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Abstract— Herein, we present a detailed analysis of an eigen-
value based sensing technique in the presence of correlated
noise in the context of a Cognitive Radio (CR). We use a
Standard Condition Number (SCN) based decision statistic based
on asymptotic Random Matrix Theory (RMT) for decision
process. Firstly, the effect of noise correlation on eigenvalue
based Spectrum Sensing (SS) is studied analytically under both
the noise only and the signal plus noise hypotheses. Secondly,
new bounds for the SCN are proposed for achieving improved
sensing in correlated noise scenarios. Thirdly, the performance
of Fractional Sampling (FS) based SS is studied and a method
for determining the operating point for the FS rate in terms
of sensing performance and complexity is suggested. Finally, a
Signal to Noise Ratio (SNR) estimation technique based on the
maximum eigenvalue of the received signal’s covariance matrix
is proposed. It is shown that proposed SCN-based threshold
improves sensing performance in correlated noise scenarios and
SNRs up to 0 dB can be reliably estimated with less than 1
% normalized Mean Square Error (MSE) in the presence of
correlated noise without the knowledge of noise variance.

Index Terms— Spectrum Sensing, SNR Estimation, Noise Cor-
relation, Random Matrix Theory.

I. INTRODUCTION

S
PECTRUM Sensing (SS) plays an important role in

Cognitive Radio (CR) networks in order to acquire the

spectrum awareness required by CRs. The three main signal

processing techniques for sensing the presence of a Primary

User (PU) that appear in the literature are matched filter

detection, Energy Detection (ED) and cyclostationary feature

detection [1]. Matched filter detection and cyclostationary

feature detection techniques require prior knowledge of the

PU’s signal to decide about the presence or absence of the PU

signal [2]. Although ED technique does not require any prior

knowledge of PU’s signal, the performance of this technique is

susceptible to noise covariance uncertainty [3]. Since both the

prior knowledge about the PU’s signal and the noise variance

are unknown to the CRs in practical scenarios, exploring

efficient and blind SS techniques for CRs has emerged as

an important research challenge. Several blind SS techniques

have been proposed in the literature [4–7] without requiring

the prior knowledge of the PU’s signal, the channel and the

noise power. Furthermore, the performance of traditional SS
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techniques is limited by received signal strength which may

be severely degraded in multi-path fading and shadowing

environments. Different diversity enhancing techniques such as

multi-antenna, cooperative and oversampled techniques have

been introduced in the literature to enhance the SS efficiency

in wireless fading channels [8–10]. Most of these methods

use the properties of the eigenvalues of the received signal’s

covariance matrix and use recent results from advances in

Random Matrix Theory (RMT) [11, 12]. The main advantage

of eigenvalue based SS over other SS techniques is that it

does not require any prior information of the PU’s signal and

it outperforms ED techniques, especially in the presence of

noise covariance uncertainty [8].

In this paper, we use the Standard Condition Number

(SCN) of the noise covariance matrix to analyze the effect

of noise correlation on eigenvalue based SS techniques. The

SCN of a matrix is defined as the ratio of the maximum

eigenvalue to the minimum eigenvalue [13] and can be used as

a metric to characterize the support of the asymptotic eigen-

value probability distribution function (a.e.p.d.f.) of a random

matrix. Furthermore, we use the SCN of the received signal’s

covariance matrix for decision process. If the calculated SCN

is greater than noise only SCN, the decision is that a PU signal

is present. Since noise correlation affects the SCN of the noise

covariance matrix and as a result, the SCN of the received

signal’s covariance matrix, the decision metric is also affected.

According to author’s knowledge, this method has not been

considered in the literature for SS in the presence of noise

correlation.

Several blind SS techniques utilizing various features of

the received signal’s covariance matrix such as statistical co-

variance [14], autocorrelation [15] and eigenvalue distribution

[8] have been proposed in the literature. In most of the

existing eigenvalue based SS literature, the authors consider

asymptotically large matrices whose eigenvalues are known

to follow the Marchenko-Pastur (MP) law, which establishes

the convergence of the largest and smallest eigenvalues of

these matrices. The authors in [16] use this MP law to test

a binary hypothesis under white noise conditions using the

SCN for Wishart matrices. However, the sample covariance

matrix of the noise is not a Wishart random matrix in the

presence of correlated noise [8]. In practical situations, noise

correlation arises due to oversampling and imperfections in

filtering [8]. For example, when a received signal is filtered by

a narrowband receive filter, the noise embedded in the received

signal is also filtered and the output signal of the filter contains

the correlated noise. In case of correlated noise scenarios,
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the eigenvalue distribution does not follow the MP law and

the SCN threshold proposed in [16] may result in degraded

PU sensing performance. Therefore, new SCN-based sensing

thresholds need to be investigated for carrying out SS in the

presence of noise correlation. This is the first contribution of

this paper.

Furthermore, several methods based on eigenvalue distribu-

tion of received signal’s covariance matrix usually focus on

interweave CR meaning that a Secondary User (SU) transmits

only when no PU signal is present [8, 9]. However, if side

information is available about the primary Signal to Noise

Ratio (SNR), advanced underlay transmission schemes could

be employed at the CRs. In practical scenarios, it would

be advantageous to estimate the primary SNR in order to

decide the transmission strategy of the cognitive transmitter.

Depending on the estimated primary SNR level, different

underlay transmission strategies (e.g., cognitive resource al-

location) can be implemented at the cognitive transmitters

to allow the coexistence of primary and secondary systems
1. In this direction, we derive the a.e.p.d.f. of the received

signal’s covariance matrix for signal plus noise case under

white and correlated noise scenarios. The a.e.p.d.f. is then

used to determine the maximum eigenvalue which is in turn

exploited to estimate the SNR. Moreover, the SNR estimation

performance is evaluated based on normalized Mean Square

Error (MSE). This is the second contribution of this paper.

The sampling rate in a CR receiver can be increased beyond

the symbol rate, known as fractional sampling (FS), to enhance

the SS efficiency under fading channel conditions. FS is

commonly used to enhance signal detection reliability in the

receiver [17–19]. From the CR point of view, an FS receiver

can be modeled as a virtual multiple-output system with

presumably independent channel fading effects. This technique

is especially beneficial in time varying channels with large

Doppler spread i.e., small channel coherence time. Another

motivation for introducing the FS concept in the context of

CR is that using more antennas at the receive-side is often

impractical and expensive requiring multiple Radio Frequency

(RF) chains. In wireless fading environments, FS introduces

diversity and can improve signal detection. However, FS op-

eration also results in colored noise [20] and this phenomenon

gradually saturates the performance gain due to FS [17, 19].

