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1 Introduction

Via holographic duality (or ‘AdS/CFT’) black holes are described by thermal states of

a dual quantum field theory. The process of black hole formation and evaporation corre-

sponds to the process of thermalization of certain (unitary) quantum field theories, evolving

from non-equilibrium initial states towards thermal equilibrium. However, many impor-

tant questions pertaining to this attractively simple picture remain mysterious, as expressed

notably in the information loss paradox [1], and its more recent ramifications [2]. An im-

portant aspect of a satisfactory resolution of these puzzles within holography is a precise

understanding of the relation between information loss, unitary evolution and thermaliza-

tion of the boundary theory. Put succinctly the question of how thermal [3, 4] a generic
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high-energy eigenstate looks in a theory with a holographic dual is closely tied to the ques-

tion of how legitimately one may consider the dual geometry of this pure state to be a

black hole. It is therefore important to understand the detailed mechanism of thermaliza-

tion in any given dual field theory model, as well as to extract lessons for the general class

of theories with bulk duals, wherever these are available. As is often the case, the most

promising starting points are the simplest instances which still contain enough structure to

allow one to address the subtleties also present in the higher-dimensional, more complicated

theories of primary concern. For this reason, lower-dimensional holographic models, such

as AdS3/CFT2 (i.e. three-dimensional gravity) [5–8], as well as the even lower-dimensional

case of NAdS2/NCFT2 (‘Near AdS2’, ‘Near CFT2’) [9–12] have once again risen to the fore.

The subject of the present study is a recently proposed many-body quantum mechan-

ical system of interacting fermions [9, 10], closely related to an older one with a control-

lable spin-glass ground state [13], the so-called Sachev-Ye-Kitaev (SYK) model. This is a

quenched disorder quantum system with random all-to-all couplings, which shows emergent

approximate conformal invariance in the infrared as well as an extensive entropy at low tem-

perature [9–11, 14]. Furthermore, it has also been demonstrated [9] that the model exhibits

maximal quantum chaos (in the sense of [15]), diagnosed by a certain Lyapunov exponent

(λL) extracted from thermal four-point correlation functions [9, 11, 14] (see also [16, 17] for

interesting aspects of these correlation functions). In the SYK model then, the question

of thermalization is one about the behavior of a simple1 many-body Hamiltonian under

unitary evolution, i.e. the study of thermalization in closed many-body quantum systems.

Much has been learned about such situations (and we refer the reader to the review [22] for

more details and references). The simplicity of the SYK model means that it is a perfect

candidate for a detailed study of the mechanism of thermalization within the setting of

holographic duality with access to the deeply quantum regime.

It should be kept in mind that owing to the ensemble average implicit in the model,

there are potential subtleties in connecting results in the SYK model to black-hole physics.

To start addressing this issue, [23–25] have shown that certain tensor theories defined

without averaging over an ensemble, give rise to the same large-N limit as the SYK models.

Here we also study the question of thermalization in a given random realization of the

SYK model, for which the previous cautionary remark does not apply. To the extent

that one limits oneself to self-averaging quantities the same then holds for the disorder

averaged model.

In this paper we demonstrate in detail that the SYKmodel satisfies the properties of the

eigenstate thermalization hypothesis and therefore establish this scenario as the appropriate

mechanism for thermalization in this prototypical example of holographic duality. We

expect that other versions of holographic duality also exhibit eigenstate thermalization,

and we offer some further comments in the discussion section. A discussion on ETH and

holography may be found in [26]. We are here studying a version of the SYK model in which

four fermions interact, but one can extend this to a q-fermion interaction [11]. This was

used by [27] in order to analytically study thermalization following a coupling quench. Our

1Simple enough that various experimental approaches have been put forward [18–21].
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study elucidates the thermal structure inherent in pure states more generally, and it would

be enlightening to derive some of our numerical results analytically, perhaps starting at

large q. The free model q = 2 was already shown to satisfy eigenstate thermalization in [28].

1.1 Summary of results

Let us briefly summarize the main results of this paper. First and foremost we establish,

by exactly diagonalizing the complex SYK Hamiltonian for up to 17 sites, that expectation

values of non-extensive — that is those involving a few sites only — operators are to a very

good approximation thermal. In particular their matrix elements take on the expected form

encapsulated in the eigenstate thermalization hypothesis. This has interesting ramifications

for the holographic dual, and we address some of these in the discussion section.

By studying off-diagonal matrix elements of non-extensive operators we establish that

the SYK model behaves like a random-matrix theory (RMT) for a certain range of energies,

but more generally deviates from such RMT behavior. By analogy with the theory of

disordered conductors we refer to the energy scale at which deviations from RMT are

observed as the Thouless energy ET . We find that the Thouless energy is controlled by the

coupling as ET ∼ J2. The more strongly coupled the system, the larger the energy range

for which it exhibits RMT behavior.

Having established that eigenstates behave thermally we compare correlation functions

of non-extensive operators in eigenstates with their corresponding thermal expectation

values. We find that two-point and four-point correlation functions in eigenstates are

qualitatively similar to thermal averages, but do differ in their detailed structure. We

also study correlations in large superpositions of eigenstates which approximate thermal

averages with respect to a canonical density matrix. To the extent that we can extrapolate

these results to large values of N this suggests that individual eigenstates can in some

sense be considered to be dual to the black-hole geometry in the putative dual, although

we make no statement about its interior (see discussion section).

This motivates us to consider measures of scrambling in eigenstates, which we find

to behave in accordance with expectations from combining known results in the canonical

ensemble with our results on eigenstate thermalization. We therefore expect that there is

a large-N eigenstate equivalent of the maximal scrambling exponent satisfied by the SYK

model, as detailed in (2.11) below.

2 Background

In this section we introduce the model to be examined, discuss its properties, and introduce

some pertinent notions of many-body thermalization necessary to follow the remainder of

the work. We begin by preparing the ground for our investigation of eigenstate thermaliza-

tion, followed by a definition of the model along the lines of [9, 10]. Much of the material

in this section is well known, and we refer the reader to the review [22] for further details.

