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Eigentriphones for Context-dependent Acoustic

Modeling
Tom Ko and Brian Mak

Abstract—Most automatic speech recognizers employ tied-
state triphone hidden Markov models (HMM), in which the
corresponding triphone states of the same base phone are tied.
State tying is commonly performed with the use of a phonetic
regression class tree which renders robust context-dependent
modeling possible by carefully balancing the amount of training
data with the degree of tying. However, tying inevitably intro-
duces quantization error: triphones tied to the same state are
not distinguishable in that state. Recently we proposed a new
triphone modeling approach called eigentriphone modeling in
which all triphone models are, in general, distinct. The idea is to
create an eigenbasis for each base phone (or phone state) and all
its triphones (or triphone states) are represented as distinct points
in the space spanned by the basis. We have shown that triphone
HMMs trained using model-based or state-based eigentriphones
perform at least as well as conventional tied-state HMMs. In this
paper, we further generalize the definition of eigentriphones over
a cluster of acoustic units. Our experiments on TIMIT phone
recognition and the Wall Street Journal 5K-vocabulary continu-
ous speech recognition show that eigentriphones estimated from
state clusters defined by the nodes in the same phonetic regression
class tree used in state tying result in further performance gain.

Index Terms—Eigentriphone, tied state, context dependency,
regularization, weighted PCA.

I. INTRODUCTION

A critical issue in context-dependent (CD) acoustic model-

ing is how to robustly estimate the model parameters of the

rarely occurring acoustic units. For instance, it is found that

the distribution of triphones in the HUB2 training set of the

Wall Street Journal corpus [1] obeys the Pareto Principle (or

the 80/20 Rule) [2]: roughly 80% of triphone occurrences in

the corpus come from 20% of all the distinct triphones in

the corpus [3]. Naive maximum-likelihood (ML) estimation

of the hidden Markov model (HMM) parameters of these

infrequent context-dependent acoustic units will produce poor

triphone models, which will affect the overall performance of

an automatic speech recognition (ASR) system. Past solutions

for robust estimation of CD acoustic models may be roughly

classified into three categories: triphone-by-composition [4],

parameter tying [5], and a basis approach.

Model interpolation [6] and quasi-triphones [7] are typical

examples of the triphone-by-composition method. In both

examples, CD models are constructed by combining triphone

models that may not be well trained with robustly trained

acoustic models that capture weaker contextual information.

For instance, in [6], a triphone state distribution is generated

All authors are with the Department of Computer Science and Engineering,
the Hong Kong University of Science and Technology, Clear Water Bay, Hong
Kong. E-mail: {tomko, mak}@cse.ust.hk.

by a linear combination of its ML estimate and the state distri-

butions from its corresponding left-context-dependent model,

right-context-dependent model, and/or context-independent

model using deleted interpolation. In [7], it is assumed that

the left context of a phone influences mostly its beginning

whereas its right context influences mostly its ending. Thus,

a three-state triphone model is generated in such a way that

the first and the last states are conditioned only on its left

and right contexts respectively, whereas the middle state is

context-independent. Recently, another example of triphone-

by-composition called back-off acoustic modeling [8] was

proposed. The new method combines the score of a triphone

with scores from triphones that are estimated under broad

phonetic class contexts of its left and right phones.

Parameter tying is another solution that is widely used in

ASR systems because of its proven effectiveness in simultane-

ously reducing model size and enhancing recognition speed.

Various HMM parameters have been tied successfully, for

example, generalized triphones [9], tied states [10], shared

distributions or senones [11], and tied subspace Gaussian

distributions [12]. Among these parameter tying methods, state

tying [10] is probably the most popular approach in context-

dependent acoustic modeling. The degree of state tying —

that is, the number of tied states — can be well managed by

a (binary) regression class tree, using questions that are based

on acoustics [13] or phonetic knowledge [14]. The use of a

phonetic regression class tree offers the additional benefit of

synthesizing unseen triphones in the test lexicon.

Recently, a basis approach is emerging. In the basis ap-

proach, one or more bases are constructed so that model

parameters may be derived from the basis vectors or func-

tions. For example, semi-continuous hidden Markov model

(SCHMM) [15], [16] and subspace Gaussian mixture model

(SGMM) [17] both employ a basis of Gaussians, whereas

Bayesian sensing HMM [18] uses sets of state-dependent basis

vectors. Similarly, in the canonical state model (CSM) [19]

framework, there exists a finite set of canonical states from

which every context-dependent state in an ASR system is

transformed. The set of canonical states captures the rela-

tionship between the context-dependent states through some

transformation functions. It has been shown that both SCHMM

and SGMM can be derived from the CSM framework.