Therefore, it is important to determine the operating point for

the FS rate, a design parameter that we can actually configure

to find a good trade-off between performance and complexity.

This is the third contribution of this paper.

The remainder of this paper is structured as follows: Section

II reviews in detail prior work in the areas of eigenvalue based

sensing. Section III describes the motivation for the considered

problem and briefly summarizes the approach used in this

paper. Section IV describes the considered signal models under

white and correlated noise scenarios. Section V analyzes the

effect of noise correlation for the noise only case and proposes

new SCN-based decision bounds. Section VI provides the

analysis for signal plus noise case under white and correlated

1In this context, we consider the scenario with short range primary and
secondary wireless systems in which the interference levels from one system
to another are at a similar level.

noise scenarios and describes the proposed eigenvalue based

SNR estimation method. Section VII studies the performance

of the proposed techniques with numerical simulations and

proposes a method for determining the optimal FS operating

point. Section VIII concludes the paper. The appendix includes

some preliminaries on random matrix transforms.

A. Notation

Throughout the formulations of this paper, boldface upper

and lower case letters are used to denote matrices and vectors

respectively, E[·] denotes expectation, C denotes the complex

plane, (·)T denotes the transpose matrix, (·)H denotes the

conjugate transpose matrix, (·)∗ represents the complex con-

jugate, I denotes the identity matrix, (z)+ denotes max(0, z),
RX represents the statistical covariance of X, R̂X represents

the sample covariance of X, SX represents Stieltjes transform

of X, RX represents R transform 2 and ΣX represents Σ
transform [11].

II. RELATED WORK

The three major eigenvalue based sensing techniques con-

sidered in the literature are [8]: Maximum-Minimum Eigen-

value (MME) detection, Energy with Minimum Eigenvalue

(EME) detection and Maximum Eigenvalue Detection (MED).

A number of eigenvalue based SS methods are proposed

in [8, 10, 16] utilizing eigenvalue properties of Wishart ran-

dom matrices, which arise under noise only cases in white

noise scenarios. The authors in [16] use MP law to test

binary hypothesis problems. In [8], the Tracy-Widom (TW)

distribution is used as a statistical model for the largest

eigenvalue and both the TW distribution and the MP models

are used to find the approximate distribution of random SCN.

Subsequently, this distribution is used to derive the relationship

between an expression for probability of false alarm (Pf ) and

threshold. The difference between the MP approach and the

TW approach is that MP is a deterministic function which

characterizes the asymptotic matrix spectrum, while the TW

approach provides the statistics of individual eigenvalues e.g.,

the maximum eigenvalue. Since the rate of convergence of

the TW distribution is faster than MP law, the TW method

is superior than the MP only method. However, the TW

method outperforms the MP method only at relatively large

SNRs since SCN is a ratio of two random variables and the

approximation considered in [8] is accurate only for large SNR

conditions.

In [10], an approximation of the threshold function is

derived for systems having equal number of receiving antennas

and samples. In [21], the p.d.f. of the eigenvalue ratio has

been derived using the expression of the joint distributions of

an arbitrary subset of ordered eigenvalues of complex Wishart

matrices. In this scenario, the receiver should be provided with

a lookup table in order to calculate the proposed inverse Cu-

mulative Distribution Function (CDF) of the second-order TW

distribution. The exact distribution of the condition number

2Readers should not confuse R transform notation R with the covariance
matrix notation R.
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of a complex Wishart matrix has been used to calculate the

threshold expression in [10] without the need of a lookup table.

However, the calculated threshold expression in terms of Pf in

[10] is based on the exact density of the condition number of

complex Wishart matrix considering the noise only case and

it is only valid in case of white noise measurements. For the

correlated noise scenarios, the sample covariance matrix does

not follow the properties of Wishart random matrices.

In [22], a more accurate model considering the Tracy-

Widom-Curtiss (TWC) model has been considered by using

the distribution of the smallest eigenvalues of Wishart random

matrices. However, the TW distribution and the Curtiss’ ratio

of variates formula are highly involved functions, which are

hard to evaluate numerically and non tractable to find the

support of a.e.p.d.f. [23]. In [23], the exact distribution of

SCNs of dual Wishart random matrices has been used and

it is argued that the proposed method requires only tens

of samples and outperforms all the RMT based techniques.

However, the authors in [23] considered the Wishart random

matrix model for signal plus noise case for simplicity and did

not address the fact that during the presence of signal and

correlated noise, the sample covariance matrix may no longer

be a Wishart random matrix. In [24], non-asymptotic behavior

of eigenvalues of random matrices has been considered using

the spectral properties of random sub-Gaussian matrices of

fixed dimensions. A cooperative SS algorithm using double

eigenvalue threshold has been proposed in [25], which con-

siders two maximum eigenvalues for the noise only and the

signal plus noise cases through analysis of sample covariance

matrix of received signals using RMT approach. In [26], the

effect of spatial correlation in the performance of predicted

eigenvalue threshold based spectrum sensing is analyzed and

it is shown that the detection performance improves in the

presence of spatial correlation at the multi-antenna secondary

user considering the white noise.

Spectrum sensing using free probability theory has also re-

ceived important attention in the literature [27] [28]. In [27], a

cooperative scheme for SS has been proposed using asymptotic

free behavior of random matrices and the properties of Wishart

distribution. The same work has been extended for MIMO

scenario in [28]. In these works, the presence of the PU signal

is decided simply by checking whether the power matrix is

zero or not but this technique is not studied analytically in

[27] and [28].

III. PROBLEM DESCRIPTION AND CONSIDERED

APPROACH

The eigenvalue based spectrum sensing techniques using

RMT have been well investigated in various literature [9, 10,

16, 22–24, 27]. However, most of these contributions assume

the presence of white noise at the CR terminal. In practical

implementation of a CR, the received signal should pass

through a pulse shaping filter before further processing. As

an example, a typical block diagram of a wideband Software

Defined Radio (SDR) receiver has been shown in Fig. 1

[29]. It mainly consists of three parts: wideband RF frontend,

digital back-end and control part with processor. The noise
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Fig. 1: Block diagram of a wideband SDR receiver

correlation at the CR sensing terminal may arise mainly due

to the following two reasons [8]:

1) Filtering: The white noise is converted to the colored

noise when passing through a dynamic system, typically

a low pass filter, also called the shaping filter. When

a received signal is passed through a shaping filter at

the input of the receiver, the noise added to the signal

before filtering also passes through the same filter. In

this case, the noise covariance matrix depends on the

transfer function of the pulse shaping filter used at the

RF front end of a CR. The output signal of the shaping

filter contains the colored noise and the color of the

colored noise can be tuned by adjusting the parameters

of the shaping filter.

