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Abstract—A meshless collocation method based on radial basis
function (RBF) interpolation is presented for the numerical solu-
tion of Maxwell’s equations. RBFs have attractive properties such
as theoretical exponential convergence for increasingly dense node
distributions. Although the primary interest resides in the time do-
main, an eigenvalue solver is used in this paper to investigate con-
vergence properties of the RBF interpolation method. The eigen-
value distribution is calculated and its implications for longtime
stability in time-domain simulations are established. It is found
that eigenvalues with small, but nonzero, real parts are related to
the instabilities observed in time-domain simulations after a large
number of time steps. Investigations show that by using global basis
functions, this problem can be avoided. More generally, the connec-
tion between the high matrix condition number, accuracy, and the
magnitude of nonzero real parts is established.

Index Terms—Eigenfunctions and eigenvalues, finite-difference
methods, meshless methods, resonance, time-domain modeling.

I. INTRODUCTION

I
N computational sciences, meshless methods recently

gained attention as a versatile technique for solving numer-

ical problems [1], [2]. For complex geometries in 3-D models,

mesh generation is a computationally involved problem, and

often requires additional manual labor to develop meshes

producing good results. In contrast, meshless methods are

based on an arbitrarily distributed set of node locations. This

is an advantage since no explicit connectivity between these

nodes is required, in contrast to the information required to

store volumes, surfaces, and nodes in a conformal hexahedral

or tetrahedral mesh-based method. The flexibility in the node

distribution allows for conformal and multiscale modeling.

Additionally adaptive refinement can be performed with a

significantly smaller computational effort since nodes can be

added, removed, or displaced with an overhead much smaller

than conventional remeshing [3].
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Numerous approaches exist in the literature to solve the spa-

tial interpolation problem, e.g., the smooth particle hydrody-

namics (SPH) method [4], least squares based methods [5], or

interpolation based on radial basis functions (RBFs) such as

the radial point interpolation method (RPIM) [6], [7]. All these

approaches have in common that a node-based interpolation

scheme describes the connectivity between the nodes of the

computational domain.

The method presented in this paper is a domain discretization

collocation method with interpolations based on scalar RBFs.

Most theoretical studies use global basis functions, which re-

late each node with all the others in the computational domain

[8]. In [9], local basis functions have been introduced, which

reduce the computational effort significantly, though at the cost

of reduced accuracy and threat to numerical stability. The ex-

tent of the basis function is controlled by a shape parameter.

It has been shown in [10] that the interpolation accuracy can

be improved by using increasingly flat basis functions. This

theoretically leads to exponential convergence by adapting the

shape of the basis functions ( -refinement) only, at no addi-

tional computational cost for a fixed node distribution. There

is, however, a practical limitation to this convergence, reached

at the point where the problem becomes ill conditioned and

the scheme breaks down. On the other side, increased spatial

discretization ( -refinement) is also expected to lead to a so-

lution converging at a much higher rate than the conventional

finite-element method (FEM) or finite difference time do-

main (FDTD). Combining both - and -refinement allows for

an adaptation scheme similar to -FEM [11], where a combi-

nation of mesh adaptation and local adaptation of the polyno-

mial degree is used to increase accuracy. Here, we can combine

the addition and movement of nodes with an optimization of

the shape parameters ( -adaptivity). For scalar problems, a de-

tailed study has been presented in [12] where an estimate for the

spatial convergence rate for the maximum field error was given

as with and the number of degrees of

freedom. This theoretical convergence rate is compared to that

of FDTD and -FEM in Fig. 1.

The research focus of the authors is on a time-domain im-

plementation of RPIM applied to the solution of Maxwell’s

equations with emphasis on transient nonlinear phenomena in

plasmonic and photonic nanostructures. In computational time-

domain electromagnetics, recently demonstrated meshless ap-

proaches include different variants, such as SPH for electromag-

netics based on SPH [13], [14] and the radial-point interpolation
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Fig. 1. Exemplified illustration of the highest theoretical convergence rates of
relative errors when increasing the fineness of the spatial discretization. Shown
are low-order methods like FEM or FDTD, high-order �-FEM, and RPIM using
global RBFs.

time-domain (RPITD) method in [15]. An alternating-direction

implicit implementation for RPITD has been presented in [16]

and a 3-D implementation has been introduced in [17]. The oc-

currence of longtime instabilities for the method and the influ-

ence of parameter selection has been reported previously in [18].

However, recently the authors of [19] derived a stability crite-

rion for 1-D cases.