A common thread among all the three approaches is a

set of elementary structures from which all the context-

dependent models are built by linear interpolation, synthesis,

or transformation. They are the models of various order of

context dependency in the triphone-by-composition method;

the common Gaussian pool in SCHMM or common subspace

Gaussian pools in the subspace distribution clustering HMM in
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the parameter tying method; the canonical states in the CSM

method. In the parameter tying and CSM methods, the use

of the elementary structures helps factorize the whole set of

acoustic models, resulting in a more compact and succinct

representation of the models so that they may be estimated

more robustly. However, parameter tying inevitably results

in quantization error for the tied unit. As a consequence,

models sharing the same tied unit are not distinguishable

in that part of the models; in the extreme case when the

respective parts of two acoustic models are tied, the two

models become identical. In contrast, although the triphone-

by-composition method is more complicated and needs to

maintain and evaluate several sets of acoustic models, it has

the advantage that, since the interpolation weights are usually

different for each context-dependent model, context-dependent

models created by the method are distinct from each other.

Nevertheless, the three methods are complementary and they

can be integrated together in a recognizer.

In [3], [20], [21], we proposed a new context-dependent

acoustic modeling method called eigentriphone modeling. In

our method, triphone models of a base phone are factorized

into a set of eigenvectors, which we call eigentriphones, and

all triphone HMMs of that base phone are then projected

onto the space spanned by the eigentriphones. Eigentriphones

extract the most important context-dependent characteristics

among the triphones so that the infrequent triphones can

be robustly modeled in terms of these eigentriphones even

with few training samples. Unlike the triphone-by-composition

method, eigentriphone modeling is not required to maintain

several sets of acoustic models of different orders of context

dependency. Eigentriphone modeling may be used together

with state tying, though we prefer not to so that the ensuing

triphone models are distinct from each other. Although we

call our method eigentriphone modeling, the method may be

readily applied to creating other context-dependent acoustic

units such as biphones or quinphones.

Besides summarizing the development of eigentriphones

from our past works, this paper further generalizes the deriva-

tion of eigentriphones from all triphones of each base phone

to any triphone or state clusters. We call the new derivation

method cluster-based eigentriphone modeling. By changing

the definition of triphone or state clusters, one may balance

the amount of available training data with the resolution of

eigentriphones. In particular, we propose to derive eigentri-

phones from the state clusters defined by the tied states in

a phonetic regression class tree so that the quantization error

due to conventional state tying is avoided, and the benefit of

synthesizing unseen triphones by the phonetic regression tree

can be incorporated into the eigentriphone modeling method.

The paper is organized as follows. In Section II, we will

describe the model-based eigentriphone acoustic modeling

approach. Then we will extend the model-based eigentriphone

to state-based eigentriphone in Section III, and then to cluster-

based eigentriphone in Section IV. It is followed by experi-

mental evaluation in Section V and conclusions in Section VI.

TABLE I
COMPARISON BETWEEN EIGENVOICE AND MODEL-BASED

EIGENTRIPHONE MODELING.

Item Eigenvoice Eigentriphone

number of bases 1 number of monophones

model to fallback speaker-independent model context-independent model

reference models speaker-dependent models all triphones of the base phone

adapted models new speaker models all triphones of the base phone

II. MODEL-BASED EIGENTRIPHONE

The eigentriphone acoustic modeling method belongs to

the basis approach and is inspired by the eigenvoice adap-

tation [22]. The acoustic modeling of triphones with limited

amount of training data may be thought of as an adaptation

problem which is then solved by the eigenvoice approach.

That is, all triphone models are first represented by some

supervectors and they are assumed to lie in a low dimensional

space1 spanned by a set of eigenvectors. In other words, each

triphone supervector is a linear combination of a small set of

eigenvectors which are now called eigentriphones.

A. Eigenvoice vs. Eigentriphone

The eigenvoice adaptation and model-based eigentriphone

acoustic modeling are very similar except that

• whereas there is only one set of eigenvectors in eigen-

voice adaptation, each base phone requires a separate set

of eigenvectors in eigentriphone modeling, and

• speaker-dependent models in eigenvoice are replaced by

triphone models in eigentriphone modeling.

A comparison of the two methods is shown in Table I.

…
 

…
 

…
 

PCA MLED 

training data of 
a triphone q 

triphone 
supervectors 

eigentriphones 

triphone q 
supervector 

triphone 
HMMs of a 

base phone 

triphone q 
HMM 

Fig. 1. The model-based eigentriphone acoustic modeling method. (PCA
= principal component analysis; MLED = maximum-likelihood eigen-
decomposition)

B. The Basic Procedure

Fig. 1 shows an overview of model-based eigentriphone

acoustic modeling; it is similar to eigenvoice adaptation [22].