We nevertheless include some background material in an effort to make the paper more

self contained.

– 3 –



J
H
E
P
1
1
(
2
0
1
7
)
1
4
9

The manifestation of thermal behavior, defined as the applicability of equilibrium

thermodynamics to isolated quantum systems at first seems puzzling from a microscopic

perspective: how is a seemingly mixed thermal state reached, starting from a pure initial

quantum state? A common test case is the so-called quench scenario,2 where a system is

prepared in a far-from-equilibrium state and its thermalization is studied as the system

evolves in time. In classical mechanics the emergence of thermal behavior as the end point

of such an evolution is a consequence of dynamical chaos, or more formally of ergodicity:

the delocalization of a general initial state over phase space is understood as a consequence

of dynamical chaos. The end-point is then given as the state of maximal entropy, consistent

with the values of its (few) integrals of motion at the initial time. In quantum systems,

where the dynamics is linear and therefore not chaotic in the classical sense, the detailed

mechanism is different, even though the notion of (quantum) chaos again plays a central

role. A powerful framework for quantum thermalization is given by the eigenstate ther-

malization hypothesis [3, 4, 32] (ETH). In this scenario a quantum system thermalizes as

a consequence of the structure of its eigenstates, rather than chaotic dynamics. In effect

thermal behavior is already apparent at the level of individual eigenstates of the many-body

Hamiltonian.

2.1 Eigenstate thermalization

The Eigenstate Thermalization Hypothesis [3, 4] is an assumption on the properties of the

spectrum of many-body Hamiltonians for systems showing thermal behavior. We start by

stating the ETH ansatz for matrix elements of nonextensive operators3 and then proceed

to a discussion of its motivation and some consequences. For a system satisfying ETH

the matrix elements of local operators (or non-extensive operators, as is the case for us),

evaluated in the eigenbasis of the Hamiltonian take the form

〈m|Ô|n〉 = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn , (2.1)

referred to as the ETH ansatz. Here O(Ē) is a smooth function of the average energy

Ē = Em+En
2 and fO(Ē, ω) is a smooth function of the difference, ω = Em−En, in addition

to Ē. The remainder function Rmn is a Gaussian random variable (real or complex) with

zero mean and unit variance. The most striking feature of this ansatz is that off-diagonal

matrix elements are suppressed by a large number, more precisely the thermodynamic

entropy S(Ē), while diagonal elements are of order one.

The significance of ETH is that it explains thermal behavior of certain operators in

closed quantum systems via properties of stationary states of the Hamiltonian. Thermaliza-

tion for local (or non-extensive) operators occurs in this picture in the sense that long-time

2See [27] for a recent explicit study of quenches in SYK as well as [29]. In the semiclassical regime of

the gravity dual this corresponds to thermalization in AdS2, as studied recently e.g. in [30, 31].
3One often sees ETH stated for local operators. In the present context this is not an appropriate choice

of words, since the model itself is fully nonlocal. What we mean instead are operators that involve only a

finite number of lattice sites that does not scale with N . Clearly local operators in a local theory satisfy

this property.
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averages of observables

O := lim
T→∞

1

T

∫ T

0
〈ψ|O(t)|ψ〉 dt (2.2)

approach the diagonal ensemble

O =

dim(H)
∑

n=1

|cn|2Onn , (2.3)

where the cn are the expansion coefficients of the initial state in terms of energy eigenstates,

|ψ〉 = ∑

n cn|n〉 . The diagonal ensemble in turn becomes equivalent to the microcanonical

ensemble if the matrix elements Onn are continuously varying functions of the average en-

ergy E, as required in (2.1). Thus, by ensemble independence, thermodynamic expectation

values are recovered on average at late time. The picture is thus that dephasing essentially

reduces an initial state to the diagonal ensemble and that the remaining diagonal values

are themselves thermal with fluctuations suppressed by the size of the Hilbert space. In

this way ETH is a satisfactory scenario for the emergence of thermal behavior in closed

quantum systems under unitary evolution. In this work we establish eigenstate thermal-

ization for the complex spinless Fermion version of the SYK model. We now describe the

basics of this system.

2.2 Complex SYK model

The model involves fermionic microscopic degrees of freedom on N sites. The spatial

configuration of these sites is immaterial, due to the non-local nature of the interaction. In

this paper we work with complex spinless fermions subject to the Hamiltonian [10, 33]

H =

N
∑

i,j,k,l

Jij;klc
†
ic

†
jckcl (2.4)

with complex coupling parameters Jij;kl. We define a set of fermion creation and anniliha-

tion operators, satisfying

{ci, c†j} = δij , {ci, cj} = {c†i , c
†
j} = 0 . (2.5)

Antisymmetry of the fermions as well as Hermiticity of the Hamiltonian impose the con-

straints

Jij;kl = −Jji;kl , Jij;kl = −Jij;lk , Jij;kl = J∗
kl;ij . (2.6)

The remaining independent coupling constants in Jij;kl are drawn from a Gaussian distri-

bution with zero mean. The variance

|Jij;kl|2 =
3!J2

N3
(2.7)

sets the average strength of the coupling, which has to scale with the number of sites N

as shown to ensure a well-behaved large-N limit. We will keep this normalization despite

the fact that we always work at strictly finite N . The Hamiltonian, as written above (2.4)

– 5 –
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does not respect particle-hole symmetry. However, the particle-hole violating effects come

from terms where two indices of Jij;kl take the same value and so they are suppressed by

powers of 1/N . One could add a chemical potential that restores particle hole symmetry

at any N , as in [33]. Since both versions connect to the same large-N limit we have chosen

here instead to work with the simpler Hamiltonian (2.4).

2.2.1 Properties

The Hamiltionian (2.4) is a variant of a set of models considered previously in the context

of quantum spin glasses [13], but crucially does not itself have a spin-glass phase. A closely

related model has recently been proposed by Kitaev in terms of Majorana fermions at

N sites [9].