In [20], an eigenvalue solver for resonant structures has been

introduced, based on Maxwell’s equations using both electric

and magnetic fields and their first-order spatial derivatives (first-

order form). The focus of this paper was on the convergence of

the eigenvalues using local base functions. This paper extends

the findings by further investigating the accuracy of the eigen-

modes for numerous sets of parameters. A comparison between

local and global basis functions is given and the possibility of

spatial and parameter convergence is demonstrated. A

detailed look at the eigenvalue distribution reveals the connec-

tion between longtime stability of the method and parameter se-

lection. This paper focuses on a 2-D implementation, which is

suitable for the general investigation of these effects. An exten-

sion in the future to three dimensions is a natural next step.

II. RADIAL POINT INTERPOLATION

RPIM uses an interpolation method based on RBFs. RBF

interpolations have become the subject of considerable research

efforts over recent years due to their excellent interpolation

property for scattered data. In the following, both global and

local basis functions are described and compared. Global basis

functions take the whole domain into account. This leads to

full matrices. In principle, the computational effort can be

reduced by the use of compactly supported functions such as

Wendland’s functions [21]. A further decrease of computational

cost is achieved in a localized implementation with local RBFs

where only field values in the vicinity of each node inside a

local support domain are considered, leading to an efficient

algorithm using sparse matrices.

A. Global Basis Functions

A field component at position in a domain containing

nodes is interpolated as

(1)

Fig. 2. Influence of the shape parameter � and support domain size � on
Gaussian RBFs. The solid lines shows a truncated Gaussian RBF defined lo-
cally in a support domain with radius � . The dashed lines show the untruncated
Gaussian RBF on a global support domain.

where the RBFs

(2)

are of Gaussian type with shape parameter (Fig. 2). The nor-

malization factor denotes the average distance to the next

node inside the computational domain.

The interpolation by RBFs can be expanded to provide accu-

rate approximation of polynomial functions (monomial repro-

duction) using monomial basis functions in (1). Gener-

ally, those additional monomials are of low order

zero order: (3a)

first order: (3b)

second order: (3c)

with denoting the number of terms in the function .

The interpolation parameters and are calculated in a pre-

processing step as follows. A system is set up to interpolate the

field values in the nodes . This system

can be written in the form

(4)

which includes the constraint condition . This condi-

tion leads to a square invertible matrix. Thus, the interpolation

parameters can be calculated as

(5)

and the shape function is subsequently obtained from

(6)

Note that fulfills the delta property, i.e., it guarantees an

exact fit on the nodes. Similarly, the approximation of the spatial

derivations along can be expressed as

(7)
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Fig. 3. Local support domain with radius � . Average node distance � is used
for normalization of RBFs.

The interpolation of scattered data using RBFs has only recently

been investigated intensively, and the theoretical mathematical

foundation is not completed yet. The question of whether the

problem (4) is solvable and always yields unique solutions has

only been partially answered [7] since there exist cases using

local basis functions and monomial basis functions of order

where the matrix is singular even though using posi-

tive definite RBFs. Nevertheless, it has been reported that for

practical applications and using Gaussian basis functions, the

system is solvable [21], [22].

The shape parameter in (2) influences both the condition

number of the matrix and the interpolation accuracy. As men-

tioned previously, it has been shown that low values for , i.e.,

flat basis functions, give better interpolation accuracy. Consid-

ering the form of the matrix in (4), it is understandable that

the condition number of becomes higher when the basis func-

tions become flatter, as all elements in become close to unity.

At one point, even double precision arithmetic is bound to suffer

from round-off errors that results in a significant degradation

of the interpolation accuracy. In [23] and [24], this behavior

has been described and several preconditioning techniques have

been proposed. A study on the influence of the shape parameter

and the order of the monomial basis on the accuracy

and eigenvalue distribution will be shown in the numerical ex-

periments. Moreover, an algorithm to automatically select an

optimized shape parameter is applied.

B. From Global to Local Basis Functions

The step from global to local basis functions is thoroughly

described in [7], and therefore, only briefly summarized here.

Instead of calculating the global basis functions for all nodes,

only points within a support domain are consid-

ered to define local RBFs, as shown in Fig. 3. The average node

distance in 2-D can be approximated with knowledge of the

number of neighbor nodes in the support domain as

(8)

The term is the physical area of the support domain

with radius . In the local case, this support domain size is

an additional interpolation parameter, which has to be set as a

tradeoff between efficiency and accuracy. The size of the sup-

port domain determines the number of nodes influencing

a given node. Instead of computing one large global system, a

large number of small local systems are then solved. As a result,

the memory usage and calculation time can be heavily reduced

Fig. 4. Generation of dual �-node distribution, based on a given distribution
of �-nodes. The dashed polyhedrons are generated via a Voronoi tessellation.

when using local RBFs compared to global basis functions. This

comes at a cost of reduced interpolation accuracy.