2) Oversampling: When the shaping filter has a bandwidth

of B (which is usually equal to the bandwidth of the

signal) but we sample at a rate higher than 2B, then the

noise process in the (sampled) output is correlated even

if the input noise process is white.

Due to absence of knowledge about the channel and the PU

signal, coherent receivers such as matched filter i.e., receive

part of root raised cosine filter) are not suitable for the SS

applications. Active RC filters with tunable cut off frequencies

has been proposed in the literature for CR applications [30,

31]. When a white noise input process with power spectral

density N0/2 is the input to a RC filter with time constant

RC, the noise is colored after filtering. Although the channel

may also get correlated at the output of the filter, we are

interested in analyzing the effect of noise correlation on SS

performance in this work assuming that noise correlation effect

dominates the overall effect. The RC filter transforms the input

autocorrelation function of white noise into output autocor-

relation function given by [32]: Ry(ν) = N0

4RC e−
|ν|
RC . Since

the autocorrelation function of output process of RC filter

resembles the exponential model, we consider an exponential

correlation model (see Section IV A) in this work. Since the

same signal after being amplified through an Intermediate

Frequency (IF) filter passes to the Analog to Digital Converter

(ADC) (with reference to block diagram shown in Fig. 1), the

correlation which may occur due to oversampling operation at

the receiver gives rise to a similar correlation function as in

case of the shaping filter.

In the context of eigenvalue based blind SS, MME and

EME techniques have been proposed in the literature [8, 16,

22]. The EME technique decides the presence or absence

of the PUs by comparing the ratio of average eigenvalue

(λavg) to the minimum eigenvalue (λmin) i.e.,
λavg

λmin
with a

predetermined threshold which is calculated based on the value
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of Pf . Similarly, the MME technique decides the presence

or absence of primary users by comparing the ratio of the

maximum eigenvalue (λmax) to the minimum i.e., λmax

λmin
with

the predetermined threshold. In [8], it is shown that MME

technique performs better in comparison to the EME technique

in terms of sensing performance. Regarding MME technique,

different approaches such as asymptotic [16], semi-asymptotic

[8] and ratio-based [22] approaches have been proposed in the

literature assuming the presence of white noise.

In this paper, we consider two fundamental aspects of a CR,

i.e., spectrum sensing and SNR estimation problems in the

presence of noise correlation. We study and analyze both the

problems with the same methodology. To analyze the sensing

performance in the presence of noise correlation, we consider

probability of correct decision 3 as a performance metric by

taking account of correct decisions under both hypotheses.

The reason for choosing this metric is that the eigenvalue

distribution of noise in the presence of correlation changes

with respect to its eigenvalue distribution in the absence of

correlation and we need to account for correct decisions under

both hypotheses. Figure 2 4 shows the performance of MME

and EME techniques proposed in [8] and MP based asymptotic

approach proposed in [16] in the presence of noise correlation.

From the figure, it can be noted that noise correlation degrades

the sensing performance of the considered detectors. In this

context, exploring new sensing techniques which can provide

better sensing efficiency in the presence of noise correlation is

an important research challenge [33]. Motivated by this aspect,

we propose new SCN-based decision bounds to improve the

sensing performance in the presence of noise correlation with

the help of theoretical analysis and numerical evaluation under

noise only hypothesis (see Section V).

For modeling the noise correlation, we consider one-sided

correlation model and then we use an exponential correlation

model to define the components of the correlation matrix

(see Section IV A). Moreover, for our considered FS sensing

example, we use a simple linear model to vary the level of

correlation with the FS rate (see Section V A). For carrying

out theoretical analysis, we use an asymptotic approach as

carried out in several literature [16, 27, 28, 34]. In this context,

we use two important theorems 5 in Section V from the RMT

literature. These theorems are applied to find the a.e.p.d.f.

of the received signal’s covariance matrix under noise only

hypothesis for white noise and correlated noise scenarios. The

crossing points of these a.e.p.d.f.s with the x-axis provide the

decision bounds under considered scenarios.

Furthermore, the SNR estimation techniques in the white

noise scenario may not perform well in the presence of noise

correlation. Motivated by this aspect, we carry out detailed

theoretical analysis under signal plus noise hypothesis to

obtain the a.e.p.d.f. of the received signal’s covariance matrix

for white and correlated noise scenarios (see Section VI).

Based on this a.e.p.d.f. of the received signal’s covariance

3The definition of this metric is provided in Section VII.
4The simulation parameters used for getting this result are presented in

Section VII.
5The details on these theorems can be found in [11] and [35] and we do

not include their proofs in this paper due to space limitation.

matrix, we propose an SNR estimation method for estimating

the SNR of the PU signal using the maximum eigenvalue (see

Section VI C).

IV. SIGNAL MODEL

Let us consider a single cognitive user and a single primary

user for simplicity of analysis. Let N be the number of samples

analyzed by the cognitive user for the decision process in the

time duration of τ while performing symbol rate sampling.

The sampling rate in the receiver can be increased beyond

the symbol rate to enhance the signal detection capability in

wireless fading channels. This technique known as FS [17]

produces N FS samples out of each original sample. Let M
be the FS rate carried out at the input of cognitive receiver.

From signal model point of view, this factor can be considered

as the number of multiple outputs analogous to the number

of cooperating users in cooperative based sensing or the

number of antennas in multiple antenna sensing as considered

in related literature [8, 16]. We denote the hypotheses of

the presence and absence of the PU signal by H1 and H0

respectively. A binary hypothesis testing problem for k-th FS

branch, k = 1, ...,M , can be written as:

H0 : yk(i) = ẑk(i) PU absent

H1 : yk(i) = hk(i)s(i) + ẑk(i), PU present (1)

where yk(i) is the signal observed by the k-th receiving

dimension at the i-th instant, i = 1, 2, .., N , s(i) is the PU

signal at the i-th instant, which is to be detected, hk(i) is the

amplitude gain of the channel for the k-th receive dimension

at the i-th instant, and ẑk(i) denotes the colored noise for the

k-th receive dimension at the i-th instant. For our analysis,

we assume that transmitted symbols are independent and

identically distributed (i.i.d.) complex circularly symmetric

(c.c.s.) Gaussian symbols, the noise samples in each FS branch

are independent but are correlated across FS branches.

The M × N channel matrix H consists of i.i.d.

coefficients and each row of H represents the chan-

nel coefficients for N number of samples for each

FS branch i.e., H , [hT
1 ,h

T
2 , ...,h

T
M ]T , with hm ,

[ hm(1) hm(2) . . . hm(N) ] with m = 1, 2, ...,M . We

assume channel coefficients to be i.i.d. in each FS branch and

the channel coherence time to be sufficiently small so that

channel is not correlated as we increase the FS rate.