The model is solvable4 at large-N and can be shown to exhibit a number of striking

properties [9, 11, 14], chiefly among them the fact that it exhibits maximal chaos, in the

sense that an appropriately defined (see section 4.3) out of time order four-point function

(OTOC) decays exponentially for times up to the scrambling time,

〈A(t)B(0)A(t)B(0)〉β ∼ 1− αeλLt , (2.8)

where α is a coefficient, e.g. α ∼ βJ/N for the large-N limit of SYK [11]. This defines

a quantum version of a Lyapunov exponent. The average is taken in the thermal state,

as indicated. This Lyapunov exponent takes the maximal [15] value 2π/β in the SYK

model, which is the same as that of a Schwarzschild black hole in Einstein gravity [9, 39].

Here we provide numerical evidence that this Lyapunov exponent can also be extracted by

considering instead energy eigenstates, that is to say correlation functions of the form

〈E|A(t)B(0)A(t)B(0)|E〉 ∼ 1− αeλLt . (2.9)

The value of λL in eigenstates can be meaningfully compared with the thermal value by

appealing to the eigenstate thermalization hypothesis in order to associate a temperature

T = β−1 to the individual eigenstate |E〉. To this end one may either follow [40] and

associate an effective temperature β−1 with energy E via the canonical average

E(β) =
1

Z
Tr

[

e−βHH
]

. (2.10)

Alternatively, for many of our computations, we determine all thermodynamic quantities

in a microcanonical ensemble centered at the average energy E = (En +Em)/2 for ease of

comparison with the ETH ansatz.

Here we study (2.9) using exact diagonalization. It would clearly be interesting to

establish some of our results analytically at large N , or perhaps via the large-D limit

of [41]. Our work can be viewed as motivating the conjecture that λL, defined in terms of

eigenstates as in (2.9) will satisfy

λL = 2π/β(Ē) (2.11)

4So far, expressions have been obtained for the two-point, four-point and six-point functions [10, 13, 14,

34–38].
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when evaluated at large N ≫ 1 and large coupling βJ ≫ 1, where β is defined as the

inverse of the map (2.10) above. Let us now move on to a discussion of the methods and

results of this work.

3 One point functions and eigenstate thermalization

The main analysis technique in this work is numerical diagonalization of the many-body

Hamiltonian. For most applications we numerically diagonalize the Hamiltonian (2.4) for

up to 17 sites.5 This allows us to explicitly calculate the matrix elements of non-extensive

operators made up of creation and annihilation operators involving a small number of sites.

It is easily seen that total fermion number

n̂F =

N
∑

i

c†ici (3.1)

commutes with the Hamiltonian

[H, n̂F] = 0 , (3.2)

allowing us to work in sectors of fixed fermion number nF, denoting the filling fraction

ν = nF
N . This is useful numerically as it allows us to cut down the effective matrix sizes in

the actual diagonalization process. For the most part we will work in the half-filling sector

ν = 1
2 . If the number of sites N is odd, we mean ν = N+1

2N when we refer to ‘half filling’.

3.1 On-diagonal terms are thermal

According to the ETH ansatz (2.1), diagonal matrix elements Onn = 〈n|O|n〉 are smooth

functions of the average energy Ē, while off-diagonal elements are suppressed by the en-

tropic factor e−S/2.

We start by illustrating this exponential suppression in figure 1, where it is easily seen

that only the diagonal entries of the matrix are appreciable. We illustrate this behavior

for N = 10 in figure 1, but have checked it extensively for other accessible values of N

finding excellent agreement with ETH expectations. For N = 10, one can make out the

fluctuating nature of the off-diagonal matrix elements, which we will characterise precisely

in section 3.2 below. Of course so far this is at the level of qualitative observation and we

will turn to a more quantitive analysis of the off-diagonal matrix elements below.

Before we do so, let us analyse the on-diagonal matrix elements, Onn

(

Ē
)

in detail.

The expectation for finite values of N is that the diagonal matrix elements condense more

and more tightly onto a limiting smooth curve O(Ē) which is defined by extrapolation to

the thermodynamic limit N → ∞. This is illustrated in figure 2. As mentioned before, for

a model that involves a disorder average, such as SYK, we should distinguish between what

happens in an individual realization, and what happens in the ensemble. The convergence

towards a limiting curve for a single realization is shown in the top panel of figure 2, while

the convergence due to disorder averaging is shown in the bottom two panels of that same

5We emphasize that this corresponds to a Hilbert space dimension 2N = 217 which is the same as that

of the Majorana SYK model with M = 34 sites, corresponding to a Hilbert space dimension of 2M/2.
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Figure 1. Absolute values of matrix elements |Onm| = |〈n|O|m〉| for the single-site number operator

O = n̂N at half filling ν = 1

2
. Left panel : we show the absolute values of matrix elements against

their energies En/J labelled along horizontal and vertical axes for a single realization at N = 10.

We have checked this behavior for higher values of N , and found excellent agreement with ETH

expectations. Right panel: histogram of the remainders Rmn for 1000 realizations at N = 12.

As we see these are accurately fit by a unit width Gaussian with zero mean confirming the ETH

ansatz (2.1). Again we have verified this for other accessible values of N . Similar results are

obtained for models with short-range interactions in [42].

figure. If a certain property is satisfied in both senses, i.e. for a single realization as well as

in the disorder averaged theory, this property is said to be self-averaging. Here we confirm

that the diagonal part of the ETH ansatz in the SYK model is satisfied both in a single

realization and in the disordered theory. Of course this is only true for sufficiently large

Hilbert space dimension.

We have further verified this property for a number of different non-extensive operators

over a range of filling fractions. We show a representative selection of these results for

the hopping operator for two fixed sites hik = c†ick + c†kci for different values of N in

appendix A.2.

3.2 Off-diagonal terms

Moving on to the off-diagonal terms of the matrix elements we demonstrate that the re-

mainder terms are indeed well described by a Gaussian random distribution with zero mean

and unit variance, in other words

〈m|Ô|n〉 = e−S(Ē)/2fO(Ē, ω)Rmn , n 6= m (3.3)

In figure 1 we show a histogram of Rmn together with a fit to a Gaussian distribution for

the single-site number operator. Since the matrix elements are in general complex, both

real and imaginary part should be Gaussian distributed and we show a histogram for the

imaginary part.