1The dimension of the space is low when compared with the dimension of
the triphone supervectors.
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The following procedure is repeated for each base phone i
using all its triphones that appear in the training corpus.

STEP 1 : Monophone hidden Markov model (HMM) of base

phone i is first estimated from the training data. Each

monophone is a 3-state strictly left-to-right HMM, and

each state is represented by an M -component Gaussian

mixture model (GMM).

STEP 2 : The monophone HMM of base phone i is then

cloned to initialize all its Ni triphones in the training

data. Note that (a) unlike common triphone cloning from a

1-mixture monophone HMM, in our eigentriphone proce-

dure, triphones are cloned from an M -mixture monophone

HMM, and (b) no state tying is performed.

STEP 3 : Re-estimate only the Gaussian means of triphones

after cloning; their Gaussian covariances and mixture

weights (which are copied from their base phone HMM)

remain unchanged.

STEP 4 : Create a triphone supervector vip for each triphone

p of base phone i by stacking up all its Gaussian mean

vectors from its three states as below.

vip =

[

µip11, µip12, · · · , µip1M ,
µip21, µip22, · · · , µip2M ,
µip31, µip32, · · · , µip3M

]

, (1)

where µipjm, j = 1, 2, 3, and m = 1, 2, . . . ,M is the mean

vector of the mth Gaussian component at the jth state

of triphone p. Similarly, a monophone supervector mi is

created from the monophone model of the base phone i.

STEP 5 : Collect all triphone supervectors vi1, vi2, . . ., viNi

as well as the monophone supervector mi of base phone i,
and derive an eigenbasis from their correlation or covari-

ance matrix using principal component analysis (PCA).

The covariance matrix is computed as follows:

1

Ni

∑

p

(vip −mi)(vip −mi)
′ . (2)

Notice that the monophone supervector mi, instead of the

mean of triphone supervectors, is used to “center” triphone

supervectors so that the poor triphones may fall back to the

monophone HMM in the worst case2.

STEP 6 : Arrange the eigenvectors {eik, k = 1, 2, . . . , Ni} in

descending order of their eigenvalues λik, and pick the

top Ki (where Ki ≤ Ni) eigenvectors to represent the

eigenspace of base phone i. These Ki eigenvectors are

now called eigentriphones of phone i. In general, different

base phones have a different number of eigentriphones,

depending on the criterion used to decide the value of Ki.

STEP 7 : Now the supervector vip of any triphone p of base

phone i is assumed to lie in the space spanned by the Ki

eigentriphones. Thus, we have

vip = mi +

Ki
∑

k=1

wipkeik , (3)

2Empirically, we find that centering by the monophone supervector gives
slightly better performance than if the mean of triphone supervectors is used.

where wip = [wip1, wip2, . . . , wipKi
] is the eigentriphone

coefficient vector of triphone p in the “triphone space” of

base phone i.

STEP 8 : Estimate the eigentriphone coefficient vector wip of
any triphone p by maximizing the likelihood L(wip) of its
training data:

L(wip) = constant − (4)
∑

j,m,t

γipjm(t)(xt − µipjm(wip))
′

C
−1

ipjm(xt − µipjm(wip))

where Cipjm and γipjm(t) are the covariance and occu-

pation probability of the mth Gaussian at the jth state of

triphone p of base phone i given observation xt. The pro-

cedure is called maximum-likelihood eigen-decomposition

(MLED) in [22]. Finally, the Gaussian mean of the mth

mixture at the jth state of triphone p can be obtained from

vip as

µipjm = mijm +

Ki
∑

k=1

wipkeikjm . (5)

STEP 9 : If either the eigentriphone coefficients converge or

the recognition accuracy of a development data set is

maximized, go to STEP 10. Otherwise, re-align the training

data using the model in STEP 8, re-estimate the Gaussian

means and repeat STEP 4 – 9.

STEP 10 : After the eigentriphone “adaptation” of the Gaus-

sian means, the Gaussian covariances and mixture weights

of a triphone are re-estimated if its sample count is greater

than the thresholds θv and θw respectively. Otherwise, they

remain the same as those of the monophone model from

which they are cloned.

The above basic procedure works but there are rooms to

improve in at least two aspects:

• In STEP 5, all triphones are used to derive the eigenbasis

and, thus, the eigentriphones. However, it is clear that due

to uneven distribution of triphones in the training data,

some triphones will be better trained than the others in

STEP 3. Including the poorly trained triphone models

in the subsequent PCA will affect the quality of the

eigentriphones. One heuristic solution is to use only those

triphones with sufficient training data, but how much is

sufficient?

