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ABSTRACT

The mapping of road environments is an important task, providing important input data for a broad range of scientific disciplines.

Pole-like objects, their visibility and their influence onto local light and traffic noise conditions are of particular interest for traffic

safety, public health and ecological issues. Detailed knowledge can support the improvement of traffic management, noise reducing

infrastructure or the planning of photovoltaic panels. Mobile Mapping Systems coupled with computer aided mapping work-flows

allow an effective data acquisition and provision. We present a classification work flow focussing on pole-like objects. It uses

rotation and scale invariant point and object features for classification, avoiding planar segmentation and height slicing steps. Single

objects are separated by connected component and Dijkstra-path analysis. Trees and artificial objects are separated using a graph

based approach considering the branching levels of the given geometries. For the focussed semantic groups, classification accuracies

higher than 0.9 are achieved. This includes both the quality of object aggregation and separation, where the combination of Dijkstra-

path aggregation and graph-based classification shows good results. For planar objects the classification accuracies are lowered,

recommending the usage of planar segmentation for classification and subdivision issues as presented by other authors. The

presented work-flow provides sufficient input data for further 3D reconstructions and tree modelling.   

1.1.1.1. INTRODUCTION

1.1 Background

The automatic classification of urban road environments and the

detection of single objects such as traffic signs and trees is an

important task for a variety of topics. Point cloud classification

provides a fundamental input to the reconstructions of 3D

scenes, which are used in road safety, public health, ecological

and micro climatic applications (e.g. Zhou and Vosselman

2012, Pu et. al 2011, Brunner 1998, Endelaw et al. 2009). For

road safety issues the mapping of traffic signs, curbstones and

trees is of importance. For the management and assessment of

urban vegetation, i.e. for above ground biomass and leaf area

measures, the extraction and classification of single trees is

required. Trees, and their complex transparency properties, are

of particular interest for the assessment of light and traffic noise

conditions and visibility studies in urban planning.

In order to provide appropriate input data for such applications,

surveys with mobile mapping systems mounted on cars or other

vehicles are combined with automated computer-aided

extraction work-flows allowing efficient data processing and

mapping of  larger areas e.g. along road corridors.

1.2 Related work

For the automatic detection of objects from mobile laser

scanning (MLS) data a variety of methods is available. For

example Zhou and Vosselman (2012) are detecting curbstones

by analysing local height jumps.

Trees can be detected by the echo ratio measures (Rutzinger et

al. 2011) and pole-like structures can be identified by height

percentile techniques (Zhong et al. 2013, Pu et al 2011).

Many work-flows apply a planar segmentation to the point

cloud which is an indirection for the detection of non-planar

objects. As poles and trees show rather linear or cylindrical

patterns, an alternative approach might be better suited. 

Gross and Thoennessen (2006) and Jutzi and Gross (2009)

provide discriminating features to select points belonging to

linear, planar and other structures in point clouds.

Object reconstruction approaches relying on graph-analysis

such as tree skeletonization (Dai et al. 2009, Dai et al. 2010,

Livny et al. 2010, Bremer et al. 2013) or building modeling

(Oude-Elberink and Vosselman 2009) allow the separation of

complex semantic groups. 

Especially for trees, the separation of interlinked tree crowns

and nearby objects is an important task. While Zhou and

Vosselman (2012) and Zhong et al. (2013) use Voronoi-regions

and related approaches for the separation of tree crowns, Livny

et al. (2010) investigate the suitability of a Dijkstra cost

algorithm (Dijkstra 1959) to associate crown points to the tree

trunk. 

2.2.2.2. METHODS

2.1 Overview

Our approach focuses on rotation and scale invariant point and

object features for point cloud classification (Gross and

Thoennessen 2006) avoiding planar segmentation and height

slicing steps.  
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For this work-flow, we are focusing on the detection and

subdivision of artificial pole based objects (AP) such as lamps

and traffic signs, and natural pole supported objects such as

trees (T). As additional classes, we separate ground (G), ground

inventory (GI) such as curbstones and lower objects, walls (W),

wall inventory (WI) such as window-frames, doors and building

columns, roofs (R), and undefined objects (UD) such as moving

cars or people. Points associated with mirror effects of

windows, are treated as undefined objects.