– 8 –
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Figure 2. Diagonal expectation values for the single-site number operator at site N , that is n̂N
at half filling ν = 1

2
. Top panel : we show a single random realization for increasing Hilbert space

dimension corresponding to N = 8, 12, 14. We see that the on-diagonal expectation values of a

single realization approach closer and closer to a smooth curve. Left panel : we show the effect of

averaging of the random couplings at given fixed Hilbert space dimension, N = 14. As expected

the on-diagonal values of the ensemble approach closer and closer to a smooth curve. Right panel :

we show the limiting curves for the model with fixed Hilbert space dimension corresponding to

N = 10, 12, 14, averaged over 1000 realizations.

3.2.1 The function fO(Ē, ω)

However, we can go further and calculate the function fO(Ē, ω) itself. This captures more

detailed physics and allows, for example, to diagnose for what energy ranges the SYK

model behaves like a random matrix ensemble, and for what energy ranges it deviates

from such behavior. In RMT the function fO(Ē, ω) is a constant function of ω at fixed

Ē (see figure 10 in appendix B), while deviations become apparent whenever fO(Ē, ω)

is a non-trivial function of ω. We show the result of this calculation in figure 3, with a

cross-over between RMT and non-RMT behavior at a characteristic energy ET , set by the

coupling strength J . Despite the lack of spatial diffusion in the model we refer to this

energy as the Thouless energy ET . Due to this lack of spatial structure (SYK is effectively

a zero-dimensional model), the Thouless energy cannot be set by a diffusion time, and it

– 9 –
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Figure 3. Off-diagonal values of matrix elements Onm = |〈n|O|m〉| for the single-site number

operator O = n̂N at half filling ν = 1

2
. We show the off-diagonal matrix elements against their

energies En/J . Top panel : N = 14 with raw data in light blue and the running average in dark

blue. The inset shows a histogram of relative error between raw data and running average. We

see that the histogram is peaked around zero. Left panel: the function fO(Ē, ω) (we show the

running average) for varying Hilbert space dimension corresponding to N = 10, 11, 12, 13, 14. The

cross-over from constant to non-constant behavior is identified with the Thouless energy ET . Right

panel: scaling of the Thouless energy with average coupling strength J . A simple fit gives ET ∝ J2.

is thus natural that it be set instead by the coupling strength J (at fixed energy Ē). The

uppermost panel of figure 3 shows a comparison of the raw data with a running average,

which is taken over 100 matrix elements. The resulting smooth curve is then shown in

the left bottom panel for a number of different Hilbert space dimensions, as a function

of eigenenergy difference ω = Em − En. We can discern a regime over which fO(Ē, ω) is

almost constant as a function of ω, indicative of RMT like behavior. At a characteristic

energy scale ET this then gives way to non-constant, i.e. non-RMT behavior. In higher

dimensional local models this energy is often associated with the diffusive Thouless energy,

but, as indicated before, such a physics interpretation appears not to be available in the

zero-dimensional SYK case. We note that this corresponds well with the observations

of [43], who previously presented evidence for ET in the Majorana model. We have shown

– 10 –
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that the scale ET is set by average strength of the random coupling, J , at fixed average

energy Ē, in other words it is controlled by the dimensionless coupling j = J/Ē. It should

be noted that this is the natural pure-state version of the coupling βJ which was used

in previous studies of the SYK model. We have thus shown that for stronger coupling

j ≫ 1 the range of energies ω for which the system behaves chaotically (i.e. like RMT)

is also increased (see right bottom panel of figure 3). This accords well with intuition as

well as previous results in the thermal ensemble indicating chaotic properties to be most

pronounced in the strong-coupling regime. Let us now discuss further chaotic aspects of

the model.

4 Correlation functions and chaotic behavior

In section 3 we established the applicability of the ETH ansatz by studying one point

functions of nonextensive operators in the complex SYK model. We will now study higher-

point correlations in order to elucidate dynamical aspects of the model related to quantum

chaos. We will explore how correlation functions in pure states can approximate those

in thermal states, relying both on numerics and analytics based on the ETH form on

eigenstates. Many of these measures have already been studied in the thermal ensemble,6

whereas our focus here is on studying them in pure states. From the holographic dual

point of view we are thus investigating the question of how well the correlation functions

computed in a black-hole background are approximated by correlations in pure states, in

particular in individual eigenstates.

Again, it is interesting to compare the behavior in a single random realization of the

model versus the behavior of the same quantity after averaging over a large number of

realizations. We shall start, however, with the spectral form factor where the distinction

between pure states and the thermal ensemble is meaningless, as can be seen from its

definition in terms of an analytically continued partition function. One may also construct

the spectral form factor as the fidelity of a certain pure state [46].

4.1 The spectral form factor

The spectral form factor is a well studied quantity in random matrix theory (see e.g. [47]) as

it gives a clean probe of the eigenspectrum of a model. In particular its late-time behavior

is sensitive to the discreteness of the spectrum as well as level statistics. The spectral

form factor is most conveniently defined in terms of the analytically continued partition

function,

S(β, t) := Z(β + it)Z(β − it)

Z(β)2
. (4.1)

In figure 4 we show S(β, t) for the spinless Fermion SYK model both as a function of β

and how it approaches its limiting form as one averages over the random couplings Jij;kl.

Interestingly we see a t−4.5 falloff before the dip time. The fit is shown in red in the right

6Where applicable. Of course the spectral form factor, which we study in section 4.1 makes no reference

to any state or ensemble. At any rate this quantity has already been studied in [44] for the Majorana model

and in [45] for the spinless Fermion case.
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Figure 4. Spectral form factor at half filling ν = 1

2
for varying number of realizations and two

different temperatures at N = 14. In both cases we see the characteristic decay followed by linear

ramp and plateau behavior. Left panel: β = 1. One sees several partial revivals in the decaying

region with a power-law envelope. Right panel: β = 10. The red markers show points we used for

a fit in the slope region, where we find a decay of ∝ t−4.53..., which is consistent with the value

reported in [45].

panel of figure 4 and the exponent is of course not understood to be exact, depending both

on numerical accuracy and the exact choice of the window over which we fit. This does

not correspond to the power-law expected from a Wigner edge ρ(E) ∼
√
E of the spectral

density [44]. It is easy to show [46] that a power law S ∼ t−2(k+1) in the slope region

corresponds to a spectral density ρ(E) ∼ Ek. At high temperature (left panel) this power

law is to be understood as the envelope of an oscillatory decay. Such power laws arise quite

generally in computations of survival probabilities of many-body quantum systems [48].