• In STEP 6, one has to make a hard decision on the dimen-

sion of the eigenspace (or, equivalently, the number of

eigentriphones), Ki, to represent all the triphone models.

A common practice is to pick a number of eigenvectors so

that a certain percentage of the total variations is covered.

May we not be forced to make a hard decision on the

value of Ki?

In [23] and [24], we proposed using weighted PCA and

regularization to solve the two problems respectively.

C. Improvement #1: Derivation Using Weighted PCA

The use of weighted PCA instead of the standard PCA has

at least two advantages.

Firstly, to avoid making a hard decision on which triphones

to use in the application of standard PCA. Instead, the use
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of weighted PCA allows eigentriphones to be derived by

taking all triphones into account. This is made possible by

incorporating some notion of triphone reliability that is related

to its training data sufficiency in the construction of the

eigenbasis in weighted PCA.

Secondly, as we had shown in [21], the eigenvalue spec-

trum produced by weighted PCA rises more sharply than

the spectrum given by standard PCA. It means that fewer

leading eigentriphones produced by weighted PCA can capture

more variations in the triphone supervectors. As a result,

weighted PCA allows the use of fewer eigentriphones in eigen-

triphone acoustic modeling. This has an implication in the

space requirement of eigentriphone acoustic modeling. Since

each triphone model produced by eigentriphone modeling is

distinct, all observed triphones — even those with few samples

— in the database will be represented by a distinct HMM.

Consequently, the model size resulted from eigentriphone

modeling is much bigger than conventional tied-state HMMs.

With the use of weighted PCA, fewer eigentriphones may be

employed to model each triphone, and the model size can be

reduced drastically by more than 50%.

In this paper, each triphone supervector is weighted by

its sample count in the weighted PCA procedure. Thus, the

covariance matrix in STEP 5 is replaced by

1

Ni

∑

p

Nip(vip −mi)(vip −mi)
′ , (6)

where Nip is the sample count of the triphone p of base phone

i, and Ni =
∑

p Nip.

D. Improvement #2: Soft Decision on the Number of Eigent-

riphones using Regularization

To avoid making a hard decision on the number of eigentri-

phones Ki to use, a new penalized log-likelihood function

Q(wip) is defined for the estimation of the eigentriphone

coefficient vector wip using all eigentriphones of base phone

i:
Q(wip) = L(wip)− βR(wip) , (7)

where β is the regularization parameter that controls the

relative importance of the regularizer R(·) compared with

the likelihood term L(·) of Eqn. (4). The regularizer should

be chosen so that the more informative eigentriphones (with

larger eigenvalues) are automatically emphasized and the less

informative eigentriphones (with smaller eigenvalues) are au-

tomatically de-emphasized. In [24], the following regularizer

is found effective

R(wip) =

Ni
∑

k=1

w2
ipk

λik

. (8)

The proposed regularizer represents a scaled Euclidean

distance of the triphone from the base phone in the space

spanned by the eigentriphones. It has the following properties:

• The squared coefficient of each eigentriphone, wipk, is in-

versely scaled by its eigenvalue so that a less informative

eigentriphone will have less influence on the “adapted”

triphone model.

• When there are a lot of training data, the likelihood term

will dominate the objective function Q(wip), and the

“adapted” triphone model will converge to its conven-

tional Baum-Welch training estimate.

• On the other hand, for a triphone with limited amount

of training data, the penalty term will dominate and a

smaller scaled Euclidean distance between the triphone

and base phone is preferred. In other words, its “adapted”

triphone model will fallback to its monophone model.

Thus, in effect, the regularizer of Eqn. (8) will provide a soft

decision on the number of eigentriphones to use for each

triphone (and not just for each base phone).

Differentiating the optimization function Q(wip) of Eqn. (7)

w.r.t. each eigentriphone coefficient wipk, and setting each

derivative to zero, we have,

Ni
∑

n=1

Aipknwipn + β
wipk

λik

= Bipk ∀k = 1, 2, · · ·Ni (9)

where

Aipkn =
∑

j,m

e
′

ikjmC−1
ipjmeinjm

(

∑

t

γipjm(t)

)

Bipk =
∑

j,m

e
′

ikjmC−1
ipjm

(

∑

t

γipjm(t)(xt −mijm)

)

.

The eigentriphone coefficients may be easily found by

solving the system of Ni linear equations represented by

Eqn. (9), and the Gaussian means of the new model may be

computed using Eqn. (5).