While performing sensing in a cognitive receiver, the sens-

ing duration (τ ) and symbol interval (Ts) may not be the same

depending on the signal bandwidth and sampling rate used

at the receiver. For example, let us consider a coexistence

scenario of TV whitespace broadband and wireless micro-

phone systems. These are two systems with different operation

bandwidths, a microphone signal typically occupies 200 kHz

bandwidth while TV signal occupies 6 MHz and microphone

operates on TV bands [8]. In this scenario, τ becomes much

greater than Ts. Under the H1 hypothesis, we consider the

following signal models considering the relation between τ
and Ts.

Case 1: In this case, we consider that the transmitted symbol

remains constant during the sensing period. This case may
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result when the sampling rate at the receiver is much higher

than the transmitted symbol rate. The M ×N received signal

matrix Y in this case can be written as: Y =
√
pHs + Ẑ,

where s is a constant transmitted symbol, p is the power

of transmitted symbol and Ẑ , [ẑT1 , ẑ
T
2 , ..., ẑ

T
M ]T , with

ẑm , [ ẑm(1) ẑm(2) . . . ẑm(N) ] . Since we assume

the normalized unit value of noise variance, SNR ≡ p. In

this case, the sample covariance of transmitted signal can be

written as: Rs = E[s2] = 1.

Case 2: In this case, each symbol rate sampling period

i.e., each column of matrix Y, includes the samples for a

single symbol. Y =
√
pHSd + Ẑ, where Sd is the diagonal

transmitted signal matrix of dimension N ×N with diagonal

s = [s(1)...s(N)]. In this case, the sample covariance matrix

of the transmitted signal becomes

RS = E[SdS
H
d ] =















E[s2(1)] 0 · · · 0

0 E[s2(2)] · · · 0

. . .

0 0 · · · E[s2(N)]















= I

(2)

assuming that for each sample we get an i.i.d. c.c.s. Gaussian

symbol with E[s2] = 1.

The received signal matrix Y in both cases can be written in

the following form:

Y =













y1

y2

...

yM













=















y1(1) y1(2) . . . y1(N)

y2(1) y2(2) . . . y2(N)

...
...

. . .
...

yM (1) yM (2) . . . yM (N)















(3)

Assuming that the source signal is independent from the noise,

the covariance matrix of received signal, RY, is given by [8];

RY = E[YYH ] = E
[

(
√
pHS)(

√
pHS)H

]

+ E[ẐẐH ]

= pE[HHH ] +R
Ẑ
, (4)

where R
Ẑ

= E[ẐẐH ]. Let us define sample covariance

matrices of received signal and noise as: R̂Y(N) = 1
NYYH

and R̂
Ẑ
(N) = 1

N ẐẐH . The received signal Y can be further

written as:

Y =

{ √
pHs+ Ẑ, Case 1

√
pHSd + Ẑ, Case 2

(5)

where Ẑ ∼ CN (0, R̂
Ẑ
(N)) is the colored noise. The SCN of

R̂
Ẑ
(N) depends on the noise correlation among noise samples

across FS branches.

A. Noise Correlation Modeling

To analyze the noise correlation effect mathematically, a

simple correlation model should be employed. In this work, we

consider one-sided noise correlation model. With this model,

the colored noise can be related to the white noise using the

following expression.

Ẑ = Θ1/2Z, (6)

where Z is an M × N matrix with c.c.s. i.i.d. Gaussian

entries with zero mean and unit variance, representing the

white noise and Θ is an M × M Hermitian matrix whose

entries correspond to the correlation among noise samples

across FS branches and Θ1/2 denotes the square root of Θ.

To ensure that Θ does not affect the noise power, we consider

the following normalization:

(1/M)trace{Θ} = 1. (7)

The exponential correlation model can be written as [36, 37]:

θij =

{

ρ(j−i), i ≤ j
(

ρ(i−j)
)∗

, i > j
(8)

where θij is the (i, j)-th element of Θ and ρ ∈ C is the

correlation coefficient with | ρ |≤ 1.

V. ANALYSIS UNDER H0 HYPOTHESIS

RMT has been used in the literature in various applications

such as modeling transmit/receive correlation in MIMO chan-

nels and multiuser MIMO fading [35, 37]. Here, we state two

RMT based theorems which are going to be used in defining

our decision statistics.

Theorem 5.1: [11] Consider an M × N matrix F whose

entries are independent zero-mean complex (or real) random

variables with variance 1
N and fourth moments of order

O
(

1
N2

)

. As M,N → ∞ with N
M → β, the empirical

distribution of the eigenvalues of 1
NFFH converges almost

surely to a non-random limiting distribution with density given

by:

fβ(λ) = (1− β)
+
δ(λ) +

√

(λ− a)+(b− λ)+

2πβλ
, (9)

where a = (1 − √
β)2, b = (1 +

√
β)2, δ(.) is a Dirac delta

function and (1− β)
+
δ(λ) represents the cardinality of zero

eigenvalues which can occur if M > N . The parameters a and

b define the support of the distribution and correspond to λmin

and λmax respectively and the ratio b/a defines the SCN of
1
NFFH . The above limiting distribution is the MP law with

ratio index β.

Remark 5.1: In practice, we can have only a finite number

of samples and the sample covariance matrix R̂Y(N) may

deviate from the covariance matrix RY [8]. The eigenvalue

distribution of R̂Y(N) becomes complicated due to require-

ment of consideration of finite parameters in the analysis. This

makes the choice of the threshold difficult for SS purpose

and the performance of SS algorithms becomes sensitive to

the choice of threshold at low values of SNR. Although

various TW approaches have been proposed in [8] and [22] for

accounting the random nature of SCN of finite matrices, we

are interested in analyzing the correlation effect on MP based

asymptotic methods in this paper. We consider asymptotic

analysis in this paper as a first step towards analyzing the effect

of noise correlation on sensing performance since asymptotic

analysis provides less complex solution than finite analysis

and it is more tractable [34]. Furthermore, it can be noted

in [16] and [34] that the asymptotic analysis provides good
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approximation to the finite analysis even with a small number

of samples.

In this noise only case, R̂Y(N) becomes equal to R̂
Ẑ
(N) and

can be written as:

R̂Y(N) = R̂
Ẑ
(N) = Θ1/2ZZHΘ1/2. (10)

It can be noted that R̂Y(N) converges to RY for N → ∞
[22] and asymptotic analysis still holds true for large values of

N [16]. Furthermore, R̂Z(N) = 1
NZZH is nearly a Wishart

random matrix [11] in white noise scenarios but is no longer

a Wishart random matrix in correlated noise scenarios.