We also see the characteristic ramp and plateau behavior [44, 46] at late times which, once

more, looks qualitatively like RMT. The difference between RMT and the SYK model is

to be found in the precise timescales of dip and plateau times [44]. For completeness and

ease of comparison we discuss the RMT spectral form factor in some detail in appendix B.

4.2 The two-point function

Let us now turn to the study of correlation functions of non-extensive operators. Here

we work with the two-site hopping operator hij whose one-point functions are studied in

appendix A. The operator is defined as follows: pick two arbitrary sites i and j and write

O = hij = c†icj + c†jci . (4.2)

We have also verified that analogous results hold for the connected and full correlation

functions of the on-site number operator ni.

4.2.1 Eigenstates

We now study correlation functions of the hopping operator in energy eigenstates. For

definiteness we will take sites i = N − 1 and j = N , but any two sites will give essentially

– 12 –
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the same answer. We consider the two point function of the hopping operator,

Gn(t) = 〈hij(t)hij〉En := 〈n|eiHthije
−iHthij |n〉 (4.3)

for some excited eigenstate |n〉 with energy En, as well as its connected cousin

Gn
c (t) = 〈hij(t)hij〉En − 〈hij〉〈hij〉En . (4.4)

We find that the connected correlation function in eigenstates quickly decays and subse-

quently oscillates around zero as shown in figure 5. This latter fact is easily established by

averaging over time. One finds

Gn(t) = lim
T→∞

1

T

∫ T

0

∑

m

ei(En−Em)t|Onm|2dt = |Onn|2 , (4.5)

where we temporarily denoted the Hermitian operator hij by O to avoid too much in-

dex clutter. It follows that the connected eigenstate correlation function averages to zero,

Gn
c (t) = 0, at late times. The typical size of the late-time fluctuations follows from eigen-

state thermalization, (2.1), to be ∼ e−S/2. We show explicit computations of Gn
c (t) for

different values of N in figure 5 (top left).

As implied by (2.1), the behavior of the two-point function in eigenstates approximates

very closely the corresponding microcanonical quantities. This agreement is expected to

be perfect in the thermodynamic limit N → ∞. By a microcanonical two point function

of an operator O we mean the quantity

GĒ(t) =
1

NĒ

∑

n

〈n|O(t)O|n〉 , GĒ(t) =
1

NĒ

∑

n

|Onn|2, (4.6)

where NE is the number of states in a window of energies of given width ∆E around the

average energy Ē and the sum over n runs over exactly those states. This agreement is

illustrated in figure 5 (top right). As a basic check one can convince oneself that (2.1)

implies that its long time average gives exactly (4.5), which is also borne out in figure 5

(top right). We conclude therefore that two-point functions in the disorder-averaged theory

become arbitrarily close to their thermal (microcanonical) averages. This agreement is

perhaps not surprising if one realizes that averaging the correlation function over couplings

is operationally similar to a microcanonical average in the first place.

However, we now want to compare the behavior of Gn and Gn
c , to the corresponding

thermal correlation functions with respect to the canonical density matrix ρ = e−βH , at

energy E(β), determined by the map (2.10), that is

Gβ(t) =
1

Z(β)
Tr

[

e−βHhij(t)hij

]

(4.7)

and its connected cousin

Gβ
c (t) = Gβ(t)− 1

Z(β)2

(

Tr
[

e−βHhij

])2
, (4.8)
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where again hij(t) is the hopping operator in the Heisenberg picture at time t. Generally

speaking all these correlation functions show the expected behavior, namely an early time

exponential decay, followed by intermediate-time power law decay, further followed by a

late time ramp to a very late time plateau. The plateau value may be zero, or non-zero

depending on which operator and which correlation function one considers.

As illustrated in figure 5 (bottom left) we find that the full correlation function Gn(t)

in eigenstates at energy En(β) starts to approximate the corresponding thermal one Gβ(t)

at early time and at late times. Here E(β) is the energy corresponding to the inverse

temperature β via the map (2.10), while at intermediate times (during the ramp), Gn(t)

and Gβ(t) can differ.

The connected correlation function Gn
c (t) in eigenstates oscillates around zero at late

times, unlike its thermal equivalent Gβ
c (t), which oscillates around a non-zero average value

as seen in figure 5 (bottom right). These differences are subleading in the size of the Hilbert

space and are expected to become negligible in the N → ∞ limit. The latter limit is of

special interest for a putative gravitational dual as it corresponds to the semi-classical

regime where a geometric description should become possible.

As a side comment, in the limit β → ∞, the thermal expectation value starts ap-

proximating the eigenstate one arbitrarily closely. This, of course, has nothing to do with

thermalization, as it corresponds to the zero-temperature limit, where the ‘thermal’ aver-

age projects on the ground state, and is thus manifestly equal to the eigenstate correlation

function. In conclusion then we find that the two-point function in individual eigenstates of

the disorder-averaged theory behaves thermally, showing the most precise match with the

microcanonical average of the correlation function. Since we work at finite N the different

statistical ensembles need not give the same answers, and indeed subtle differences are seen

between canonical and eigenstate correlation functions. These differences are expected to

disappear in the thermodynamic limit. We can already appreciate the convergence of the

different ensembles for N = 6 versus N = 10 by comparing figure 5 (bottom right) with

its inset.