III. STATE-BASED EIGENTRIPHONE

In model-based eigentriphone acoustic modeling, high-

dimensional triphone supervectors are constructed by con-

catenating Gaussian mean vectors from all the (three) states

of each triphone HMM of a base phone. One may also

apply the modeling framework to sub-phonetic units as well.

In [24], state-based eigentriphone acoustic modeling was

proposed in which an eigenbasis is developed for each state

of each basis phone in a procedure similar to that of model-

based eigentriphone modeling in Section II except that sample

counts of triphone in Eqn.(6) are replaced by frame counts

of triphone states. Compared with model-based eigentriphone

acoustic modeling, state-based eigentriphone acoustic model-

ing produces three times more eigenbases, but its eigenvector

dimension is only 1/3 of the former.

IV. CLUSTER-BASED EIGENTRIPHONE

Both model-based and state-based eigentriphone acoustic

modeling methods discussed above derive eigenbases from all

triphones of a base phone. In fact, the eigentriphone modeling

framework is very flexible and can be applied to any group

of phonetic or sub-phonetic units provided that they may

be represented by supervectors of the same dimension. For

example, if training data are really scarce, one may perhaps

derive eigentriphones from broad phonetic classes (such as

vowels, fricatives, etc.); on the other hand, when there are

sufficient data, one may divide the triphones of a base phone
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into groups and derive eigentriphones from each triphone

group. In this paper, we would like to investigate a more

general framework of deriving eigentriphones from clusters

of triphones or triphone states3, and we call this cluster-

based eigentriphone acoustic modeling. In particular, we will

investigate eigentriphone modeling with general state clusters.

Common clustering algorithms such as k-means clustering,

agglomerative hierarchical clustering, and decision tree, to-

gether with a well-defined distance metric or impurity function

may be used to generate triphone or state clusters for cluster-

based eigentriphone modeling. Instead of delving into various

clustering algorithms, we resort to the use of phonetic decision

tree for the purpose since it has been applied successfully to

a few tasks such as state tying in ASR. In fact, we propose to

use the triphone state clusters represented by the nodes in the

same state-tying tree for deriving eigentriphones. There are

several benefits for the choice:

• In a typical ASR system, there are 39 base phones and

triphone models are 3-state HMMs. Thus, there will be 39

sets of model-based eigentriphones and 39×3 = 117 sets

of state-based eigentriphones. On the other hand, there are

many more tied states — usually hundreds to thousands

— in an ASR system, which means that the use of the

state clusters from tied-states will allow a higher reso-

lution of eigentriphone modeling than the above model-

based or state-based eigentriphone modeling. Moreover,

the state-tying tree gives one the flexibility to decide the

modeling resolution by going up or down the phonetic

decision tree and choose the right nodes for cluster-based

eigentriphone derivation4.

• State-based eigentriphone modeling is a special case

of cluster-based eigentriphone modeling in which each

cluster consists of respective states from all triphones of

a base phone. However, cluster-based eigentriphone mod-

eling using tied-state clusters is computationally more

efficient because the number of tied states is usually

much greater than the number of monophone states so

that there are fewer triphone state supervectors in each

tied-state cluster to derive eigentriphones. From Eqn. (9),

it is observed that the computation of eigentriphone coef-

ficients involves solving a system of Ni linear equations

with a computational complexity of O(N3
i ). When there

are fewer triphone states in a cluster, the computation of

eigentriphone coefficients is faster.

• Most importantly, unseen triphones may also be synthe-

sized using the same phonetic state-tying tree that defines

state clusters for cluster-based eigentriphone modeling as

in conventional tied-state triphone HMM systems.

The derivation of clustered-based eigentriphones from tied-

state clusters is similar to that of state-based eigentriphones

except that STEP 1–3 in the latter method are modified as fol-

lows: First, construct a conventional tied-state triphone HMM

for each base phone in which each state is represented by

3In general, triphones or triphone states in each cluster may not even come
from the same base phone, though, in this paper, they do.

4Note that the nodes selected for conventional state tying need not be the
same as the nodes selected for cluster-based eigentriphone modeling; the two
processes simply use the same phonetic decision tree.

an M -component GMM. Then, re-estimate only the Gaussian

means of each triphone, and its state covariances and mixture

weights are copied from the corresponding tied state.

V. EXPERIMENTAL EVALUATION

The newly proposed cluster-based eigentriphone modeling

method was evaluated on two speech recognition tasks: phone

recognition on TIMIT [25] and medium-vocabulary continu-

ous speech recognition on Wall Street Journal (WSJ) [1] 5K

task.

In both tasks, we will compare the performance of the

following five acoustic modeling methods:

• baseline1: conventional Baum-Welch training of triphone

HMMs with no state tying.