In order to extract different object classes from the MLS data

we use a step by step procedure generating primitive

geometrical object classes from simple point information

derived by a multi-scale approach. Using connectivity and

graph-based analysis on primitive objects, more complex

objects are derived and separated. The method consists of four

main steps

(1) For each raw point the local point neighbourhood in

both a 0.1 m radius and a 0.5 m radius is encoded into

a 3x3 covariance matrix from which eigenvalues and

eigenvectors are derived.

(2) Characterizing each point by its eigenvalues derived

from both 0.1 m radius and 0.5 m radius

neighbourhoods, two 3-dimensional feature spaces are

defined. For three given feature patterns (linear,

planar, volumetric), a proximity analysis is performed

for each point in the feature spaces. On both scale

levels the points are grouped into the three given

primitive classes. Using the orientation of the longest

eigenvector for linear objects and that of the smallest

eigenvector for planar structures, vertical and

horizontal sub classes are derived.

(3) By applying conditions to both scale level

classifications and by a connected component

analysis, walls, wall-inventory (e.g. window frames),

ground and ground-inventory (e.g. poles) are

separated.  

(4) Pole objects including trees are separated using a

Dijkstra region growing approach. Artificial pole

objects such as lamps, traffic signs and traffic lights

are further separated from trees using branching levels

derived from skeletonization (see Bremer et al. 2013)

and graph-analysis. 

2.2 Multi scale feature computation 

For each point, local point neighbourhood features are

computed. All barycentric coordinates of points lying in a

spherical radius around a search point are encoded into a

covariance matrix ATA (Eqn. 1). The encoding is done for both

a 0.1 m radius (r01) and a 0.5 m radius (r05). The radii were

chosen after visual analyses considering the optimized

extraction of smaller poles (e.g. thin branches (r01)) and larger

posts (r05). 

From the covariance matrices, three specific eigenvalues, three

eigenvectors, and the vertical angles of the longest and the

smallest eigenvectors are computed for each radius (r01, r05)

respectively. 

According to the usually high point density of the original MLS

data, a search radius of 0.5 m is increasing the computation time

significantly. Thus we use a hierarchical approach, analysing

the neighbourhood of a 0.1 m block-thinned point cloud for

each point of the original point cloud. This is reducing the time

required for computing and leads to a generalization of the

input data, increasing the coarse scale effect of the 0.5 m radius

search.

(1)

2.3 Primitive classification

The specific relationship of the normalized largest eigenvalue

(eL), intermediate eigenvalue (eI) and the smallest eigenvalue

(eS) is a characteristic feature for the shape of individual point

sets.

In order to classify the raw points into the primitive classes

'linear', 'planar', and 'volumetric', we define three specific

eigenvalue patterns for each class (values between 0 and 1): 

linear: eL = 0.75, eI = 0.16, eS = 0.04

planar: eL = 0.45, eI = 0.45, eS = 0.01

volumetric: eL = 0.45, eI = 0.45, eS = 0.30

The eigenvalues of the patterns are averaged values derived

from small training areas of the selected classes.

In the 3-dimensional feature spaces spanned by the eigenvalues

r01 and the eigenvalues r05, each data point is assigned to the

primitive pattern to which the shortest Mahalanobis Distance

(D) is observed. The Mahalanobis Distance (Eqn. 2) is the

statistical distance measure (D) where, in addition to the

euclidean distance, the covariance matrix (S) of the dataset is

considered. Here, S is computed as shown in equation 1 using

the feature space vectors eL, eI, eS instead of the x,y,z

coordinates.

( ) ( ) ( )yxSyx=y,xD T ������ −− −1                                   (2)

This leads to the primitive classifications (linear01, planar01,

volume01, linear05, planar05 and volume05). 

The linear and planar classes are further split into vertical,

horizontal and other orientations (vert_planar01, hor_planar01,

vert_linear01, etc.). For linear structures the orientation of the

longest eigenvector is used. A horizontal structure shows a

vertical angle of the longest eigenvector < 10°, a vertical

structure > 80°. For planar structures the orientation of the

smallest eigenvector (corresponding to the normal vector) is

used. A horizontal structure shows a vertical angle of the

smallest eigenvector > 80°, a vertical structure < 10°. For

volumetric structures, the orientation is not defined.