4.2.2 Superposition states

Up to this point we have considered mostly eigenstates. From what we have found one

can conclude also that arbitrary pure states with narrow support in energy thermalize to

microcanonical averages at late times, consistent with eigenstate thermalization. However,

thermalization of states with broad support in energy do not thermalize in this way. We

will next consider pure states, closely related to the ones considered in [29], with very broad

spread over the energy spectrum7 and demonstrate that they nevertheless thermalize, but

more precisely to canonical averages. Note, again, that at finite N microcanonical and

canonical averages do not have to exactly agree, and consequently one or the other may be

a better approximation to a thermalizing pure state correlation function.

We consider pure states which are superpositions of eigenstates, as one would obtain,

e.g. as a result of a sudden quench. An interesting class of such pure states can be con-

7For a discussion of similar states in the context of tensor models, see [49].
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Figure 5. Two-point function of the hopping operator at half filling ν = 1

2
. Top left panel: two-

point correlation function, Gn
c (t), in one eigenstate for N = 8, 9, 10, 11, 12. The initial decay is

followed by late time fluctuations around zero of typical size ∼ e−S/2. Top right panel: comparison

of microcanonical GĒ
c (t) with eigenstate Gn

c (t) at the same energy for N = 10. One can appreciate

the excellent agreement, which would only become better as the number of realizations is increased.

Bottom left panel: comparison of Gβ(t), Gn(t), Gℓ(t) with parameters β,E(β) and 2ℓ = β at N = 6.

Bottom right panel: comparison of Gβ
c (t), G

n
c (t), G

ℓ
c(t) with parameters β, E(β) and 2ℓ = β atN = 6

(inset N = 10).

structed as follows. Let |C〉 be a canonical state at half filling. Select a set of NC creation

operators SC =
{

c†a
}NC

a=1
. Then let

|C〉 =
∏

i∈SC

c†i |Ω〉 , (4.9)

where |Ω〉 is the state with no fermions. We assumed that N is even and we work at half

filling ν = NC

N = 1
2 , but such states can be constructed also for odd N and other filling

fractions. What is important is that we think of these states at large N as being finitely

excited, i.e. ν is held fixed as N → ∞. Now we define a one-parameter family of pure

states via Euclidean evolution of the canonical state,

|ℓ〉 = e−ℓH |C〉 . (4.10)
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Such a state can be expanded in the eigenbasis

|ℓ〉 =
∑

α

e−ℓEαcα|Eα〉 (4.11)

where, according to ETH, the coefficients cα are Gaussian distributed complex random

variables [4]. We expect these states to behave approximately thermally at a temperature

β−1 that we can determine by the map (2.10), together with the fact that the eigenstates

satisfy (2.1). To this end we compute

〈ℓ|H|ℓ〉 =
∑

α,β

c∗αcβe
−ℓ(Eα+Eβ)Eα . (4.12)

The random nature of the coefficients cα ensures that this expectation value behaves like

a thermal average. We can make this more precise by averaging the expansion coefficients

over the eigenstate ensemble [4], using

[c∗αcβ ] =
1

NC

δαβ . (4.13)

With the help of this expression, we find

〈ℓ|H|ℓ〉
〈ℓ|ℓ〉 −→ 1

Z(2ℓ)

∑

α

e−2ℓEαEα , (4.14)

where we have averaged numerator and denominator independently. This quantity is equiv-

alent to the thermal expectation value 〈E〉β=2ℓ since the state |C〉 typically has support over

the whole spectrum. It is thus natural to compare expectation values in |C〉 with thermal

expectation values in the canonical ensemble at β = 2ℓ. The behavior of these states in a

sense is similar to the thermofield double state, with the role of the trace over the second

copy taken over by the random distribution of expansion coefficients. In figure 5 we show

the correlation function

Gℓ(t) = 〈ℓ|hij(t)hij |ℓ〉 (4.15)

and its connected version Gℓ
c(t), defined in the obvious way, in comparison with the anal-

ogous canonical averages. We see that in fact they are rather close to their thermal coun-

terparts at inverse temperature β = 2ℓ as expected. Let us next move on to four-point

functions, an in particular the issue of chaos in eigenstates.

4.3 The four-point function

We now finally turn to studying the four-point function8 which serves to characterize early

time chaos via the Lyapunov exponent λL defined in equation (2.9). Again we emphasize

that this has been studied extensively in the thermal ensemble [9, 11, 15, 33], while here

our main focus is to study it in eigenstates.

We again focus on the two-site hopping operator hij . For an SYK model on a grid of

size N , let us define two operators

W = hN−1,N V = hN−3,N−2 (4.16)

8The results in this section were obtained in collaboration with Jérémie Francfort.
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Figure 6. Four-point out-of-time order (OTO) correlation function of the hopping operator. Left

panel: four-point OTO correlation function in individual eigenstates vs. thermal OTO correlation

function at temperature β(E) = 0, 10 (forN = 7). Right panel: four-point OTO correlation function

in individual eigenstate |n〉 vs. thermal OTO correlation function in the microcanonical ensemble

at energy Ē = En (for N = 7) with a fit to the functional form (2.11), (4.18) for α = 0.033 . . . and

λ = 0.69 . . ..

together with their out-of-time-order four-point function

F(t) =
〈W (t)V (0)W (t)V (0)〉+ 〈V (t)W (0)V (t)W (0)〉

2 〈W (0)W (0)V (0)V (0)〉 . (4.17)

The expectation value is taken, as before, in a finite-energy eigenstate, denoted Fn(t), or

for comparison in the (micro-)canonical ensemble, denoted F Ē(t), Fβ(t), respectively. The

expected form (see (2.11)) of this function at times up to the scrambling time is

F(t) = F0 − αeλt , (4.18)

where the coefficient α = βJ/N in the canonical ensemble, at strong coupling and large

N [15], the same circumstances under which the Lyapunov exponent takes its maximal

value λ = 2π/β [9, 15]. For our OTO correlation functions F Ē(t), which well approximates

that in the corresponding eigenstate, we show a fit to the form (4.18) in figure 6. Our

results here are consistent with those of [33] who considered Fβ(t) in exact diagonalization

and concluded that at finite N , the Lyapunov exponent is not maximal and does not

vary inversely with β, but rather that the parameter governing λ is the coupling J . The

behavior of the OTO correlator in eigenstates thus accords very well with expectations from

eigenstate thermalization. In particular the early-time physics, including the scrambling

time, of this correlator in eigenstates coincide to numerical accuracy with the thermal

results. This suggests that the large-N OTO correlator in eigenstates Fn(t) will also take

the form (4.18) with Lyapunov exponent given by (2.11).