• baseline2: conventional Baum-Welch training of tied-state

triphone HMMs.

• model-based eigentriphone modeling of triphone HMMs

as described in II (and no states are tied).

• state-based eigentriphone modeling of triphone HMMs as

described in III (and no states are tied).

• cluster-based eigentriphone modeling of triphone HMMs

using tied-state clusters as described in IV (but no states

are tied).

Cross-word triphones were employed in all experiments and

were modeled as continuous-density hidden Markov models

(CDHMMs). Each CDHMM was a 3-state strictly left-to-

right HMM in which the state distributions were modeled

by a mixture of 16 Gaussians with diagonal covariances. In

addition, there were a 1-state short pause model and and a

3-state silence model whose middle state was tied to the short

pause state. Feature vectors were standard 39-dimensional

MFCC acoustic vectors, and they were extracted from the

training speech data every 10ms over a window of 25ms. The

HTK toolkit [26] was used for HMM training and decoding

with a beam width of 350.

In all systems described below, the transition probabili-

ties of triphone models of the same base phone were tied

together to those of the monophone model. On the other

hand, for conventional Baum-Welch HMM training, Gaussian

means, covariances, and mixture weights of triphones were re-

estimated after the triphones were cloned from the monophone

models if their sample counts are greater than the following

thresholds: θm = 30, θv = θw = 200 respectively. For eigent-

riphone modeling, the thresholds are θm = 3, θv = θw = 200

respectively5. The sample count threshold for Gaussian means

is much lower for eigentriphone modeling because we would

like to use as many triphones as possible for the derivation of

eigentriphones, and weighted PCA using the proposed weights

already takes into account the reliability of each Gaussian

mean. Moreover, all eigentriphone modeling methods perform

(weighted) PCA using correlation matrices.

Furthermore, all system parameters such as the regular-

ization parameter β, grammar factor, insertion penalty, as

well as the optimal number of tied states for conventional

HMM training, and the optimal number of state clusters for

5By default, triphones with less than three samples are not updated by HTK.
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cluster-based eigentriphone modeling were determined using

the respective development data set.

TABLE II
INFORMATION OF TIMIT DATA SETS.

Data Set #Speakers #Utterances #Hours

training 462 3,696 3.14
core test 24 192 0.16

development 24 192 0.16

TABLE III
PHONE RECOGNITION ACCURACY (%) OF VARIOUS SYSTEMS ON TIMIT

CORE TEST SET USING PHONE-TRIGRAM LANGUAGE MODEL. (THE FIGURE

WITH AN ∗ IS STATISTICALLY AND SIGNIFICANTLY BETTER THAN

BASELINE2 RESULT.)

Model Accuracy

baseline1: conventional training (no state tying) 68.63
baseline2: conventional tied-state HMM training 71.95

model-based eigentriphone training model (no state tying) 71.27
state-based eigentriphone training model (no state tying) 71.03

cluster-based eigentriphone training model (587 state clusters) 72.90∗

A. Phone Recognition on TIMIT

1) Speech Corpus and Experimental Setup: The standard

NIST training set which consists of 3,696 utterances from 462

speakers was used to train the various models, whereas the

standard core test set which consists of 192 utterances spoken

by 24 speakers was used for evaluation. The development set

is part of the complete test set, consisting of 192 utterances

spoken by 24 speakers. Speakers in the training, development,

and test set do not overlap. A summary of these data sets is

shown in Table II.

We followed the standard experimentation on TIMIT, and

collapsed the original 61 phonetic labels in the corpus into a

set of 48 phones for acoustic modeling; the latter were further

collapsed into the standard set of 39 phones [6] for error

reporting. Moreover, the glottal stop [q] was ignored. At the

end, there are altogether 15,546 cross-word triphone HMMs

based on 48 base phones. Phone recognition was performed

using Viterbi decoding with a trigram phone language model

(LM) that was trained from the TIMIT training transcriptions

using the SRILM language modeling toolkit [27]. The trigram

LM has a perplexity of 14.39 on the core test set.

2) Acoustic Modeling: Five sets of triphone HMMs were

built according to the five acoustic modeling methods men-

tioned in the beginning of this Section. For the conventional

tied-state triphone HMM system (baseline2), there are a total

of 587 tied states6. The dimension of triphone supervec-

tors in model-based eigentriphone modeling is 3(states) ×
16(mixtures) × 39(MFCC) = 1, 872. The dimension of

triphone supervectors in state-based or cluster-based eigent-

riphone modeling is 16(mixtures)× 39(MFCC) = 624. The

number of bases for the three methods is 44, 132, and 587,

respectively7. In fact, cluster-based eigentriphone modeling

6The number of tied states was selected to maximize the phone recognition
accuracy of the development set. It turns out the number is close to but not
optimal on the core test set.

