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Abstract—We derive eigenvalue beamformers to resolve an un-
known signal of interest whose spatial signature lies in a known
subspace, but whose orientation in that subspace is otherwise un-
known. The unknown orientation may be fixed, in which case the
signal covariance is rank-1, or it may be random, in which case
the signal covariance is multirank. We present a systematic treat-
ment of such signal models and explain their relevance for mod-
eling signal uncertainties. We then present a multirank general-
ization of the MVDR beamformer. The idea is to minimize the
power at the output of a matrix beamformer, while enforcing a
data dependent distortionless constraint in the signal subspace,
which we design based on the type of signal we wish to resolve. We
show that the eigenvalues of an error covariance matrix are funda-
mental for resolving signals of interest. Signals with rank-1 covari-
ances are resolved by the largest eigenvalues of the error covari-
ance, while signals with multirank covariances are resolved by the
smallest eigenvalues. Thus, the beamformers we design are eigen-
value beamformers, which extract signal information from eigen-
modes of an error covariance. We address the tradeoff between
angular resolution of eigenvalue beamformers and the fraction of
the signal power they capture.

Index Terms—Eigenvalue beamforming, generalized sidelobe
canceller, matched direction beamforming, matched subspace
beamforming, multirank MVDR beamformer.

I. INTRODUCTION

I
N many applications of wireless communications, radar,
sonar, and biomedical imaging, it is desired to separate

a signal of interest in the presence of interference and noise
using measurements from sensor elements, e.g., see [1].
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Typically, the problem is one of estimating a signal in the
measurement model

(1)

where is the spatial signature of interest, is the in-
terference vector, and is broadband noise. When exact
knowledge of the signature vector is available, adaptive beam-
formers provide high spatial resolution and good interference
suppression. However, in most situations the signature vector
is not perfectly known, due to factors such as multipath, local
and random scattering, near field wavefront formation, random
fluctuations in the propagation medium, array flexing, array
calibration errors, and movement of the source. Differences
between the presumed signature and the actual signature result
in signal suppression and poor interference rejection [2]–[5].

To date several methods have been reported to account for un-
certainty in the signature vector. A few examples are: the robust
adaptive beamformers of [6], which enforce a white noise gain
constraint; robust adaptive beamformers of [7], [8], which con-
sider an ellipsoidal uncertainty for the signature vector; robust
adaptive beamformers of [9] which optimize worst-case perfor-
mance for a bounded norm distortion in the signature vector;
robust adaptive beamformers of [10], which enforce a second-
order distortionless constraint on a general rank signal covari-
ance matrix; signal estimation methods of [11], [12], for the case
where the unknown parameters of the signature vector are de-
terministic; and Bayesian approaches of [13], [14], for the case
where the unknown parameters of the signature vector are ran-
domly drawn from a known probability density. Other examples
include the linearly constrained minimum variance (LCMV)
beamformer in [15], Bayesian robust adaptive beamformer of
[16], and signal blocking-based algorithms of [2], [17]. The
reader is referred to [18] for a comprehensive review of the rel-
evant literature.

In this paper, we derive multirank generalizations of the
MVDR beamformer to resolve an unknown signal of interest.
We assume that the signature vector lies in a known linear
subspace and consider three signal models. In the first model,
the signal is assumed to lie in a known one-dimensional
subspace and has a known rank-1 covariance matrix. This
corresponds to the point source assumption in sensor array
processing, where conventional adaptive beamformers have
good and predictable performance. In the second and third
models, however, we assume that the signal lies in a known
multidimensional subspace, but the signal orientation within the
subspace is otherwise unknown. The unknown orientation may
be fixed over a sequence of experimental realizations, in which
case the signal covariance matrix is rank-one. Or the unknown
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orientation may change from realization to realization, in which
case the signal covariance is multirank. The former can be used
to model signals in the presence of slow-varying multipath,
array calibration errors, and deterministic uncertainties about
the relative source/sensor array geometry. The latter can be used
to model signals in the presence of fast-varying multipath, local
and random scattering, flexing arrays, and random uncertainties
about the relative source/sensor array geometry. Conventional
beamformers suffer loss in detectability and resolution, due to
model mismatch, for both of these models.