2.4 Object classification

In the next step, the multi scale primitive classification is used

to aggregate and separate semantic groups. Based on the

primitive classification, a region growing in object space is

performed in order to separate smaller and larger homogeneous

point clumps.  
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The following criteria are used for classifications:

Poles: vert_linear05 OR (vert_linear01 AND NOT planar05)

AND clump size > 100

Ground: (hor_planar01 OR hor_planar05) AND clump size >

30000)

Walls: (vert_planar01 AND NOT vert_line05) AND clump size

> 3000

Applying the 0.1 m radius leads to small blurring effects.

Smaller branches and thin poles are detected as linear

structures. Larger objects appear as vertical planes and not as

poles. Showing a more intense blurring, the 0.5 m radius

classification is applied in order to also classify larger trunks as

linear structures. Combining both classifications exploits the

advantages of both scales and leads to a reliable extraction of

pole-like structures.

Due to inhomogeneous point densities and scan patterns in

MLS point clouds, single scan lines on the road and other flat

surfaces may be classified as linear or volumetric structures

using a 0.1 m radius. Therefore, both 0.1 m and 0.5 m radius are

used for ground classification. Additionally, ground segments

are usually large and include a lot of points.

Since building walls are mostly vertical, the use of the

vert_planar01 feature leads to a sufficient separation of building

walls.

In order to avoid noise in the object classification results,

minimum cluster sizes are introduced. Connected ground

clusters need to show a minimum point count of 30.000 pts.

wall clusters need to show a minimum point count of 3.000 pts.

and pole clusters of 100 pts.

For the separation of wall-associated elements (e.g. columns

and window frames) and ground-associated poles (e.g. traffic

signs and tree trunks) we additionally apply distance thresholds.

A ground inventory feature needs to show a distance to a

ground cluster smaller than 1 m and a minimum distance to a

wall cluster of 3 m. A wall feature needs to show a distance to a

wall cluster smaller than 1 m 

2.5 Graph-based classification for pole supported objects

As a lot of applications need reconstructed 3D models as data

input, automatic mobile mapping work-flows often include

linear and polygonal geometry reconstruction. Thus, we

integrate a skeleton graph reconstruction step into our

classification work-flow. In order to extract trees and tree trunks

from the data set, we analyse the point neighbourhood in the

upper half-space of a pole feature. Object clumps are grouped

using a Dijkstra region growing procedure.

Using the pole as a seed-object for a skeletonization, a graph is

build for each pole component and its associated

neighbourhood.  

3.3.3.3. DATA SET

The test site is located in Rheine, Germany. The MLS data was

aquired by TopScan GmbH in March 2013 using the Optech

Lynx Mobile Mapper system with two rotating laser scanners

mounted in a 45° angle with the driving direction of the vehicle

(Optech 2013). For this study an exemplary road segment, 300

m in length, is processed. It was scanned in one driving

direction. The point cloud merged from both sensors contains

5,838,701 pts. and shows an averaged point distance of 2 cm.

Simultaneously with the scan, panoramic images were shot

using a Ladybug panoramic camera system (Point Grey, 2013).

The threshold values given in section 2 were obtained from a

small training area in the centre of the data set. These values

were validated against the whole MLS data set. Therefore, the

whole point cloud, was manually classified into the target

classes (reference) comparable to the automatic classes.

4.4.4.4. RESULTS

4.1 Qualitative results

Using a 0.1 m radius (Fig. 1), small tree branches and poles of

traffic signs are classified as linear structures. Volumetric

patterns are restricted to sharp edges on building walls and

curbstones. However, linear and volumetric patterns are also

found on planar features such as roof and ground surfaces.

A 0.5 m radius search (Fig. 2) allows the detection of larger

poles. Roofs are detected as planar features. Curved free-form

features such as cars and other moving objects show volumetric

patterns. Volumetric patterns are also found in tree crowns. 

