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Eigenstructure Based Partially Adaptive Array 
Design 

Abstract-A procedure is presented for designing partially adaptive 
arrays having nearly fully adaptive performance under steady-state 
conditions. Theory predicts that the required adaptive dimension is less 
than or equal to the rank of the spatially/temporally correlated portion of 
the interference correlation matrix for arbitrary linearly constrained 
minimum variance beamformers. Knowledge of the eigenstructure of the 
interference correlation matrix is required to implement a beamformer 
with this adaptive dimension. To avoid adaptive estimation of the 
eigenstructure, the eigenstructure of an “averaged” correlation matrix, 
which spans the interference scenarios of interest, is utilized, and the 
adaptive dimension is given by the rank of the averaged correlation 
matrix. Simulations illustrate the effectiveness of this approach. 

requirement Of estimating the interference eigenStmCtUre is 
circumvented by choosing a transformation which spans the 
eigenstructure for all interference scenarios of interest. The 
resulting adaptive dimension is dependent on the array 
geometry and interference scenarios Of interest. 

Section I1 shows that the adaptive weight vector in the 
generalized sidelobe canceller (GSC) lies in a subspace with 
dimension given by the rank of the spatially/temporally 
correlated portion of the interference correlation matrix. 
Construction of a transformation for reducing adaptive dimen- 
sion is addressed in Section 111. Simulations illustrating the 

I. INTRODUCTION 
EAMFORMERS using a portion of the available adaptive B degrees of freedom are known as partially adaptive arrays 

[l], [2]. It is desireable to minimize the adaptive degrees of 
freedom in a beamformer since adaptive algorithms represent 
a significant computational expense and directly affect overall 
system cost. In addition, reducing adaptive dimension can 
result in faster adaptive response [2], [3]. However, cancel- 
lation performance usually degrades also. Minimizing per- 
formance degradation is a primary consideration in partially 
adaptive array design. 

A variety of approaches have been suggested for designing 
partially adaptive arrays [ 11-[SI. The method of Owsley [5] is 
particularly relevant to the discussion which follows. In [5] it 
is shown that for a narrow-band signal environment and a 
unity gain constraint in the desired signal direction, one can 
obtain fully adaptive performance using a number of adaptive 
weights equal to the rank of the spatially correlated portion of 
the interference correlation matrix. However, one must have 
knowledge of the interference correlation matrix eigenstruc- 
ture to implement this scheme. 

Here a similar result is derived for narrow-band or broad- 
band signals with arbitrary linear constraints on the array 
response. The minimal adaptive dimension required for fully 
adaptive performance is shown to be equal to the rank of the 
spatially/temporally correlated portion of the interference 
correlation matrix. As in [5], implementation utilizes a 
transformation which spans the eigenstructure of the interfer- 
ence correlation matrix. However, in this approach the 

utility of the eigenstructure approach are given in Section IV 
followed by a summary in Section V .  

11. ADAPTIVE DIMENSION IN THE GSC 
The output of a beamformer y ( k )  is expressed here as the 

inner product of a weight vector Wand the total collection of 
data in the array, X ( k ) : y ( k )  = WTX(k). W and X ( k )  are 
assumed to be N-dimensional vectors. The linearly con- 
strained minimum variance beamforming (LCMVB) problem 
for selecting the weights is 

min WTR, W subject to C T  W= F (1) 
W 

where R, = E{ X (  k ) X T (  k ) }  is the N by N correlation matrix 
of the data, C is the N by L constraint matrix, and F is the L- 
dimensional response vector. 

The GSC has been suggested as an alternative implementa- 
tion to the Frost beamformer [12] and has a number of 
advantages for LCMVB [6]. A block diagram of the GSC is 
given in Fig. 1. The weight vector of (1) is decomposed into 
two terms: W = WO - C,, W,,. WO is a fixed beamformer 
satisfying CTWo = F, C,, is an N by A4 rank M signal 
blocking matrix satisfying CTC, = 0, and W, is an M- 
dimensional unconstrained adaptive weight vector. If M = N 
- L ,  then the GSC and Frost beamformer have equivalent 
steady-state performance. If C, is chosen to satisfy C,’ WO = 0 
in addition to CTC = 0, then WO determines the quiescent 
response [7]. 

The weight vector W, is obtained as the solution to the 
unconstrained minimization problem 

min ( WO - C, W,,) WO - Cn Wn) (2) 
W” 
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Fig. 1. Generalized sidelobe canceller (GSC). 