7Among the 48 phones that were selected for acoustic modeling, four
phones are different variants of silence and closure, and they were modeled
as monophone HMMs.
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Fig. 2. Improvement of cluster-based eigentriphone modeling over state-
based eigentriphone modeling on TIMIT phone recognition.

was conducted using the clusters defined by the same 587

tied states in the baseline2 system.
3) Results and Discussion: Phone recognition results of the

five systems are compared in Table III.

Though states are not tied in the three eigentriphone mod-

eling methods, they outperform conventional HMM training

without state tying by 3–4% absolute. In fact, their phone

recognition performance is comparable to conventional tied-

state HMM training, and cluster-based eigentriphone modeling

actually outperforms the latter by 1% absolute.

Among the three eigentriphone modeling methods, the

cluster-based method is the best, followed by the model-based

method and then the state-based method. Both of the model-

based method and state-based method estimate eigenbases

from all triphones of a base phone, but the former method

concatenates the three state supervectors of each triphone into

one long triphone supervector for basis derivation. The better

performance of the model-based method suggests that better

eigenbases may be produced by making use of the correlation

among the triphone HMM states. On the other hand, both of

the state-based method and the current cluster-based method

create eigenbases at the state level. The better performance

of the cluster-based method must be attributed to the higher

modeling resolution — 587 state clusters in the cluster-based

method versus 132 state clusters in the state-based method —

which more than compensates for the loss of state correlation

as in the model-based method, and gives the best performance.

We further compared the performance of state-based eigen-

triphone modeling with cluster-based eigentriphone modeling

when different forms of PCA was used, and when different

proportions of eigentriphones were pruned. Eigentriphone

pruning was done by first arranging the eigentriphones of

each basis in descending order of their eigenvalues, and

then retaining different number of leading eigentriphones for

modeling the triphones. The result is shown in Fig. 2. Since

the cluster-based method employs more state clusters than the

state-based method (587 vs. 132), the former creates about four

times more eigenbases than the latter. Equivalently, the number

of eigentriphones in each eigenbasis produced by the former

is only about 1/4 of the latter on average. However, according
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Fig. 3. Effect of the number of state clusters or tied states on cluster-based
eigentriphone modeling and conventional tied-state HMM training on TIMIT
phone recognition with phone-trigram language model.

to Fig. 2, one may still prune 60% of the eigentriphones in

both methods without any performance loss8. The figure also

shows that weighted PCA is more effective than standard PCA

in deriving the eigentriphones in both methods.

Table III only shows the best results of various systems

under the optimal settings determined by the development

set. The effect of the number of state clusters on cluster-

based eigentriphone modeling was also studied and compared

with the effect of using different number of tied states on

conventional HMM training as shown in Fig. 3. The results

show that for the same number of state clusters (or tied states),

cluster-based eigentriphone modeling always performs better

than conventional tied-state HMM training, and the optimal

number of state clusters is similar for both acoustic modeling

methods. The difference between the two curves in the figure

represents the amount of quantization error that is recovered

by the current cluster-based eigentriphone modeling method.

There is a price to pay for the better performance of

eigentriphone modeling. Since the triphone models produced

by eigentriphone modeling are distinct, their Gaussian means

are different from each other. Thus, their model size is

much bigger than the models produced by conventional tied-

state HMM training. For example, the conventional tied-state

HMMs (baseline2) in Table III only require 1.4MB to store

their Gaussian mean vectors9, but cluster-based eigentriphone

training requires 26.56MB with the use of the leading 40%

eigenvectors. Nevertheless, we believe this modest increase in

memory requirement by the eigentriphone modeling method

will not pose a problem in most applications given the low

price of today’s memory chips.

8Note that 40% of eigentriphones in the cluster-based eigentriphone mod-
eling method contain fewer eigentriphones than 40% of eigentriphones in the
state-base eigentriphone modeling method. Specifically, the former is about
1/4 of the latter.

9The memory requirement of transition probabilities and Gaussian variances
are not considered here as cluster-based eigentriphone modeling copies them
from the conventional tied-state HMMs. Thus, the memory requirements of
these quantities for both training methods are the same.

B. Experiment on WSJ

1) Speech Corpus and Experimental Setup: The standard

SI-284 Wall Street Journal (WSJ) training set was used for

training the speaker-independent model. It consists of 7,138

WSJ0 utterances from 83 WSJ0 speakers and 30,275 WSJ1

utterances from 200 WSJ1 speakers. Thus, there is a total of

about 70 hours of read speech in 37,413 training utterances

from 283 speakers. All the training data are endpointed. The

standard Nov’92 and Nov’93 5K non-verbalized test set were

used for evaluation using the standard 5K-vocabulary trigram

language model (LM) that came along with the WSJ corpus.