The Dijkstra region growing for artificial poles and trees shows

correct results, even in dense and closely connected

neighbourhoods. The threshold-based classification leads to

some less reliable classifications (see Fig. 3, 4 and 5 as

reference). As can be seen in Fig. 6, the maximum hierarchical

branching level of an artificial pole-like object (lamp or traffic

sign) is between 0 and 4, while trees show much higher

branching levels. This leads to a visually sufficient separation of

both classes (Fig. 3 and 4).

Figure 1. Raw classification into volumetric (red), linear (dark

blue) and planar (light blue) patterns using a 10 cm radius

search.

Figure 2. Raw classification into volumetric (red), linear (dark

blue) and planar (light blue) patterns using a 50 cm radius

search.
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Figure 3. Final classification. Classification into ground (blue),

ground inventory (dark blue), wall (light grey), wall inventory

(dark grey), roof (red), artificial poles (yellow), trees (orange)

and undefined objects (transparent).

Figure 4. Final classification. Panoramic rendering of the

classified point cloud.

Figure 5. Panoramic image of the scene.

Figure 6. Skeleton reconstructions of pole supported objects.

The branching levels are colour coded from low (blue) to high

level (red). The estimated thickness of the point cloud around

each skeleton segment is modelled as a connected pipe model. 

4.2 Accuracy measures

The accuracy measures (table 7 and 8) show the highest values

for the base classes 'ground', 'wall' and 'pole', coming from the

the raw classification. Besides that, the pole supported classes

separated by the graph-based classification also show high

accuracy values. For these classes (G,W,AP,T) only small point

counts are missing compared to the target point counts given by

the reference data (user accuracies > 0.98). The producer

accuracies are also high for these classes. The producer

accuracy of the AP class is slightly lowered due to the wrong

classification of columns of buildings and gutters as single

poles.

The associated classes WI, GI and R also show lowered

accuracies, because of the lowered robustness of the distance

criteria compared to the the Dijkstra classification approach. 

Table 7. Error matrix of the classification accuracies

User Accuracy:

UD 380763 / 428038 = 0.89

G   2104378 / 2140335 = 0.98

GI 103708 / 110839 = 0.94

W 1503263 / 1534323 = 0.98 

WI 659186 / 817352 = 0.80

R 73275 / 127452 = 0.58

AP 61853 / 62823 = 0.99

T 609171 / 617539 = 0.99

Producer Accuracy:

UD 380763 / 538990 = 0.71

G 2104378 / 2119511 = 0.99

GI 103708 / 150456 = 0.69

W 1503263 / 709980 = 0.98

WI 659186 / 709980 = 0.93

R 73275 / 71239 = 0.74

AP 61853 / 613382 = 0.87

T 609171 / 613382 = 0.99

Overall Accuracy:

5495597 / 5838701 = 0.94

Table 8. Error matrix of the classification accuracies

5.5.5.5. DISCUSSION

The eigenvalue based classifications show advantages and

disadvantages due to the scale of the analysed neighbourhoods

(0.1 and 0.5 m radius search). An Advantage of the 0.1 m

search classification is the appropriate description of small

geometrical patterns and discontinuities. On the other hand, a

disadvantage is the strong sensitivity to scanning patterns, data

gaps and differences in point densities. This partly results in

linear and volumetric patterns on planar features such as roof

and ground surfaces. Additionally, the detection of larger pole

objects such as thicker tree trunks is not possible (see section

4).

In contrast to this, the 0.5 m radius eigenvalue classification

offers a straightforward detection of larger poles. Additionally,

surface elements suffering from lower point densities in the

scan coverage such as roofs are clearly detected as planar

features.

Reference Data

UD G GI W WI R AP T

UD   380763     6120        5    18291    94708    37027        1     2075   538990

G     6836  2104378     6959        2      927        0      392       17  2119511

GI    10971    26205   103708     1715     6268        0      439     1150   150456

W      312        4        0  1503263    32641       42       11       11  1536284

WI    18893     3182      165     6862   659186    17108      116     4468   709980

R      918        0        0     4190    20476    73275        0        0    98859

AP     5564      156        0        0     3019        0    61853      647    71239

T     3781      290        2        0      127        0       11   609171   613382

column total   428038  2140335   110839  1534323   817352   127452    62823   617539  5838701
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The raw classification of cars allows the separation of these

objects as undefined points. A disadvantage of the 0.5 m radius

approach is a blurring effect at edges and discontinuities in the

point cloud. This also leads to volumetric patterns in tree

crowns, well known from lower resolution data such as airborne

LiDAR (Fig. 2). 

