1.22 0.88 0.24 0.22
30 18.12 20.34 24.55 25.33 1.49 1.06 0.32 0.29
35 17.26 19.43 23.34 24.46 1.78 1.27 0.45 0.36
40 16.58 18.74 22.32 23.72 2.04 1.43 0.51 0.43
45 16.05 18.23 21.81 23.04 2.36 1.65 0.59 0.51

mm, 0.53 mm and 0.43 mm, respectively. The SNRs are

calculated using following equation:

SN R = 20log10 Psi g nal /Pnoi se . (20)

where Psi g nal and Pnoi se are difference of maximum and

minimum intensity of a rectangular region including a point

target (white dashed rectangle in Fig. 1(d)), and standard

deviation of the noisy part of the region (red rectangle in Fig.

1(d)), respectively [27]. As can be seen in TABLE I, EIBMV-

DMAS outperforms other beamformers, having higher SNR.

Consider, in particular, depth of 40 mm where SNR for DAS,

DMAS, EIBMV and EIBMV-DMAS is 16.58 dB , 18.74 dB ,

22.32 dB and 23.72 dB , respectively.

IV. EXPERIMENTAL RESULTS

In this section, to evaluate the EIBMV-DMAS algorithm,

the results of the designed experiment are presented.

A. Experimental Setup

The validation of the proposed algorithm was carried out

on four points source target image acquired using clinical

linear array transducer. The Nd:YAG pump laser (Continuum,

Surelite Ex, San Jose, California, USA) was used to generate

pulses of 532 nm at a pulse repetition frequency of 10 H z

for excitation [28], [29]. The circular beam was of diameter

5 cm (area of 19.63 cm2). Hence the fluence was 10

m J/cm2 which is within the permissible limits of American

Nationals Standards institute of 20 m J/cm2. The laser

beam is diverged to illuminate the points source. Pencil leads

(diameter 0.5 mm and length 75 mm) were used as point

target glued to a glass plate such that neither the optical fluence

nor the acoustic signal from one of them mask the any other

point source. The target was immersed in water for acoustic

coupling. Generated PA signal was acquired using dual-mode

clinical ultrasound system (E-CUBE 12R, Alpinion, South

Korea) and 128 element linear array transducer L3-12, which

had an active area of 3.85 cm × 1 cm and its central frequency

is 8.5 M H z with 95% fractional bandwidth [30], [31]. The

ultrasound system has a 64 channel parallel data acquisition.

The data acquisition was triggered by the trigger from the

laser. Therefore, a PA image was formed after two laser pulses.

In addition, PA images were acquired at a frequency of 5 H z.

Axial resolution of the system was 0.2 mm, and the lateral

resolution was 0.3 mm [28]. Acquired radio frequency data

were saved in the local machine and used later for testing the

reconstruction algorithm.
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Fig. 4: Lateral variation of DAS, DMAS, EIBMV and EIBMV-

DMAS at the depths of 45 mm.

B. Qualitative and Quantitative Evaluation

The reconstructed images are shown in Fig. 5, along with a

zoomed version in Fig. 6. We used a dynamic range of 80

dB for the experimental images to show the superiority

of the proposed method better. As can be seen in the

reconstructed image using DAS, shown in Fig. 5(a), high level

of noise and sidelobes reduce the quality of the PA image.

The sidelobe levels can be clearly seen around the targets.

The DMAS reduces the effects of noise and sidelobes, but the

resolution in not good enough and the presence of sidelobes

are still degrading the image quality. EIBMV results in a high

resolution image and the targets are quite detectable. EIBMV-

DMAS further reduces the sidelobes and presence of noise in

the reconstructed PA image, in comparison with EIBMV. To

compare the performance of the beamformers in details while

the experimental data are used, the lateral variations at two

depths of imaging are shown in Fig. 7. As demonstrated, at

both depths, the sidelobes of the proposed method are lower

than other methods. Consider, for example, the depth of 11

mm where DAS, DMAS, EIBMV and EIBMV-DMAS result

in -35 dB , -47 dB , -110 dB and -160 dB level of sidelobes,

respectively. As a result, EIBMV-DMAS reduces the levels of

sidelobes for about 113 dB and 50 dB compared to DMAS

and EIBMV, respectively. To compare the experimental results

quantitatively, SNR metrics has been utilized. The results at

two different depths are presented in TABLE II. As can be

seen, the SNR for EIBMV-DMAS method is higher than other

beamformers.

TABLE II: SNR (dB) Values at Different Depths for the

Experimental PA Images.

Depth(mm) DAS DMAS EIBMV EIBMV-DMAS

7 32.98 36.36 47.56 63.11
11 32.77 40.95 76.61 105.62
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Fig. 5: Experimental reconstructed PA images. (a) DAS, (b) DMAS, (c) EIBMV (L=M/3, K=0, σ= 0.8), (d) EIBMV-DMAS

(L=M/3, K=0, σ= 0.8). All images are shown with a dynamic range of 80 dB .

Fig. 6: The zoomed version of the PA images shown in Fig. 5 using the target located at the depth of 11 mm.