We begin by presenting a unified and systematic treatment
of our signal models and explain the rationale and relevance of
such models for problems in radar, sonar, wireless communi-
cations, and biomedical imaging. This unified framework moti-
vates the design and use of multirank beamformers as a general
tool for robust adaptive beamforming in many real-life applica-
tions. We then present a multirank generalization of the MVDR
beamformer. The idea is to minimize the power at the output of
a matrix beamformer , while enforcing a data dependent dis-
tortionless constraint in the signal subspace. More specifically,
we enforce a constraint of the form , where is
an orthonormal basis for the signal subspace and is a data de-
pendent constraint matrix, which we design based on the type
of signal we wish to resolve. We note that minimizing the power
at the output of a matrix beamformer/filter under a constraint in
a linear subspace has been considered before in [19] and [20].
Such a problem has also been considered in [21], but in the con-
text of spectrum estimation. What distinguishes the multirank
beamformers to be presented in this paper is that in [19]–[21] the
desired response is prespecified (namely ), whereas
in our work the constraint matrix is a data dependent de-

sign parameter. The design of has important and surprising
implications for resolving signals in the presence of model un-
certainties. Incidentally, when and are vectors the con-
straint reduces in form to the constraint of a Frost
beamformer [22]. However, in the Frost beamformer the con-
straint vector is again prespecified. Our multirank beamformers
are also related to the minimum variance CDMA receivers of
[23], [24], the biomagnetic spatial filters of [25], and the robust
adaptive beamformers of [10].

The critical quantities for resolving signals that are drawn
from a multidimensional subspace are eigenvalues of an error
covariance matrix, , associated with the linear minimum
mean-squared error (LMMSE) in a generalized sidelobe can-
celler (GSC). Although the GSC [26] is not necessary for im-
plementing our beamformers, it is essential for understanding
and interpreting multirank MVDR beamforming. We show that
signals with rank-1 covariances are resolved by the dominant
eigenvalues of , while signals with multirank covariances
are resolved by the subdominant eigenvalues of . In the
former case, the constraint matrix is selected to exploit the
dominant eigenvectors of . In the latter case, is selected
to exploit the subdominant eigenvectors of . This is a fun-
damental and surprising result. It shows that the dominant sub-
space of is fundamental for resolving signals with rank-1
covariances, or equivalently for beamforming in the presence of
deterministic uncertainties. On the other hand, the subdominant
subspace of is fundamental for resolving multirank signals,
or equivalently for beamforming in the presence of random un-
certainties with known second-order statistics. We call the mul-
tirank beamformers that resolve signals with rank-1 covariances

matched direction beamformers and the multirank beamformers
that resolve signals with multirank covariances matched sub-

space beamformers. Our use of language, and view of matched
direction and matched subspace scenarios, is consistent with
the use in [27]–[31], where matched direction detectors and
matched subspace detectors are developed.

More importantly, we show that matched direction and
matched subspace beamformers consist of a collection of
eigenvalue beamformers, where each eigenvalue beamformer
extracts a fraction of the signal power from an eigenmode
of . A multirank beamformer diversity combines a set of
eigenvalue beamformers (dominant or subdominant) to capture
a larger fraction of the signal power. We show that there exists
a tradeoff between the fraction of the signal power captured at
the multirank beamformer output and the angular resolution of
the beamformer. The eigenvalue beamformer associated with
the most dominant eigenvalue of offers the best angular
resolution for resolving signals with rank-1 covariances. On
the other hand, the best angular resolution for resolving signals
with multirank covariances is provided by the eigenvalue
beamformer corresponding to the most subdominant eigen-
value of . Hence, eigenvalue beamformers are fundamental
for resolving signals that are drawn from a multidimensional
subspace, as each eigenvalue beamformer extracts signal
information from an orthogonal subspace mode of the error
covariance matrix and has an eigenvalue-dependent resolution.
Numerical examples presented in Section VI demonstrate the
key role of eigenvalues of in resolving signals of interest.
Finally, we note that preliminary versions of this paper were
reported in [32]–[34].

II. SIGNAL MODELS

Consider the general -dimensional data model

, consisting of a signal of interest plus interference

and noise . Assuming that , , and are un-

correlated and have zero means, we may express the measure-

ment covariance matrix as

(2)

where is the signal covariance,

is the interference covariance, and is

the noise covariance. We assume that the signal lies in a linear

subspace and consider the three following signal models.

Model 1: Sequence of signals with a rank-1 covariance from

a known one-dimensional subspace. The signal is modeled as

(3)

where is a known unit-norm vector, characterizing a

known one-dimensional signal subspace , and is a zero-

mean random complex amplitude with variance .

In this case, the signal has a rank-1 covariance matrix of the

form

(4)

Realizations of are generated by randomly drawing realiza-

tions of the complex amplitude , and a sequence of such

realizations produces a rank-1 experimental

(sample) covariance matrix. All realizations of lie in the known
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Fig. 1. (a) Realizations of a signal from a known one-dimensional subspace;
(b) realizations of a signal from an unknown one-dimensional subspace within
a known �-dimensional subspace; and (c) realizations of a signal from a known
�-dimensional subspace.

one-dimensional subspace (or on the line) , as illustrated in

Fig. 1(a). Each dot on the line depicts a realization

, .