In order to make use of both advantages, we combined both raw

classifications by applying reasonable constraints as described

in section 2. This results in a reliable classification of walls,

ground and poles.

The connectivity analysis for ground inventory, wall inventory

and roof shows less reliable results as for artificial poles and

trees. In the latter case, the shortest path competition of the

Dijkstra algorithm results in distinct clusters. The threshold-

based classification leads to some less reliable classifications in

areas where two classes are spatially connected (see Fig. 3 and

4).

As shown in Figure 6 the maximum branching level of a pole

supported object is a suitable object feature for the separation of

artificial objects and trees. Overestimations of the hierarchical

levels on artificial objects do only occur if traffic lights and

signs are inhomogeneously covered by data points.

With respect to the applied work-flow typical systematic errors

occur. One main problem is the discrimination between wall

inventory such as pipes, gutters and columns in front of

building entrances, and poles of the road inventory. The

application of a connected component analysis results in

systematic errors in case of traffic signs that are directly

adjacent to building walls (see Fig. 9). An other source of error

is associated with low point densities and data gaps due to

occluding effects of other objects. In many cases occlusions are

caused by moving objects. One example is the car on the left

traffic lane in Fig. 5, which is moving in the same direction as

the mobile mapping device, causing a large data gap in the

point cloud (Fig. 4).

In areas where the point density is too low and clumps of points

with similar raw classification become too small, planar target

objects are falsely classified as UD. This is visible for ground

segments (Fig. 10) and roof segments. In particular roof

surfaces are under-represented in the MLS data and thus are

difficult to classify. 

In general, the presented work-flow shows a reduced

performance regarding the distinct subdivision of planar

surfaces (see Fig. 9 and 10.). Here, a classification based on

planar segmentation is expected to show better results.

Additionally, the thresholding approach used for the clump

sizes and adjacencies lowers the accuracy of the results. Here,

threshold-less decisions, such as the presented Dijkstra-

approach, are desirable.

Figure 9. Example of an undetected pole of a traffic sign, near

to a building wall (falsely classified as wall inventory).

Figure 10. Example of a low point density ground segment,

falsely classified as undefined (UD =  magenta).

However, focussing on the detection of poles and other non-

planar objects as well as the separation of pole supported

objects, the presented approach is robust and straight forward.

Fig. 11 shows the separation of a traffic sign and a tree standing

next to each other. The clumps of both objects are separated by

Dijkstra region growing. This leads to an improved separation

compared to e.g. Voronoi-approaches and related methods

presented by e.g. Rutzinger et al. (2011) or Zhong et al.

(2013).

Figure 11. Example of a correctly separated traffic sign and a

tree. 

6.6.6.6. CONCLUSION AND OUTLOOK

Object classification of mobile laser scanning point clouds is

providing an essential input for many applications. We

presented an automated classification approach separating the

eight classes ground, ground inventory, walls, wall inventory,

roofs, artificial poles, trees and undefined objects. The work-

flow is independent from planar segmentation and height slicing

steps, focusing on pole-like objects. 

For this semantic group, we can provide a robust and

straightforward approach for its detection, separation and

classification. This can provide adequate input data for future

light, noise and visibility modelling and leaf area estimations.

For leaf-off trees, as presented in this paper, the leafage could

be modelled making the consideration of complex crown

densities possible (Cote et al. 2009, Rutzinger 2011). 

For the other semantic groups, thresholding has a more

important role, reducing the comparability of the results. Planar

object groups for example can be handled less accurate. In order

to improve the results, more intelligent and threshold-less

solutions are necessary.

For future work on planar objects the presented approach might

be useful for the detection of planar candidate classes, followed

by planar segmentation for robust and refined subdivisions.

Further enhancements could focus on the incorporation of

corrected or normalized intensity values improving point cloud

classification and differentiating even more classes. In order to
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strengthen the evaluation of point cloud classification

approaches, further research on appropriate error assessment

strategies are required. This would allow a decision on the

suitability of point cloud classification results for specific

applications.
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