5 Discussion

In this work we have endeavoured to establish the mechanism of thermalization in the

complex spinless SYK model, as a toy model of a strongly correlated quantum system
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with a holographic dual.9 We focused on the complex model, but we expect the Majorana

model to exhibit qualitatively similar behavior, that is to say that we believe it also satisfies

eigenstate thermalization.

We were careful to establish eigenstate thermalization both for an individual random

realization - with increasing accuracy as the Hilbert space dimension 2N is increased — as

well as for a fixed Hilbert space dimension at moderate N — with increasing accuracy as

one averages over more and more realizations.

We have also studied the extent to which two-point and four point correlations in

finite-energy pure states approximate those in the thermal ensemble at the corresponding

temperature. Our results support the conclusion that individual eigenstates in the SYK

model behave thermally. We established that the agreement between pure and thermal

expectation values becomes better for a single realization of the model as N is increased

and for a fixed finite N , as we average over a larger and larger ensemble of Hamiltonians.

However, consistent with earlier findings [44] we observe that correlation functions are self-

averaging at early times, but lose this property at late times. This property is shared by

the spectral form factor. Herein lies an important subtlety: a bulk dual10 of SYK has been

proposed for the disorder averaged theory, which means that any bulk solution is strictly

dual to an ensemble of boundary Hamiltonians. One should therefore not associate a single

eigenstate of an individual realization of the boundary theory with the late-time behavior

of a bulk solution. This point does not apply to the tensor models of [23–25]. It should,

however, be kept in mind during the rest of the discussion section.

5.1 Comments on putative bulk dual

Let us now address the question of the interpretation of our results in terms of a putative

holographic dual, keeping in mind our previous comments on the status of such a dual.

A crucial issue in the holographic description of black holes is the representation of their

interior from the boundary theory point of view [57]. One application of our results in

this respect concerns the relationship between entanglement and geometry [58, 59] (see

also [60, 61] for a world-sheet analog). One may appeal to the approach of [62] to argue that

a typical highly entangled eigenstate of the SYK model does not have a dual with a smooth

geometrical connection. The argument of [62] uses eigenstate thermalization as a hypothesis

to roughly reason as follows. We note that a typical two-sided correlation function in the

eternal black hole geometry will be of order eS at early times, coming from the wormhole

connecting the two boundaries [58, 59]. One then appeals to the eigenstate expectation

values of the form (2.1) to argue that the same operator in a generic highly entangled

finite energy state does not have the required eS correlations at early time, in fact it is

exponentially suppressed. This way one arrives at a contradiction with the assumption that

the correlator can be computed in a smooth geometry with a wormhole connection between

the two boundaries. Closely related ideas have been advanced in [63]. By establishing

9To the extent that such a dual has been established. See [11, 12, 50–56] for extensive discussions

and results on this issue, including an explicit brane construction whose spectrum contains the exact SYK

spectrum [56].
10See previous footnote.
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eigenstate thermalization in the SYK/NAdS2 context, one important implication of our

work is that a generic highly entangled state of the SYK model either does not have a

smooth geometric dual, or that entanglement does not generically correspond to having a

geometrical wormhole in the putative bulk dual of SYK. However, without entering into

the details, if one allows the state-dependent construction of interior operators by [64],

smooth black hole interiors may be constructed.

Of course more directly eigenstate thermalization tells us that one-sided correlation

functions look thermal even in eigenstates. This means that correlations in individual

eigenstates are well approximated by dual computations in the black hole geometry. Similar

results apply in AdS3/CFT2 see e.g. [5, 65], where two-point functions of light operators

in states created by heavy primary operators were shown to be well approximated by the

corresponding results in the BTZ black hole and non-equilibrium initial states thermalize

exactly to this state [7, 8].

As already alluded, eigenstate thermalization has been discussed also as the mecha-

nism of thermalization in two-dimensional CFT [5, 65–67] as well has higher-dimensional

cases [66]. In higher dimensions a direct approach, such as in this paper, seems out of reach.

It would therefore be interesting to gain a more analytical understanding of our results,

and we hope to address this in the future. It will be interesting to try and carry our results

over into a more widely applicable picture of thermalization in theories with holographic

duals. In this respect it may be interesting to map out the applicability of eigenstate ther-

malization in more SYK-like models, such as [68–71]. Conversely, if one instead accepts

that eigenstate thermalization should hold in theories with holographic duals, one might

hope to use the constraints on matrix elements due to eigenstate thermalization, in order

to further refine the requirements on CFTs with a well-behaved holographic dual.

It would be interesting to repeat the study in the present paper using the tensor models

of [23, 24, 72] and in particular to study how much of what we uncover here survives away

from the large-N semi-classical limit in such theories, which have the advantage of being

defined without the quenched disorder average. Certain spectral and chaotic properties

have been studied via exact diagonalization by [73].

In conclusion we believe that the detailed study of thermalization via eigenstates in

SYK, both numerically and analytically, gives us a concrete opportunity to better under-

stand the physics of quantum black holes, at least at the level of toy models.
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Figure 7. Unit normalized histogram of energy eigenvalues (in units of J) in the SYK model for

N = 10, 12, 14, 16 sites. This converges to the continuum probability density ρ(E). Left panel :

spectrum for a single realization. Right panel : spectrum averaged over disorder realizations. We

see that already for N = 16 the spectrum for a single realization is essentially indistinguishable

from the ensemble average.

A Full spectrum & ETH for other operators

This appendix is concerned with filling in some details on the spectrum of the model, as

well as to supply more details on eigenstates thermlization for a different non-extensive

operator, namely the hopping operator. A careful analysis of the spectral properties of the

SYK model was carried out in [11, 14, 43, 44, 74]. Here we present some essential features

on the complex-spinless case, to set the context, and also to benchmark our numerics. More

details are presented in the aforementioned references.