Assume that R, can be decomposed into two terms: R,, 
corresponding to the signal of interest, and R I ,  corresponding 
to interference and noise; R, = R, + R I .  If the signal 
blocking matrix is designed properly, then it must be 
orthogonal to the source correlation matrix, or CLR, = 0, and 
W,, depends only on RI 

W,= ( C ~ R I C , ) - l C ~ R ,  WO. (4) 

Represent RI as the sum of a rank K spatially/temporally 
correlated term and an uncorrelated term corresponding to 
additive white noise 

RI=ESET+a21 ( 5 )  

where E is an N by K matrix of eigenvectors and S is a 
diagonal matrix containing the K eigenvalues of the correlated 
portion of R I .  Substituting (5) into (4) results in an expression 
for W,, in terms of the eigenvectors E. 

Beginning with the term in the inverse we have 

C,TR[C, = BsBT+ a 2 ~  (6) 

where I? is CZE and we have assumed C,’C,, = I .  This does 
not cause a loss of generality since it is the space which C, 
spans that is of importance, not the value of its elements. The 
inverse of (6) is obtained using the modified matrices formula 
[81 as 

(C,TRIC,,)-I =o-*I -  U ~ ~ ~ ( U - ~ B ~ B + ~ ~ ~ ) ~ ’ B ‘ .  (7) 

C i R I  WO becomes 

C;R[ W, = BG + d ~ ;  W, 

= BG (8) 

where G = SET WO, and it is assumed that C,, is designed so 
WO provides the quiescent response of the beamformer 
thus C,‘ WO = 0. Combining (7) and (8) yields 

W,, = CTEH 

with the K-dimensional vector H a s  

H =  [ a - Z I - a - 4 ( a - Z E T E + S ~ ’ ) ~ ’ B T B ] G .  

Equation ( 9 )  gives the desired result. The adaptive we 

71, 

(9) 

ght - 
vector lies within a subspace which is at most K-dimensional, 
namely, the space spanned by CLE. Thus assuming E is 
known, one can reduce the adaptive dimensionality of the 
system from M to K with no loss in cancellation performance. 
However, E is not generally known a priori and computing E 
adaptively would represent a significant computational ex- 
pense. 

Fig. 2 .  Partially adaptive generalized sidelobe canceller. 

111. DESIGNING THE PARTIALLY ADAPTIVE GSC 
Assuming for the moment that E is known, the GSC is 

modified as indicated in Fig. 2 to reduce adaptive dimensional- 
ity with no loss in performance. T is an M by K ( J  = K )  
dimensional transformation whose columns are a basis for the 
space spanned by the columns of CTE. If E is not known, then 
the problem is to find a T of smallest J ( J  2 K ) that spans the 
space in which W, lies for all interference scenarios of 
interest. 

Define R(8) to be the correlation matrix for an interferer 
parameterized by a vector 8. For a simple case 8 could 
represent the direction of the interferer with respect to the 
array. More generally, 8 could represent direction, temporal 
frequency characteristics, spatial distribution, and uncertain- 
ties in sensor position. Define an “averaged” correlation 
matrix R as 

Ob 

R =  R(8) de. (10) 
8, 

The space spanned by R includes the space spanned any R(8) 
for 8 E [e,, O b ] .  For example, let 8 represent the direction of a 
spatial point source at the array and assume its temporal 
frequency characteristics are known. In this case R(8) is the 
correlation matrix of the source located at 8 and R is an 
“average” of correlation matrices for sources arriving be- 
tween directions 8, and 8b. Any source with direction 8, 5 8 
5 Ob lies in the space spanned by R .  Note that in general 
[e,, e,] may represent a union of several disjoint regions. 

Assuming enough a priori knowledge of the interference 
environment is available to construct a representative R ,  the 
transformation T i s  chosen as a basis for the space spanned by 
C,TRC,. This is easily accomplished by composing T of the 
eigenvectors of CTRC,, corresponding to nonzero eigen- 
values. The resulting partially adaptive GSC has fully adaptive 
performance for any interference environment contained 
within the parameterization region since T spans the space in 
which C,TE lies for any 8 E [e,, o b ] .  

The rank of CTRC,, is important since it determines the 
number of adaptive weights required. In general, it depends on 
the array geometry, C,, and the parameterization region 
[e,, Ob] and thus must be evaluated numerically for the specific 
case of interest. However, some insight into the behavior of 
the rank of R can be obtained using the results of Buckley [9] .  

In [9]  it is shown that the rank of the correlation matrix for a 
broad-band source of bandwidth B arriving at the array from 
angle C$ is approximately given by 

r m w n  + 11 (1 1) 

where T(4) represents the total temporal aperture of the array 
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presented to a source at 4 and rx l  indicates the next integer 
greater than x .  Equation (1 1) indicates that the rank of an 
interferer increases as the bandwidth and/or the temporal 
aperture increases. Therefore, the rank of R (and similarly 
the rank of CxR^C,,) is expected to increase with increasing 
bandwidth and/or temporal aperture. 