III. NODE DISTRIBUTION

In contrast to second-order problems (e.g., wave equation)

where only one field, electric or magnetic, needs to be calcu-

lated, special arrangements of the collocation nodes are advan-

tageous when the Maxwell’s equations in first-order form are

solved. In the FDTD method, the staggered Yee scheme yields

second-order accuracy [25]. A similar approach is taken in the

present case, which results in two sets of staggered node distri-

butions for - and -fields. All components of the -field are

stored in one set of nodes ( -nodes), and all components of the

-field are stored in a dual node distribution ( -nodes) [26].

A. Dual Node Distribution

The generation of the two sets of staggered node distributions

is done as follows: first an arbitrarily distributed set of -nodes

is generated. This facilitates modeling of the boundaries due to

the currently implemented Dirichlet boundary conditions for

the transverse electric field [perfect electric conductors (PECs)].

A Voronoi tessellation of these nodes [27] is generated and the

-nodes are placed on the edge centers of the Voronoi cells,

as illustrated in Fig. 4. This leads to two separate sets of shape

functions that approximate the - and -field component

values, respectively. The approximation for the scalar spatial

derivatives of the -field can be expressed as

at the -node locations in accordance with (7). Vice versa,

for the dual nodes, are the shape functions for the

spatial derivatives of the -field at the -node locations .

B. Superposition

If two nodes are anomalously close to each other in an oth-

erwise nearly homogeneous node distribution, two almost iden-

tical entries in the interpolation matrix (4) are created. This

leads to ill conditioning, regardless of the shape parameter .

Hence, in such cases, a matrix solver will always give inaccu-

rate interpolation results. During node generation, a limit for the

minimum relative node distance solves this issue.

C. Boundaries

It has been pointed out in [28] that interpolation accuracy

is increased when a higher density of nodes is chosen close to
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and at the boundary. Thus, in the present case, node density for

boundary nodes has been doubled.

IV. APPLICATION TO MAXWELL’S EQUATIONS

The discretized conservative and source-free Maxwell’s

equations can be written as

frequency domain:

time domain: (9)

where is the diagonal material mass matrix

and is the curl matrix. and denote

the electric and magnetic vector fields.

A. Eigenvalue Solver

The eigenvalues correspond to the resonant frequencies

of the resonator and the eigenvectors represent the field

distribution of each mode. In a 2-D transverse magnetic (TM)

case with the -invariant field components , , and , the

problem is reduced to the generalized eigenvalue problem

(10)

The vectors , , and are vectors with lengths equal to

the number of electric and magnetic field nodes, respectively.

The matrix for TM-polarized waves contains the spatial

derivatives in the - and - direction

(11)

The real valued matrices are obtained

by inserting the derivatives of the shape functions (7)

(12)

and

(13)

For local RBFs, these matrices are of sparse nature with the

number of entries per row equal to the number of neighbors

considered in the support domain.

The present investigation concerns cavity resonators with a

perfect electric conducting boundary. Due to the delta property

of RBF interpolation, this Dirichlet boundary is implemented

by placing zero-valued -nodes at the boundary.

B. Time-Domain Solver

A thorough description of the time-domain implementation

used here has been given in [18]. Therefore, the method is only

Fig. 5. Model of the cylindrical cavity with staggered �- and �-node distri-
butions.

Fig. 6. Representation of the stiffness matrix � using: (left) local and (right)
global basis functions. Nonzero elements are indicated by dots.

briefly summarized below. The temporal derivative in (9) is dis-

cretized by a staggered march in time, which corresponds to a

second-order leapfrog scheme. This has been chosen here for

simplicity and efficiency. When retaining the nomenclature of

the previous section, the explicit time-domain update equations

can be expressed as

(14a)

(14b)

(14c)

with the source term and superscripts indicating the index

of the time step.

The stability region of the leapfrog scheme for first-order

problems lies on the imaginary axis. The maximum imaginary

part of the eigenvalues therefore determines the maximum time

step for stable iterations. In [29], the authors apply the condition

(15)

for the time stepping. This estimate is based on the distance

to the closest neighbor of node and the speed of light
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Fig. 7. Convergence analysis for the shape parameter � . The � -error � is shown for local RBF with � � ���� in (a), � � ���� in (b), and global RBFs
in (c).