To calculate the threshold for SS purpose, we need the

support of a.e.p.d.f. of Y, namely, λmax and λmin. Due

to noncommutative nature of random matrices, it is not

straightforward to calculate the eigenvalue distribution of Y

by knowing the eigenvalue distribution of Θ and Z. Using free

probability analysis, the asymptotic spectrum of the product

or sum can be obtained from the individual asymptotic spectra

without involving the structure of the eigenvectors of the

matrices under a asymptotic freeness condition [11]. The

asymptotic eigenvalue distribution of 1
NYYH in this context

can be obtained by applying multiplicative free convolution

property of Σ transform in the following way [38].

Σ
R̂Y

(z) = ΣΘ(z) · Σ
R̂Z

(z), (11)

where ΣΘ and Σ
R̂Z

are the Σ transforms of the densities of

eigenvalues of Θ and R̂Z respectively. Since Θ is a square

matrix, Θ1/2ZZHΘ1/2 and ΘZZH have identical eigenvalues

[11]. Since R̂Z follows the MP law, its Σ transform is given

by (33) and then the Σ transform of R̂Y can be written as:

Σ
R̂Y

(z) = ΣΘ(z)
1

z + β
. (12)

The Σ transform of corresponding asymptotic eigenvalue dis-

tribution ΣΘ(z) can be obtained by choosing a proper model

for noise correlation. The asymptotic density of eigenvalues

of Θ can be described as a tilted semicircular law [35], which

is a close approximation for the exponential model and is

analytically tractable. This density can be described using the

following theorem.

Theorem 5.2: [35] Let Θ be a positive definite matrix

which is normalized as: (1/M)trace{Θ} = 1, and whose

asymptotic spectrum has the p.d.f.

fΘ(λ) =
1

2πµλ2

√

(

λ

σ1
− 1

)(

1− λ

σ2

)

(13)

with σ1 ≤ λ ≤ σ2 and µ =
(
√
σ2−

√
σ1)

2

4σ1σ2
. If F is an M × N

standard complex Gaussian matrix as defined in Theorem 5.1,

then as M,N → ∞ with N
M → β, the asymptotic distribution

of W = Θ1/2FFHΘ1/2 has the following p.d.f.

fW(λ) = (1− β)+δ(λ) +

√

(λ− ã)+(b̃− λ)+

2πλ(1 + λµ)
, (14)

where

ã = 1 + β + 2µβ − 2
√

β
√

(1 + µ)(1 + µβ)

b̃ = 1 + β + 2µβ + 2
√

β
√

(1 + µ)(1 + µβ) (15)

The parameters ã and b̃ correspond to λmin and λmax respec-

tively and the ratio b̃/ã defines the SCN of W.

The eigenvalue spread of Θ is related to the degree of

noise correlation i.e., a zero eigenvalue spread corresponds

to a zero-correlation model Θ = IM and higher spreads

are associated with higher correlation modes. In (14), the

parameter µ controls the degree of noise correlation and varies

the support of the distribution i.e., for µ = 0, ã = a and

b̃ = b. For the exponential correlation model as stated in [35],

the parameter µ is related to correlation coefficient ρ with

the following relation: µ = ρ2

1−ρ2 . Furthermore, the SCN is

related to ρ with the relation SCN = 1+ρ
1−ρ . To calculate µ in a

practical cognitive receiver, the value of ρ can be determined

from FS rate based on some empirical model constructed from

measurements. In our results, we employ a simple linear model

to study the effect of noise correlation as the FS rate increases

(see Section VII C).

It can be noted that MP law can be used as a theoretical

prediction under the H0 hypothesis with white noise [16].

The support of the eigenvalues of the sample covariance

matrix under the H0 hypothesis is finite independently of the

distribution of the noise. To decide the absence or presence of

signal under white noise scenario, the deviations of distribution

of eigenvalues from the normal bounds a and b of MP law can

be used. If the eigenvalues appear outside these bounds, then

it can be decided that there is presence of PU signal and if

all the eigenvalues lie within the bounds of MP law, it can be

decided that there is absence of PU signal. In case of noise

correlation, the bounds of eigenvalue distribution of sample

covariance matrix become different than the bounds obtained

in white noise scenarios and MP law no longer applies. The

new bounds (ã, b̃) depend on the noise correlation parameter

µ. We present the sensing example with new bounds for FS

scenario in the following subsection.

A. Sensing With FS

The parameter µ depends on the sampling rate applied in

the receiver since noise correlation increases along with the

sampling rate. Sampling rate can be varied from the symbol

rate to some order of the symbol rate and the effect of sampling

rate on sensing performance can be evaluated by varying the

correlation level. Let us consider that both noise distribution

and noise variance are unknown to the detector to reflect the

practical scenario. It can be noted that value of the SCN under

the H0 hypothesis does not depend on the noise variance.

Under white noise scenario, the decision statistic for MP law

can be calculated as [16]:

decision =

{

H0, if SCN ≤ b
a

H1, otherwise
(16)

It can be noted that the values of the supports a and b can be

determined from the closed form of the a.e.p.d.f. provided in

Theorem 5.1. More specifically, the values of these supports

can be calculated by finding out the crossing points of the

a.e.p.d.f. with the x-axis. Similar analysis can be applied for

sensing in presence of the correlated noise. Equation (14) from
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Theorem 5.2 provides the a.e.p.d.f. for the received signal’s

covariance matrix in presence of noise correlation. By finding

out the crossing points of this a.e.p.d.f. with the x-axis, the

supports ã and b̃ of eigenvalue distribution in presence of noise

correlation can be determined. Then the decision about the

presence or absence of the PU signal under correlated noise

scenarios can be made on the basis of the following condition:

decision =

{

H0, if SCN ≤ b̃
ã

H1, otherwise
(17)

When FS rate M is applied at the CR, M rows of sample

covariance matrix become correlated. Since the value of ρ
varies from 0 to 1, the relation between the FS rate M and

the correlation coefficient ρ is considered as a simple linear

model 6 as shown below

ρ = ε

(

1

β
− 1

N

)

, (18)

where ε is a parameter defining the slope of the linear

dependence. The above equation provides a linear relation

between ρ and M . Since β = N
M , ρ = 0 for M = 1 i.e.,

symbol rate sampling and ρ = 1 for M = N
ε + 1. Equation

(18) is a specification of the model used in (8) and is used to

jointly alter the level of the correlation with the FS rate.