Numerically determining the rank of a matrix is a difficult 
problem. Following [lo] one approach is to choose the rank as 
the value J for which 

I =  I 

where the A, are the ordered eigenvalues XI 2 A2 2 . . * 2 AM 
of CZRC, . The constant CY is chosen less than or equal to one. 
(1 - (~)*100 determines the percentage error incurred by 
representing the space spanned by CTRC,, with J eigenvec- 
tors. 

Numerical eigenvalue determination will not yield exactly 
zero eigenvalues, so choosing a involves a compromise. 
Selecting CY too small results in poor performance, while 
selecting CY too large increases the adaptive dimension unnec- 
essarily. Simulations have indicated that CY must be increased 
as the severity of the interference threat increases to maintain 
nearly fully adaptive performance. For example, a value of 
0.999 may be sufficient for nulling 40-dB (relative to white 
noise) interferers, but a value of 0.9999 may be required to 
achieve fully adaptive performance with 60-dB interferers. In 
the simulations presented in the following section, a value of 
0.999 is satisfactory for interferers having a 20-percent 
relative bandwidth, but a value of 0.9999 is required for a 40- 
percent relative bandwidth. Buckley [9] makes a similar 
observation concerning the number of eigenvector constraints 
required to null broad-band sources. Detailed investigation of 
the minimum CY required as a function of bandwidth and power 
is beyond the scope of the present work. 

IV. SIMULATIONS 
Simulations are presented in this section to verify the 

effectiveness of the partially adaptive design technique dis- 
cussed above and illustrate the potential for reducing the 
number of adaptive weights in a broad-band beamformer for 
several interference scenarios. In the cases considered 13 
represents the interferer direction of arrival at the array 
relative to broadside. The interferers are assumed to be real 
and white on a fixed temporal bandwidth, and the integral of 
(10) is approximated with a sum. 

The array configuration considered is an eight-element 
linear equal spaced array having 12 tap FIR filters in each 
sensor channel. The sensors are spaced at one-half wavelength 
for the highest frequency component, and the tap delay is 
normalized to one second, resulting in a normalized temporal 
frequency range of [ - T, TI. The constraint matrix is designed 
to pass signals from broadside on the frequency range of 
interest using the approach of [9]. The quiescent response is 
designed using the least squares method of [9] to have unit gain 

in the broadside direction and zero gain at angles greater than 
0.1 rad from broadside on the frequency range of interest. 
Given the constraint matrix ( C )  and quiescent response ( WO), 
the signal blocking matrix (C,,) is computed as the null space 
of the matrix [ C ]  WO]. 

Two different interference bandwidths are considered. The 
first case has frequency range [ 0 . 6 ~ ,  0 . 8 ~ 1  (20-percent 
relative bandwidth), and the second has frequency range 
[ 0 . 4 ~ ,  0 . 8 ~ 1  (40-percent relative bandwidth). Fig. 3 illustrates 
the broad-band quiescent beam patterns for the 20-percent 
relative bandwidth system. A similar pattern results for the 40- 
percent relative bandwidth system. 

The partially adaptive array performance is evaluated by 
comparing fully and partially adaptive array gains for an 
interference environment consisting of two interferers in 
additive white noise. The interference to white noise levels are 
30 and 40 dB. The gain is evaluated on a grid of 102 points: 17 
directions on [ - a/2,  ~ / 2 ]  (30-dB interferer) for each of six 
directions on [0.15, a/2] (40-dB interferer). Tables I and I1 
summarize the performance of several different partially 
adaptive designs for 20- and 40-percent relative bandwidths, 
respectively. 

In each table four different design examples are examined 
corresponding to various a priori assumptions on the direc- 
tions of interferers. For example, design 3 corresponds to the 
case where one is concerned only with interferers located at 
positive angles relative to broadside. The average and maxi- 
mum degradation on the design region is computed using the 
difference between fully and partially adaptive array gains at 
the grid points where both interferers are located within the 
design region. The maximum degradation outside the design 
region is computed similarly, using grid points where either 
interferer is outside the design region. The adaptive dimension 
of the fully adaptive arrays implementing the desired con- 
straints and quiescent response are 87 and 85 for Tables I and 
I1 respectively. Typical fully adaptive array gains are 50 dB 
for the 20-percent bandwidth system and 40-50 dB for the 40- 
percent bandwidth system. 

Detailed examination of performance indicates that the 
maximum degradation on the design region occurs at isolated 
points. This is supported by the low values of average 
degradation. For example, design 1 in Table I has a maximum 
degradation of 5.71 dB, but the degradation is less than 0.5 dB 
at 96 of the 102 grid points. The maximum occurs when the 
30- and 40-dB interferers arrive at -0.12 and 0.15 rad, 
respectively, requiring two nulls very close to broadside. 
Performance is improved with a larger value of a at the 
expense of additional adaptive weights. Performance outside 
the design region is worse, as expected, but remains within 10 
dB of fully adaptive for the cases considered. 