The set si dt 05.odd contains alternate sentences from the

1993 WSJ 5K Hub development test set after sentences with

OOV words were removed. It was used to tune the system

parameters. A summary of these data sets is shown in Table IV.

2) Acoustic Modeling: There were 18,777 cross-word tri-

phones based on 39 base phones. For the conventional tied-

state system (baseline2), the best performance was obtained

with 7,374 tied states. The dimension of triphone supervectors

in model-based, state-based, and cluster-based eigentriphone

modeling are the same as those in the TIMIT experiment,

namely 1872, 624, and 624, respectively; the number of bases

for the three methods is 39, 117, and 7,374 respectively.

TABLE IV
INFORMATION OF WSJ DATA SETS.

Data Set #Speakers #Utterances Vocab Size OOV LM Perplexity

SI284 283 37,413 13,646 11.95% —

si dt 05.odd 10 248 1,260 0 —

Nov’92 8 330 1,270 0 56.94

Nov’93 10 215 1,004 0.29% 61.82

TABLE V
WORD RECOGNITION ACCURACY (%) OF VARIOUS SYSTEMS ON THE WSJ

5K TASK USING TRIGRAM LANGUAGE MODEL.

Model Nov’92 Nov’93

baseline1: conventional training; no state tying 95.61 94.05

baseline2: conventional tied-state HMM training 96.32 94.21

model-based eigentriphone training model 96.26 94.52

state-based eigentriphone training model 95.87 94.15

cluster-based eigentriphone training model 96.32 94.54

3) Results and Discussion: The word recognition results of

various systems10 are shown in Table V.

Comparing the performance of baseline1 and baseline2,

we once again observe the effectiveness of state tying in

triphone acoustic modeling. However, eigentriphone modeling

can be an alternative: all the three variants of the method give

comparable, if not better, recognition performance on WSJ.

The state-based method is again the weakest among the three

eigentriphone modeling methods, the model-based method

and the cluster-based method have similar performance with

the latter being slightly better. On the Nov’92 test set, the

cluster-based eigentriphone modeling method has the same

word recognition accuracy as the conventional tied-state HMM

training method, but on the Nov’93 test set, the former actually

10Some of the results are different from those already reported in our past
conference papers due to minor changes in the training procedures such as
the number of Baum-Welch iterations.
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Fig. 4. WSJ recognition performance of cluster-based eigentriphone modeling
and conventional tied-state HMM training with varying number of state
clusters or tied states.

reduces the word error rate of the latter by 5.7%.

The performance of the cluster-based eigentriphone model-

ing method and conventional tied-state HMM training method

over varying number of state clusters or tied states were

also studied. The results are shown in Fig. 4. It can be

seen that cluster-based eigentriphone modeling always perform

better than conventional tied-state HMM training for the same

number of state clusters or tied states. Note that on the Nov’92

test set, cluster-based eigentriphone modeling may achieve a

better result of 96.69% word accuracy by using 3,690 state

clusters. The worse result of the method in Table V was

obtained with 7,374 state clusters which were found to be

optimal on the development set.

VI. CONCLUSIONS

State tying is a commonplace in the construction of triphone

hidden Markov models (HMM) for speech recognition. State

tying effectively balances data among frequently and rarely oc-

curring triphones to achieve robust estimation of their HMMs.

However, it also introduces quantization errors among the tied

states; that is, the tied states are not distinguishable. This

paper presents another solution called eigentriphone modeling

to the robust estimation of rarely occurring triphones without

requiring state tying so that all trained triphones are generally

distinct from each other. Three variants of the method are

investigated, namely the model-based, state-based, and cluster-

based eigentriphone modeling. The three variants differ in the

modeling unit (triphones or triphone states) and resolution.

With no surprise, empirically we find that the more general

cluster-based eigentriphone modeling method using state clus-

ters produced by the common phonetic state tying tree gives

the best performance in both TIMIT phone recognition and

WSJ word recognition. The use of state tying tree to define

state clusters also allows us to synthesize unseen triphones

using the same tree.

Although we call our method eigentriphone modeling, it

can be applied to other phonetic units such as quinphones

as well. Cluster-based eigentriphone modeling is also very

flexible; in this paper, we only investigate its use on state

clusters. In the future, we would like to investigate cluster-

based eigentriphone modeling on other kinds of clusters such

as clusters of triphones.
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