VI. ANALYSIS UNDER H1 HYPOTHESIS

A. White Noise

Assuming that signal and noise are independent, for very

large value of N , (5) leads to the following approximation for

the white noise scenario [8].

lim
N→∞

R̂Y(N) ≈ pHHH + R̂Z. (19)

In this scenario, the sample covariance of received signal

under assumed conditions can be realized as the sum of two

Wishart matrices i.e., pR̂H = pHHH and R̂Z with same

degree of freedom and different covariance structures. In this

condition, MP law holds true for both matrices. Although it is

possible to find another Wishart matrix from the the addition

of pR̂H and R̂Z approximately (see Lemma 6, [39]) and then

apply scaled MP law by scaling with variance (1 + p2) for

the new Wishart matrix, we use free probability theory for

more accurate analysis. The R transform of eigenvalue density

function of R̂Y can be found by adding the R transforms

of density functions of pR̂H and R̂Z using free probability

theory. Using (32), the R transform of pR̂H can be written as:

RpR̂H
(z) = pR

R̂H
(pz) =

pβ

1− pz
. (20)

Since the R transform of R̂Z is R
R̂Z

(z) = β
1−z from (31),

the combined R transform can be written as:

R
R̂Y

(z) =
pβ

1− pz
+

β

1− z
. (21)

6This is a simple analytical example and the same method can be applied
to more exact relation models which can be acquired through measurements
on the CR equipment.

The inverse Stieltjes transform can be obtained by applying

(21) on (30). Then the Stieltjes transform S
R̂Y

of the asymp-

totic distribution of 1
NYYH under white noise scenarios can

be obtained for any z ∈ C by solving the following cubic

polymonial 7.

(pz)S3
R̂Y

(z) + (p(−2β + z + 1) + z)S2
R̂Y

(z)

+((1− β)(1 + p) + z)S
R̂Y

(z) + 1. (22)

Then the a.e.p.d.f. of R̂Y under H0 hypothesis in the presence

of white noise is obtained by determining the imaginary part of

the Stieltjes transform S
R̂Y

for real arguments in the following

way.

f∞
Y = lim

y→0+

1

π
Im{S

R̂Y
(x+ jy)}. (23)

B. Correlated Noise

Using the similar arguments as in the above subsection, the

following approximation can be written for the correlated noise

scenario.

lim
N→∞

R̂Y(N) ≈ pHHH + R̂
Ẑ
. (24)

In correlated noise scenarios, the sample covariance of re-

ceived signal under assumed conditions can be realized as a

sum of one Wishart matrix i.e., pR̂H and another correlated

Wishart matrix R̂
Ẑ

. In this condition, MP law can be applied

for pR̂H and the analysis carried out under H0 hypothesis in

Section V can be applied for R̂
Ẑ

. Then the R transform of

density function of the received signal can be found by adding

the R transforms of density functions of pR̂H and R̂
Ẑ

. The

Stieltjes transform of R̂
Ẑ

can be written as [35]:

S
R̂

Ẑ

(z) =
z + 2zµ+ 1− β +

√

[z − (1 + β)]2 − 4β(1 + µz)

2z(1 + µz)
.

(25)

Then the R transform for R̂
Ẑ

is calculated using (30) and can

be expressed as:

R
R̂

Ẑ

(z) = −1

2

(z − 1 +
√

(z2 − 2z + 1− 4µβz))

µz
. (26)

The combined R transform then becomes

R
R̂Y

(z) =
pβ

(1− pz)
−1

2

(−1 + z +
√

(1− 2z + z2 − 4µβz))

zµ
.

(27)

The inverse Stieltjes transform can be obtained by apply-

ing (27) on (30). Then the Stieltjes transform S
R̂Y

of the

asymptotic distribution of 1
NYYH under correlated noise

scenarios can be obtained for any z ∈ C by solving the quartic

polymonial (28).

Then the a.e.p.d.f. of R̂Y under H1 hypothesis in the

presence of correlated noise can be found using (23).

Remark 6.1: We can find the roots of the polymonials (22)

and (28) in closed forms. The closed forms are not specifically

written in this paper because the solution includes many terms

which provide no further insight. In practice, we can just solve

these polymonials with a mathematical software for finding the

Stieltjes transforms under the considered scenarios.

7We select the imaginary root which complies with the definition and
properties of Stieltjes transform (see Appendix).
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(zp2(1 + µz))S4
R̂Y

(z) + (2zµp(z − pβ) + p2(1 + 2zµ+ z − 2β) + 2zp)S3
R̂Y

(z) + (p2(µ(1− β)2 + 1− β) + 2p

(1 + z + µz(2− β)) + z − 3pβ + z2µ)S2
R̂Y

(z) + (2p(1 + µ(1− β)) + z(1 + 2µ)− β(1 + p) + 1)S
R̂Y

(z) + 1 + µ. (28)

C. Proposed SNR Estimation Technique

The SNR estimation is carried out based on the support

of a.e.p.d.f. of the received signal’s covariance matrix under

both white noise and correlated noise scenarios. The support of

a.e.p.d.f. of 1
NYYH under correlated noise is calculated based

on (28) and under white noise based on (22). It can be noted

from the polymonials (22) and (28) that we have a connection

between λmax and the SNR. Since we know the value of β and

we can measure the value of ρ by carrying out measurements

at the CR equipment, we can estimate the value of p by

sensing the maximum eigenvalue of 1
NYYH . Lookup tables

are provided for convenience in order to estimate the SNR of

the PU signal (see Section VII B). We consider the following

three cases: (i) signal plus correlated noise, (ii) correlated noise

only, and (iii) signal plus white noise. In the lookup table,

we present the maximum eigenvalues of the received signal’s

covariance matrix for above three cases for different values

of SNR and β. We can estimate the received SNR of the PU

signal based on the λmax in the following way. Firstly, we

develop the SNR estimation table (Table I) based on (22) for

white noise scenario and based on (28) for correlated noise

scenario. By using the proposed sensing model, we can find

the value of λmax and then by looking into the table which

provides the value of λmax for a certain value of SNR, we can

find the SNR corresponding to a particular λmax. The param-

eters β and ρ are assumed known as operating parameters of

the sensing module. Based on this estimated SNR, we could

potentially design suitable underlay transmission strategies for

secondary transmission in the considered scenario with short

range primary and secondary wireless systems as mentioned

in Section I. In Section VII, we provide the normalized MSE

versus SNR plot (see Fig. 11) to evaluate the performance of

this estimation technique.