Typical performance for the partially adaptive designs is 
illustrated in more detail in Figs. 4-6. The response of design 
3 from Table I (28 adaptive weights) is compared to that of a 
fully adaptive system for an environment consisting of two 
broad-band interferers in white noise. The 30- and 40-dB 
(relative to white noise) interferers are located at direction 
sines of 0.38 and 0.66, respectively. Fig. 4 depicts the fully 
(dashed) and partially (solid) adaptive broad-band beam 
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Broad-band quiescent beam pattern for eight-element linear eqpal spaced array with 12 tap FIR filters per channel. Design 

bandwidth [0.6r, 0 . 8 ~ 1 .  
Fig. 3. 

TABLE I 
PARTIALLY ADAPTIVE PERFORMANCE SUMMARY FOR DESIGN BANDWIDTH [ 0 . 6 ~ ,  0 . 8 ~ 1 ,  CY = 0.999" 

Design Average Gain Maximum Gain Maximum Gain 

Dimension on Region on Region Outside Region 
Design Region Adaptive Degradation Degradation Degradation 
Number [eo ,  Ob] 

1 
-1.57 -0.1 

40 0.27 0.1 1.57 

34 0.21 0.2 0.785 
0.1 1.57 28 0.27 
0.1 0.785 22 0.47 

-0.785 -0.2 

5.71 NIA 

2.54 5.71 

2.42 7.39 
2.85 8.03 

a Fully adaptive dimension is 87. Angles in rad, gain in dB. 

TABLE I1 
PARTIALLY ADAPTIVE PERFORMANCE SUMMARY FOR DESIGN BANDWIDTH [ 0 . 4 ~ ,  0 . 8 ~ 1 ,  a = 0.9999" 

Design Average Gain Maximum Gain Maximum Gain 
Design Region Adaptive Degradation Degradation Degradation 
Number [e'?, e b l  Dimension on Region on Region Outside Region 

-1.57 -0.1 
63 0.1 1.57 1 

-0.785 -0.2 
2 0.2 0.785 55 

3 0.1 1.57 46 
4 0.1 0.785 37 

0.22 1.74 NIA 

0.17 0.49 1.78 

0.41 I .79 4.20 
0.51 I .63 4.62 

a Fully adaptive dimension is 85. Angles in rad, gain in dB. 
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Fig. 4. Broad-band beam patterns when two interferers arrive at direction sines of 0.38 and 0.66. Design bandwidth 10.67, 0.84. 
Partially adaptive beam pattern (solid line) obtained using design 3 from Table I (28 adaptive weights). Dashed line represents fully 
adaptive beam pattern. 

0.00 0.63 
FREQUENCY (RAD) 

Fig. 5. Frequency response magnitude for systems of Fig. 4 at direction sine of 0.38. Interferer extends from 1.885 (0.67) to 2.513 
(0.8~) radians. Solid line represents partially adaptive, dashed line represents fully adaptive. 
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Fig. 6. Frequency response magnitude for systems of Fig. 4 at direction sine of 0.66. Interferer extends from 1.885 ( 0 . 6 ~ )  to 2.513 
( 0 . 8 ~ )  radians. Solid line represents partially adaptive, dashed line represents fully adaptive. 

patterns. The beam patterns are almost identical, although the 
fully adaptive system null is about 3 dB deeper at 0.66. The 
frequency response magnitude in the interferer directions is 
shown in Figs. 5 and 6. The interferer bandwidth is from 
1.885 ( 0 . 6 ~ )  to 2.513 ( 0 . 8 ~ ) .  The solid and dashed lines 
represent partially and fully adaptive response. The interfer- 
ence rejection of the partially adaptive design is nearly 
equivalent to that of fully adaptive across the frequency band. 

The adaptive dimension decreases with bandwidth and size 
of the design region as indicated by ( 1  1). Note that the 20- 
percent bandwidth examples require only one-fourth to one- 
half the adaptive weights of the fully adaptive system while the 
40-percent bandwidth examples require one-half to three- 
fourths of the number of fully adaptive weights. This can 
result in substantial complexity reduction, depending on the 
specific adaptive algorithm implemented. For example, with 
the sample matrix inversion algorithm [ 1 I ]  reducing adaptive 
dimension by one-half reduces the complexity of estimating 
the sample covariance matrix by a factor of four and the matrix 
inversion by a’factor of eight. 

V.  SUMMARY 

A procedure is presented for designing partially adaptive 
arrays based on the eigenstructure of an averaged interference 
correlation matrix. Theoretical results predict that this ap- 
proach results in partially adaptive arrays having steady-state 
performance equivalent to fully adaptive and the number of 
adaptive weights required is given by the rank of the averaged 
interference correlation matrix. Simulations illustrate the 
effectiveness of the technique. 
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