A.1 Density of states

The full spectrum of the model is most efficiently computed by considering each allowed

filling fraction ν separately. It is both of interest to consider the spectrum of a single

randomly chosen realization as well as averaged over a large number of realizations (see

figure 7). As has been observed before, for the Majorana model, the spectrum self averages

very well even for moderate values of N as can be surmised from comparing left and right

panels of figure 7.

A.2 ETH for the hopping operator

Everything we said about thermalization in eigenstates should hold for any non-extensive

operator in SYK model. In order to illustrate that this is indeed the case, we collect here

some illustrative results for an operator which differs considerably from the on-site number

operator, namely the two-site hopping operator.

A further Hermitian operator of interest is the two-site hopping operator hij . It is

defined by fixing two arbitrary sites i and j and then writing

hij = c†icj + c†jci . (A.1)
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Figure 8. Absolute values of matrix elements |Qnm| = |〈n|Q|m〉| for the two-site hopping operator

Q = ĥN−1,N at half filling ν = 1

2
for a single realization. Left panel : we show the absolute values

of matrix elements against their energies En/J for N = 10, labelled along horizontal and vertical

axes. The reason one sees no clear structure along the diagonal is that the thermal expectation

value Q(Ē) ≈ 0 for almost all energies as illustrated below in figure 9. Right panel: histogram of

the remainders Rmn for 1000 realizations at N = 12. As we see these are accurately fit by a unit

width Gaussian with zero mean confirming the ETH ansatz (2.1). Again we have verified this for

other accessible values of N .

One might think that the simpler operator c†i + ci would also have been a possible choice,

but it is easy to see that does not conserve fermion number and so its matrix elements

vanish in a fixed fermion sector as considered in this work.

We have extensively studied the matrix elements of the hopping operator, finding that

they also satisfy the ETH ansatz. Figure 8 illustrates the exponential suppression of off-

diagonal matrix elements by an entropy factor. The subtlety for the hopping operator is

that its thermal value, i.e. its on-diagonal matrix elements, is actually zero. This is shown

in figure 9. As before we carefully distinguish between the behavior of a single randomly

chosen SYK Hamiltonian (left panel) and the average over a large number of realizations

(right panel).

B Random matrix theory

In this appendix we collect some results on random matrix theory, which have been referred

to occasionally in the main text. These serve as a reference for the behavior of the complex

spinless SYK model, which, as we explained, shows RMT-like behavior for some parameter

and energy ranges. The RMT results also served as helpful test cases to verify our algorithm

with the aid of known results.

B.1 Off-diagonal matrix elements

Let us begin by studying the off-diagonal matrix elements

Omn = 〈m|O|n〉, m 6= n , (B.1)
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Figure 9. Diagonal expectation values for the two-site hopping operator hN−1,N , at half filling

ν = 1

2
. Left panel : the effect of averaging of the random couplings at given fixed Hilbert space

dimension, N = 14. As expected the on-diagonal values of the ensemble approach closer and closer

to a smooth curve. Right panel : a single random realization for increasing Hilbert space dimension

corresponding to N = 12, N = 14, N = 16. We see that the on-diagonal expectation values of a

single realization approaches closer and closer to a smooth curve.

Figure 10. Off-diagonal values of matrix elements Onm = |〈n|O|m〉| for a randomly chosen opera-

tor O in random matrix theory (a GOE matrix on the left and a GUE matrix on the right) averaged

over 1000 realizations. The inset shows a histogram of relative differences between raw data and

running average (within a selected energy window). Left panel: the function fO(Ē, ω) (we show the

running average in dark blue and the raw data in light blue) in the GOE for Hilbert space dimen-

sion dim(H) = 212. One clearly sees the constancy of fO(Ē, ω) in RMT. Right panel: the function

fO(Ē, ω) (we show the running average in dark blue and the raw data in light blue) in the GOE

for Hilbert space dimension dim(H) = 212. One clearly sees the constancy of fO(Ē, ω) in RMT.

where {|n〉} is the set of eigenstates of the RMT Hamiltonian and O is itself a randomly

selected Hermitian operator. Of course we average all quantities over the RMT ensemble, in

practice by taking the average over a large number of individual draws from the ensemble.
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Figure 11. Spectral form factor in the GUE of size L = 105 at β = 0. The figure shows a plot of

the analytic function (B.3).

B.2 Spectral form factor

The RMT spectral form factor has recently been studied by various groups [44, 46, 75] as a

reference and illustration for certain aspects of the SYK case, which are qualitatively well

captured in RMT. For convenience we also present this quantity here, focusing on the GUE.

In RMT, more specifically the GUE, it is actually possible to analytically calculate

the spectral form factor [46, 47] using the method of orthogonal polynomials. Let L be

the Hilbert space dimension, that is to say we consider the ensemble of L × L Hermitian

matrices. For SYK the Hilbert space dimension was 2N so, when comparing the two one

should obviously set 2N = L. If we define ν = β + it, the answer takes the form [46]

S(β, t) = g(β, t)

Z(β)2
(B.2)

with

g(β, t) = e
1

4
(ν2+ν̄2) (gc(β, t) + gd(β, t)) + Z(2β) . (B.3)

The connected part is compactly expressed as

gc(β, t) =
L−1
∑

j,k

(ν

ν̄

)k−j
∣

∣

∣

∣

ψjk

(

−ν
2

2

)∣

∣

∣

∣

2

(B.4)

with ψij(x) is given in terms of an associated Laguerre polynomial Lj−i
i (x)

ψij(x) =
Γ(i+ 1)

Γ(j + 1)
L
j−i
i (x) (B.5)

and the disconnected part as

gd(β, t) =

∣

∣

∣

∣

L
1
L−1

(

−ν
2

2

)∣

∣

∣

∣

2

(B.6)

in terms of the associated Laguerre polynomial L
1
L−1(x). We show a plot of the func-

tion (B.3) in figure 11. One can clearly appreciate the qualitative ressemblance to the SYK

case. A detailed discussion of time scales and various power laws can be found in [46].
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