VII. NUMERICAL RESULTS

In this section, we study the performance of eigenvalue

based sensing in the presence of noise correlation with the

proposed decision bounds. We use probability of correct deci-

sion as a sensing performance metric as mentioned in Section

III and define this metric in the following way. Let P (Hi;Hj)
indicate the probability of deciding hypothesis Hi when hy-

pothesis Hj is true with {i, j} ∈ {0, 1}. The probability of

detection (Pd) can be defined as: Pd = P (H1;H1) and the Pf

can be defined as: Pf = P (H1;H0) [40]. Then the probability

of correct decision is defined as: (P (H1;H1)+P (H0;H0))/2
i.e., Pd + (1 − Pf )/2. In other words, it depicts how many

correct decisions are made out of the total considered iterations

under both hypotheses 8. In the presented simulation results,

8Since threshold is fixed in our scenario and noise correlation affects the
value of Pf , we consider number of correct decisions under both hypotheses.

103 iterations were considered. We consider Rayleigh fading

channel in our simulation model and its coefficients are gener-

ated from random complex numbers whose real and imaginary

components are i.i.d. Gaussian variables. As a result, the

channel matrix H is a Gaussian matrix i.e., H ∼ CN (0, I).
Furthermore, we present an SNR estimation method under

H1 hypothesis. The normalized MSE is considered as a

parameter to characterize the performance of the proposed

SNR estimation technique and is defined as:

MSE =
E[p̂− p]2

p2
, (28)

where p̂ is the estimated SNR with the proposed method and

p is the actual SNR.

A. Eigenvalue Based SS

The performance of the proposed sensing scheme has been

analyzed in white and correlated noise scenarios. In case of

white noise scenarios, it has been noted that the eigenvalue

distribution of the received signal’s covariance matrix follows

the MP law and the distribution is limited to the bounds given

by this law. Therefore, the decision rule in (16) is used for

sensing of the PU signal under white noise scenarios. However,

in the presence of noise correlation, the eigenvalue distribution

deviates from the distribution under white noise scenario (Fig.

2, [37]) and new decision rule proposed in (17) is considered.

To compare the sensing performance with MP based thresh-

old and new proposed threshold, the probability of correct

decision versus SNR for ρ = 0.5, β = 1/6, N = 60 is depicted

in Fig. 3. It can be observed that sensing with (17) outperforms

than sensing with (16) in correlated noise scenarios. Figure 4

shows the sensing performance versus correlation coefficient at

SNR value of -6 dB and β = 1/6 and it can be noted that with

the increased amount of noise correlation, the sensing with

MP bounds decreases drastically and sensing with (17) gives

better performance up to some value of correlation. Moreover,

it has been noted that new bounds also do not provide better

sensing at high correlation region. This is due to the fact that

the threshold increases and the asymptotic eigenvalue support

of H1 is subsumed in the one of H0 at this region.

Figure 5 depicts the probability of a false alarm versus

correlation coefficient for SNR = −6 dB, β = 1/6, N = 60.

It can be noted that the value of Pf differs for sensing in

white noise and correlated noise scenarios. The value of Pf

is very small for sensing with (16) in white noise scenarios

but it varies with the value of ρ for sensing in correlated

noise scenarios. In correlated noise scenarios, the value of

Pf with the increase in the value of ρ becomes worse for

sensing with (16) than for sensing with (17). This has been

further illustrated by the plots of CDF curves and thresholds in

Fig. 6. From these results, it can be noted that overall sensing
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Fig. 2: Sensing performance of different methods in white and correlated
noise scenarios (β = 1/8, ρ = 0.6, N = 80)

performance is improved with the proposed bounds since we

get lower Pf while sensing with the proposed bounds than

with the MP bounds up to a certain level of correlation. The

CDF curves for white noise and correlated noise scenarios in

Fig. 6 were plotted by accumulating the decision statistics over

103 iterations for β = 1/6, ρ = 0.5, N = 60. Figure 7 shows

the probability of detection versus SNR for Pf = 0.004 in

white noise and correlated noise scenarios. The Pf value for

white noise scenarios was noted to be 0.004 during simulation

as reflected in Fig. 5 and Fig. 6. To plot Pd versus SNR for the

same value of Pf , the decision threshold in correlated noise

scenarios was adjusted to make the Pf value equal to its value

in white noise scenarios numerically using the CDF curves of

the decision statistics shown in Fig. 6.

Analysis under H1 hypothesis case was considered by

taking the combination of signal and noise under both sce-

narios. Figure 8 (a) shows the theoretical and simulated

eigenvalue distribution of covariance matrix of received signal

i.e., 1
NYYH for SNR = −2 dB and β = 1 under white noise

scenarios. The histograms of the eigenvalues were created by

accumulating the eigenvalues over 103 iterations. The theo-

retical result was obtained by evaluating the polynomial given

by (22). Similarly, Fig. 8 (b) shows the eigenvalue distribution

of covariance matrix of received signal for SNR = −2 dB,

SCN = 3 and β = 1 under correlated noise. In this case,

theoretical result was obtained by evaluating the polynomial

given by (28). From the figure 8, it can be observed that the

theoretical and simulated density functions perfectly match.

To observe the variation of of received signal’s covariance

matrix with respect to SNR, we present the maximum eigen-

value versus SNR plot in Fig. 9 for both correlated and white

noise scenarios. From the figure, it can be observed that the

maximum eigenvalue has higher value in correlated scenario

than in white noise scenario over the considered range of SNR

(from -10 dB to 2 dB) and the gap between these two curves

goes on decreasing while increasing the value of SNR. Figure

10 shows the plot of the maximum eigenvalue of the received

signal’s covariance matrix versus SCN of correlation matrix

for the following three cases: (i) signal plus correlated noise,

(ii) correlated noise only, and (iii) signal plus white noise. It

can be observed that the maximum eigenvalue for the first case
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Fig. 3: Sensing performance versus SNR with (16) and (17)
(β = 1/6, ρ = 0.5, N = 60)
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Fig. 4: Sensing performance versus correlation coefficient (SNR = −6
dB, β = 1/6, N = 60)

is greater than the maximum eigenvalue in the second case

and the difference remains more or less consistent for all the

considered values of SCN (from 2 to 20). With respect to the

white noise scenarios, the maximum eigenvalue in correlated

noise scenarios increases almost linearly with the value of

SCN.

B. SNR Estimation

Table I shows the lookup table for different values of SCNs

of the correlation matrix. This table can be used to estimate

the SNR of the PU signal based on the values of SCN and

β for both correlated and white noise scenarios. The value of

SCN can be derived from the measurements of ρ as mentioned

in Section V. For example, if the value of SCN is 3, β is 1
and the maximum eigenvalue of covariance matrix of received

signal i.e., 1
NYYH is 5.75 in signal plus correlated noise

case, we can estimate that SNR of the PU signal is 0 dB and

intermediate values can be calculated through interpolation.

From the table, it can be observed that at lower SNR values,

the difference in the maximum eigenvalue of signal plus

correlated noise case and correlated noise only case becomes

very small and it becomes difficult to distinguish signal from

the noise.