. It proves to be a good, even though conservative estimate

for stable simulations.

In the following numerical experiments, it is found that for

some sets of parameters, the high-frequency eigenvalues have

nonzero real parts. These eigenvalues correspond to nonphys-

ical instabilities that become apparent after long simulation time

(hundreds of periods). Several approaches can be taken to im-

prove longtime stability.

1) Conditions for the interpolation parameters can be deter-

mined for which the eigenvalue distribution fits into the

stability region of the leapfrog scheme in the form of a pa-

rameter study.

2) Reference [30] describes several high-order schemes that

include nonzero real parts of the eigenvalue distribution

into the stability region. The high-order schemes result,

however, in higher computational costs and requires

scaling of the time step to fit all nonzero valued eigen-

values into the stability region.

3) In [31], the implementation of a digital low-pass filter into

the time iteration is proposed to suppress unstable modes

for a hybrid finite-element/FDTD method. This approach

unfortunately adds dispersion to the numerical solution.

In this paper, the first of these approaches is chosen. An exten-

sive parametric study is conducted to find which parameters are

suitable to provide longtime stability.

V. NUMERICAL EXPERIMENTS

Numerical experiments in a cylindrical PEC cavity have been

performed. The discretized physical model of the cylindrical

cavity is depicted in Fig. 5. The average node distance is ,

and for the time-domain simulations, a source node is placed

off-center. At the boundary, the node density is increased for

higher accuracy. The cavity has a radius of 149 mm, which cor-

responds to one free-space wavelength at 2 GHz. The stiffness

matrix (11) and the mass matrix (9) have been assem-

bled before solving the eigenvalue problem (10). The stiffness

matrix configuration is depicted in Fig. 6 for local and global

basis functions. The localized case results in a sparse matrix.

For global basis functions, the connectivity of all nodes results

in a block-wise full matrix. For the corresponding time-domain

simulations, the explicit update equations (14) are used.

In a first step, numerical experiments are performed for the

eigenvalue problem to show parameter convergence and spatial

convergence. The analysis in [20], which was focused on the rel-

ative errors for the calculated resonance frequency, is extended

here to quantify the error in the field distributions.

The -error between the numerically computed -field

and the theoretical field is calculated as

(16)

where denotes the computational domain. The domain is

fragmented into Voronoi cells during the generation of the dual

grid that defines an area associated to each -node . The

relative eigenvalue error has been calculated as

(17)

with being the complex valued numerical eigenvalue. The

exact -eigenvalues and -eigenmodes are

(18a)

(18b)

where denotes the th zero of the th-order Bessel func-

tion and stands for the speed of light in free

space [32].

In a second step, the total energy in the system has been ob-

served for time-domain simulations. The explosion of nonphys-

ical modes can be linked to nonzero real parts of the eigen-

values. As a lossless resonant cavity is simulated, the energy in

the system has to remain constant after having been introduced
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Fig. 8. Convergence study of two eigenmode field distributions �� in (a) and�� in (b) for the�-field for global RBFs. The � -error � is calculated for
different shape parameters � .

into the system. Observing the total energy allows to investigate

longtime stability and possible dissipation effects. The normal-

ized energy of the discretized problem is approximated as

(19)

assuming a homogeneous node distribution with approximately

equal areas of each Voronoi cell. The ratio of number

of - and -nodes estimates the size difference between -and

-cell areas. The approximation is justified for the present

problem, as the -field is zero at the boundary, where the node

distribution is inhomogeneous.

A. Parameter Convergence

To analyze parameter convergence, a node distribution with

fixed discretization of mm or 12 nodes over the ra-

dius has been generated. This results in a total of

degrees of freedom. The convergence of the first eigenmode

was analyzed in terms of parameter selection. The re-

sults are expected to yield better accuracy for small shape pa-

rameters , i.e., flat RBFs, until at a certain point the matrix

condition number becomes too high for accurate numerical in-

version and the interpolation breaks down. A comparison is per-

formed between local and global RBFs. For the local case, two

different support domain sizes have been chosen, resulting in

neighbors on average for and

for . The -error has been calculated and is shown

in Fig. 7. When no monomial basis functions are used ,

it can be observed that a higher accuracy is achieved with global

RBFs compared to local RBFs. The additional monomial basis

functions prove beneficial for local basis functions as

the shape parameter is increased. The expected increased ac-

curacy due to a reduced shape parameter could generally be

confirmed. However, this happens at the cost of stability, as ex-

pressed by the breakdown in accuracy observed for the smallest

shape parameters.