Fig. 7: Lateral variations of DAS, DMAS, EIBMV and EIBMV-DMAS using the images shown in Fig. 5 at the depths of (a)

7 mm and (b) 11 mm.

V. DISCUSSION

The main enhancement obtained by the proposed algorithm

is the lower level of sidelobe and higher resolution compared

to DMAS and EIBMV. The low quality images, high effects

of off-axis signals and high levels of sidelobes, obtained with

DAS, are mainly due to the blindness of DAS. On the other

hand, DMAS beamformer is a non-linear algorithm and leads

to high levels of off-axis signals rejection due to its correlation

process. In DMAS beamformer, linear combination of the

received signals are used to weigh the samples related to each

elements of array. The resolution improvement by DMAS and

the presence of noise in the reconstructed image are degrading

the quality of image. In EIBMV beamformer, an adaptive

procedure is used, and samples are weighted adaptively to

obtain a significant resolution improvement and low levels of

sidelobe. However, the presence of noise is not degraded well

enough in the reconstructed images using EIBMV method,

seen in Fig. 3(c), Fig. 5(c). It should be noted that the

frequency dependent attenuation of acoustic waves and

optical attenuation of light should make the SNR lower

in higher depths, as can be seen in TABLE I. However,

the areas considered for Psi g nal and Pnoi se directly affect

the SNRs. Thus, regarding the way that we have used to

calculate the SNRs, it is not possible to compare the SNRs

at different depths. Since the same area are used for all

the beamformers, we can have a fair comparison between

the methods at each depth.

MV-based methods can be an appropriate choice when it

comes to resolution. EIBMV is an algorithm which uses the

eigenspace of the estimated covariance matrix to maintain

the resolution of the MV algorithm and reduce the levels of

sidelobes significantly compared to MV. However, the results

show that the presence of noise still degrades the quality

of the reconstructed PA images using EIBMV. There are

multiple terms each of them can be interpreted as a DAS

with different lengths of array in the expansion of DMAS

algebra, leading to the low resolution of DMAS algorithm.

It was proposed to used EIBMV instead of the terms in the

mathematical expansion of DMAS in order to improve the

resolution and levels of sidelobes of the DMAS . However,

as shown in (14), the number of contributing samples in each

term of the expansion is different. The length of the subarray

in the spatial smoothing highly effects the performance of

the EIBMV algorithm, and in (14) there are some terms

representing a low length of array and subarray. To address

this problem, necessary terms are added to each term, and
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then EIBMV algorithm is applied on it. EIBMV instead of

a summation, interpreted as a DAS, has been used in the

introduced algorithm twice to suppress the noise and sidelobes

levels of EIBMV. Since the correlation procedure of DMAS

contributes in the introduced method, the sidelobes and noise

levels of EIBMV are reduced. It should be noted that the

proposed method in this paper would outperform DS-

DMAS (presented in [16]). This is mainly due to the

fact that EIBMV-DMAS uses the eigen-decomposition of

covariance matrix, resulting in a higher noise suppression.

In addition, weighting methods ( [20], [21]) can be applied

on the proposed beamformer in order to further improve

the PA image. In this paper, the EIBMV-DMAS has been

evaluated numerically and experimentally. It should be noted

that the processing time of the proposed method is higher

than other mentioned beamformers. The correlation process

of DMAS needs more time compared to DAS, and EIBMV

needs more time to adaptively calculate the weights. EIBMV-

DMAS uses two stages of EIBMV algorithm and a correlation

procedure, so it is expected to have a higher processing time in

comparison with EIBMV and DMAS. DAS, DMAS, EIBMV

and the proposed method impose a complexity of O(M),

O(M 2), O(L3) and O(L3), respectively. The levels of sidelobes

improvement and higher SNR obtained by the EIBMV-DMAS

is visible in the reconstructed images. The proposed algorithm

significantly outperforms DMAS and EIBMV in the terms of

resolution and levels of sidelobes, respectively, mainly due to

having the specifications of DMAS and EIBMV at the same

time. The main drawback of the proposed method could be

the higher computational burden in comparison with DMAS

and EIBMV, but reducing the complexity of MV and EIBMV

beamformers are extensively being investigated. Having MV-

based methods with a lower computational burden would

reduce the computational burden of the introduced method in

this paper.

VI. CONCLUSION

Expanding DMAS algebra results in several terms of DAS.

In this paper, we proposed a novel beamforming algorithm

based on the integration of EIBMV and DMAS algorithms,

namely EIBMV-DMAS. The existing summation in the ex-

pansion of DMAS algebra, interpreted as DAS, was used, and

it was proposed to employ the EIBMV beamforming instead

of them. Introduced algorithm was evaluated numerically and

experimentally. It was shown that EIBMV-DMAS beamformer

improves the resolution, and reduces the level of noise and

sidelobes compared to other concerned beamformers, but at

the expense of higher computational burden. Quantitative

comparison of the experimental images (at the depth of 11

mm) indicated that EIBMV-DMAS algorithm significantly

reduces the SNR for about 162% and 38%, compared to

DMAS and EIBMV, respectively.
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