Figure 11 shows the normalized MSE versus SNR plot

for white noise and correlated noise scenarios for different
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Fig. 5: Probability of a false alarm versus correlation coefficient
(SNR = −6 dB, β = 1/6, N = 60)
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Fig. 6: Cumulative distribution functions of decision statistics under H0

hypothesis and thresholds for white and correlated noise scenarios
(β = 1/6, ρ = 0.5, N = 60)
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Fig. 7: Probability of detection versus SNR in white and correlated noise
scenarios for Pf = 0.004 (β = 1/6, ρ = 0.5, N = 60)
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Fig. 8: Theoretical and simulated eigenvalue distribution of received signal
for different cases (SNR = −2 dB, β = 1, N = 50): (a) signal plus white

noise, (b) signal plus correlated noise (SCN = 3)

SCNs of the noise correlation matrix. From the figure, it can

be observed that for all considered cases, normalized MSE

decreases with the SNR. In case of white noise scenario, we

can estimate the PU SNR with less than 0.5 % normalized

MSE up to 0 dB and with less than 1 % normalized MSE up

to -1 dB. Similarly, in case of correlated noise scenarios, we

can estimate the SNR with less than 1 % normalized MSE

up to 0 dB for all considered values of SCN, with less than

2 % normalized MSE up to -1 dB and after SNR values of

3 dB, SNR in all the cases can be estimated with almost 0.2
% normalized MSE. Furthermore, it can be noted that the

normalized MSE performance decreases with the increase in

the value of SCN at lower SNR values and it becomes almost

stable if we go to higher SNR values beyond 3 dB. From this

result, it can be concluded that the proposed technique can

be used to estimate the PU SNR reliably in the presence of

correlated noise and noise correlation mostly affects the SNR

estimation performance at lower SNR values.

C. FS Operating Point

Figure 12 shows the probability of correct decision versus

FS rate for ε = 3.5. The FS rate has been increased from 1
to 11 and noise correlation has been calculated using (18) for

different values of M . It can be noted that the sensing per-

formance increases with the FS rate for white noise scenario.

However, at the same time, noise becomes correlated due to
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TABLE I: Lookup table for the proposed SNR estimation technique

SCN β SNR (dB) Signal plus white Noise Correlated Noise Signal plus correlated Noise

λmax(HSd + Z) λmax(Ẑ) λmax(HSd + Ẑ)
2 1 5 13.18 3.90 13.19
2 1 4 10.77 3.90 10.78
2 1 2 7.45 3.90 7.47
2 1 0 5.59 3.90 5.65
2 1 -2 4.70 3.90 4.79
2 1 -4 4.29 3.90 4.38
2 1 -6 4.08 3.90 4.19
2 1 -8 3.96 3.90 4.07
2 1 -10 3.90 3.90 4.01

3 1 5 13.18 4.08 13.21
3 1 4 10.77 4.08 10.82
3 1 2 7.45 4.08 7.52
3 1 0 5.59 4.08 5.75
3 1 -2 4.70 4.08 4.93
3 1 -4 4.29 4.08 4.55
3 1 -6 4.08 4.08 4.35
3 1 -8 3.96 4.08 4.24
3 1 -10 3.90 4.08 4.18

4 1 5 13.18 4.25 13.22
4 1 4 10.77 4.25 10.83
4 1 2 7.45 4.25 7.57
4 1 0 5.59 4.25 5.86
4 1 -2 4.70 4.25 5.08
4 1 -4 4.29 4.25 4.72
4 1 -6 4.08 4.25 4.52
4 1 -8 3.96 4.25 4.42
4 1 -10 3.90 4.25 4.35
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Fig. 9: Maximum eigenvalue versus SNR for correlated and white noise
scenarios (SCN = 3, β = 1, N = 60)
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FS and increasing the sampling rate does not monotonically

increase the performance. From Fig. 12, it can be noted that

for N = 60, SNR = −5 dB, the performance increases up to

FS rate M = 8 and for M > 8, the sensing with (17) saturates.

It can be observed that increasing sampling rate enhances the

sensing performance up to a certain FS rate, however, this

also increases the complexity in the receiver. Thus it can be

concluded that optimum sampling rate should be chosen at

the receiver without increasing further complexity since larger

sampling rate does not enhance the performance due to noise

correlation.

VIII. CONCLUSION AND FUTURE WORK

In this paper, the performance of eigenvalue based sensing

has been analyzed in the presence of noise correlation. This
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Fig. 12: Sensing performance versus FS rate (N = 60, SNR = −5 dB)

case often appears due to imperfections in filtering or oversam-

pling and results in non-Wishart covariance matrices. A new

SCN-based threshold has been proposed for improved sensing

in the presence of noise correlation. Furthermore, an SNR

estimation technique based on the maximum eigenvalue of

the received signal’s covariance matrix has been proposed and

the performance of the proposed technique has been analyzed

with normalized MSE. It has been shown that SNRs up to 0 dB

can be reliably estimated with less than 1 % normalized MSE

in the presence of correlated noise without any knowledge of

the noise variance. Moreover, the performance of FS based SS

technique is studied and it has been noted that SS efficiency

increases with the FS rate up to a certain limit and it does not

provide performance advantage beyond this limit. Therefore,

it can be concluded that an optimal operating point for the FS

rate should be selected to maintain a good trade-off between

performance and complexity.

For practical implementation of a CR, sensing techniques

should work efficiently in the realistic scenarios where noise

and channel correlation are always present at some level.

Exploring efficient sensing techniques in these scenarios has

remained as an open research issue. In our future work, we

plan to analyze the effect of channel correlation as well as the

combined effect of noise correlation and channel correlation

on different SS techniques and propose new sensing schemes

suitable for these scenarios.

APPENDIX

Random Matrix Theory Preliminaries

Let FX(x) be the eigenvalue probability density function of a

matrix X.

Theorem 8.1: The Stieltjes transform SX(z) of a positive

semidefinite matrix X is defined by [11]:

SX(z) = E

[

1

X− z

]

=

∫ ∞

−∞

1

λ− z
dFX(λ) (29)

Theorem 8.2: The R transform is related to the inverse of

Stieltjes transform as [11]:

RX(z) = S−1
X

(−z)− 1

z
(30)

Theorem 8.3: For a Wishart random matrix X, the R trans-

form of the density of eigenvalues of X is defined as [11]:

RX(z) =
β

1− z
(31)

For any a > 0,

RaX = aRX(az) (32)

Theorem 8.4: For a Wishart random matrix X, the Σ trans-

form of the density of eigenvalues of X is defined as [11]:

ΣX(z) =
1

z + β
(33)
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