Fig. 9. Condition number for the parameter sets in Fig. 8.

Fig. 10. Spatial convergence of the first six eigenvalues. The relative eigenvalue
error � is calculated for the eigenmodes �� � � � �� .

For global RBFs with monomial reproduction , it

is not possible to reach results comparable to because

the influence of an increased condition number impairs the re-

sults more severely than the gain in accuracy. It can be finally
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TABLE I
COMPARISON OF NUMBER OF DEGREES OF FREEDOM �� � AND EXECUTION TIME BETWEEN THE

FIRST-ORDER FEM, SECOND-ORDER FDS, AND RPIM TO ACHIEVE A GIVEN ACCURACY

observed that when the size of the local support domain is in-

creased, the results approach those achieved using global sup-

port.

For practical implementations, depending on the required ac-

curacy, either global RBFs without monomial basis functions

and with a coarse discretization, or local basis functions

with monomial expansion using finer discretizations,

can lead to efficient simulations.

B. Spatial Convergence Using Global Basis Functions

In [20], the spatial eigenvalue convergence for local basis

functions has been demonstrated. Here, these findings are sup-

plemented by analyzing the performance of global basis func-

tions. Monomial reproduction has been shown not to be bene-

ficial for global basis functions in the convergence analysis of

the previous section, therefore it is not applied in the following

. Several node distributions with discretizations in the

range of [50 mm, , 7.5 mm] are considered, which correspond

to discretizations of [3, , 20] nodes per radius. This results

in [111, , 8457] numbers of degrees of freedom. We use a

sparse eigensolver as provided by ARPACK [33] to compute a

few eigenvalues of these large systems.

1) Parameter Influence: In a first step, the -error of the

and eigenmodes have been calculated and the re-

sults are depicted in Fig. 8. The -error converges at different

rates for different shape parameters. Generally, lower values for

the shape parameter , i.e., increasingly flat basis functions,

give higher accuracy. High convergence can then be achieved

by an optimization of the shape parameter, for a given node

distribution [12]. Therefore, the “leave-one-out cross valida-

tion” (LOOVC) algorithm [8] has been implemented, which op-

timizes the shape parameter for maximum accuracy by using

a minimization algorithm. The cost function is an efficient ap-

proximation of the maximum error that is built by removing

one node at a time and calculating the interpolation error for

the derivative at this node. The LOOCV algorithm gives a good

approximation of the optimized shape parameter.

Fig. 9 shows the two-norm condition number of the interpo-

lation matrix. Best results were achieved when the condition

number is as high as possible while remaining below the limit

where the accuracy of the matrix inversion breaks down. The

condition number yields degenerated estimates for very ill-con-

ditioned matrices with . Thus, only unreliable

conclusions can be drawn above this value even if highly accu-

rate interpolation accuracy might still be achieved for very high

condition numbers.

2) Optimizing Shape Parameter: In a second step, the con-

vergence of the relative eigenvalue error has been investigated

for the eigenmodes . Each discretization is

Fig. 11. Eigenvalue distribution for the parameter set � � ���, � � �. On
the left are local RBFs with a support domain size of � � ���� , on the right
are global RBFs. The dark bar represents the bandwidth of the time-domain
simulation.

again subject to an optimization of the shape parameter by the

LOOCV algorithm. The results are shown in Fig. 10, demon-

strating the convergence for all presented eigenvalues. Table I

compares the execution time for the eigenvalue solvers of

RPIM versus the finite-element and finite-differences toolbox

in MATLAB. The times are given for two cases that consider

different accuracies in terms of the -errors. The compar-

ison demonstrates the advantages of the highly accurate RBF

interpolation technique. Note that only conventional -FEM

is examined. High convergence rates can also be achieved by

using -FEM with curved elements [11]. The difficulties for

finite differences (FDs) to achieve the required accuracy is ex-

plained by the low-order in-cell approximation and stair-casing

effects.

C. Eigenvalue Distribution

The eigenvalue distribution computed using an eigenvalue

solver for full matrices [34] is plotted in Fig. 11. The eigenvalues

are symmetric with respect of the imaginary and real axis. It can

be observed first that dc modes, i.e., at , exist. This is

not surprising as the divergence condition of Maxwell’s equa-

tions is not explicitly enforced. Further, at low frequencies, no

unphysical modes are observed, i.e., the eigenvalues are purely

imaginary and each corresponds to a physical mode. At higher

frequencies, nonzero real parts begin to occur. Even if these

unstable eigenmodes are at very high frequencies, beyond the

highest simulated frequency in time-domain solutions, eigen-

values with nonzero real parts are known to cause instabilities

in time-domain simulations: due to numerical noise, the modes

get excited and eventually cause instabilities because of their

nonphysical amplification.
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Fig. 12. Distribution of nonzero real parts� of the eigenvalue spectrum (black) and the condition number of the respective interpolation matrix (gray). Comparison
between local RBF with: (a) � � ���� (b), local RBF with � � ���� , and (c) global RBFs.

Fig. 13. Normalized energy � in cylindrical resonator. Comparison between local RBFs with � � ���� and global RBFs using no monomial basis functions
�� � �� in (a) and first-order monomial basis functions �� � �� in (b).

The magnitudes of these nonzero real parts have been ana-

lyzed for multiple sets of parameters and the relative magnitude

is calculated according to

(20)

Fig. 12 shows these magnitudes for local and global RBFs. With

local basis functions and no monomial basis functions ,

the magnitude of the nonzero real parts decreases for increasing

shape parameter , which is indicative of a longer time sta-

bility. For though, the magnitudes remain quite high,

with a minimum at approximately . For global RBFs,

the magnitude of the nonzero real part goes to zero, when the

matrix condition number is significantly below the numerical

limit of 10 at . This means that time-domain sim-

ulations will always be longtime stable, provided the condition

number is sufficiently low. This also applies to all cases with a

monomial basis function. When the size of the support domain

is increased for local RBFs, the condition number of the inter-

polation matrix is driven up, but the nonzero real parts decrease

in the region where .

D. Time Domain

In the following, time-domain simulations are performed

for very long times to relate the previous findings on spurious

modes to long-term stability. The same node distribution as for

the parameter convergence has been chosen with 2944 degrees

of freedom. Energy was injected into the system over one

source node in the bandwidth GHz GHz . The simu-

lation has been run for 10 periods at the center frequency.

The number of time steps required was . In

Fig. 13, the energy over time is shown for different parameters.

Local RBFs with are compared against global

RBFs. It is clearly observed that the higher the nonzero real

part of the eigenvalue, the earlier instabilities occur. In the

case of local RBFs, for higher values of the shape parameter

, this magnitude becomes very small and longtime

stability is ensured. As expected, global RBFs perform very

well for . For smaller values of , nonphysical modes

dominate the time-domain simulations from early on. It is also

noted that no dissipative effects have been observed for any set

of parameters.
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VI. CONCLUSION

A detailed study of the eigenvalue properties of the RPIM for

electromagnetics with a staggered - and -node distribution

has been performed. For a fixed discretization, the numerical

error can be reduced by optimizing the shape parameter ( -re-

finement). The error decreases for increasingly flat basis func-

tions, until the numerical limit of the interpolation matrix in-

version is reached. Due to theoretical exponential convergence,

global RBFs allow for much smaller errors than local basis func-

tions at the cost of increased computational effort associated

with the inversion of a full system matrix in preprocessing. Due

to the spatial convergence, accuracy can also be increased by

refined spatial discretization ( -refinement). Again operating at

high matrix condition numbers, the errors decrease for increas-

ingly fine discretizations. By applying the LOOCV algorithm, a

shape parameter could automatically be selected. This suggests

the need for further research in the field of -adaptivity as the

combination of the two refinements appears the most efficient

strategy.

The relative magnitudes of the nonzero real parts of the eigen-

values have been confirmed as an indicator for the longtime-sta-

bility of time-domain simulations. Local basis functions with

low monomial degree and large shape parameters, or global

basis functions with sufficiently large shape parameters, proved

to be a feasible solution to grant stable simulations over very

long times. In general, global RBFs can be applied for small

problems with high accuracy, or in combination with a domain

decomposition method leading to block-wise full matrices for

large problems. If the problem becomes very complex, local

RBFs can be used to resolve the geometry with a large number

of points.

In future work, for a time-domain implementation, the accu-

racy of the time integration can be improved by using high-order

time-stepping schemes. In general, the method can be further

improved with a better optimization algorithm for the shape pa-

rameter. For practical implementations, the treatment of ma-

terial discontinuities has to be further addressed to reduce the

Gibbs phenomena due to discontinuities in the fields at material

interfaces.
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