Model 2: Sequence of signals with a rank-1 covariance from

a known -dimensional subspace.The signal model is

(5)

where is a known matrix with orthonormal

columns , spanning a -dimensional subspace

. The vector is an unknown but fixed unit-norm com-

plex vector that determines the orientation of the signal in ,

and is a zero-mean random complex amplitude with variance

. Here, the signal is known to lie inside the -dimensional

subspace but the coordinates of in are unknown. The

signal has a rank-1 but unknown covariance matrix of the form

(6)

Realizations of are generated by randomly drawing realiza-

tions of the complex amplitude , and a sequence of such re-

alizations produces a rank-1 experimental

covariance matrix. All realizations of lie on the unknown line

inside the known -dimensional subspace , as illus-

trated in Fig. 1(b).

Model 3: Sequence of signals with a rank- covariance from

a known -dimensional subspace. The signal is modeled as

(7)

where is a known matrix with orthonormal

columns, spanning a -dimensional subspace . The vector

is a zero-mean complex random vector with a

known rank- covariance , normalized so that

, and is a random complex amplitude with

variance independent of . Here the signal has a known

rank- covariance matrix of the form

(8)

Realizations of are generated by randomly drawing realiza-

tions of both the orientation vector and the complex amplitude

, and a sequence of such realizations

produces a rank- experimental covariance matrix. Each real-

ization of is built from a different linear combination of the

columns of and produces a different point in the subspace

, as illustrated in Fig. 1(c).

Fig. 2. (a) Standing waves drawn from (3), (b) standing waves drawn from (5),
and (c) fluctuating waves drawn from (7).

The three signal models introduced here capture a wealth of

effects in radar, sonar, wireless communications, and biomed-

ical imaging, as we describe in the remainder of this section.

A. Radar and Sonar

Let be the unit-norm bearing vector that car-

ries the relative phases and amplitudes induced on the array el-

ements due to a source radiating from angle at frequency .

Depending on one’s assumptions about the mechanism that gen-

erates , the wavefront may be modeled as

(3), (5), or (7) as we now show.

Case 1: Standing waves from a known one-dimensional sub-

space: If and , then may be

expressed as in (3) by setting . This is the typ-

ical point source model in sensor array processing. The relative

phasings and amplitudes induced by the signal on the array ele-

ments do not vary from snapshot to snapshot, as all realizations

of are built from the fixed bearing vector . The

name standing waves indicates that all the wavefronts in the se-

quence arrive from the same angle and have the same frequency.

This is illustrated in Fig. 2(a) for the case of a uniform linear

array (ULA), where each realization of is a plane wave. In this

figure, the straight line depicts the ULA and the oblique lines

depict a sequence of plane waves, which maintain their angle of

arrival and frequency over time. The only aspect that changes

from one realization to another is the complex amplitude along

the wavefronts.

Case 2: Standing waves from a known -dimensional sub-

space: Several scenarios in radar and sonar give rise to the

signal model (5). In a multipath propagation scenario the signal

is a superposition of waves arriving from different angles

(paths), all with the fixed frequency , where each path

has a complex gain associated with a scattering object. Suppose

the arriving angles are known, or are quantized, and

the corresponding path gains are unknown but

fixed, as in the case of slow-varying multipath during an obser-

vation period. Then, can be expressed as , where

, ,

and is a zero-mean random complex amplitude. If we de-

compose as , where is an orthonormal

basis for , we may then express as in (5) by defining

and .

The relative phasings and amplitudes induced by the signal

on the array elements do not vary from snapshot to snapshot, as

all realizations of are built from the same linear combination

of the columns of . The name standing waves indicates that all
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wavefronts in the sequence have the same “shape”. This is illus-

trated in Fig. 2(b) for the case of a ULA, where each realization

of is a “wrinkled” or nonplane wave, but the wrinkling does

not change from realization to realization.

If the source is broadband with fixed but unknown discrete

spectrum on frequency band , but arrives from a fixed and

known angle , we may use the DTFT to express

as , where the ,

are the DTFT frequencies spanning , is the un-

known but fixed source spectral content at frequency ,

, , and is

a zero-mean random complex amplitude. Since columns of the

DTFT matrix are orthonormal we may express in the form

of (5) by defining , and .

The model (5) is also applicable when there is deterministic

uncertainty about the bearing vector, due to array calibration

errors. Let denote the uncertainty in the parameters of the

bearing vector associated with the signal wavefront, so

, and assume that is fixed and known to lie in the in-

terval . Let , be a

sampling of and define . If the sam-

pling is sufficiently dense, then the true but unknown may

be represented as a linear combination of adjacent columns of

. Let be the matrix whose columns are the first

left singular vectors of , where is the numerical rank of .

Then, approximately lies in , so we may approximate

as , where is a unknown but fixed vector

of complex coefficients.

Case 3: Fluctuating waves from a known -dimensional sub-

space: We now consider a few scenarios which give rise to the

signal model in (7). Consider a narrowband but spa-

tially distributed source which radiates with angular power den-

sity , from a continuum of angles .

The covariance matrix for the source is given by

(9)

For sufficiently small , is numerically rank deficient.

Thus, we may approximate with the rank- eigendecom-

position , where is the numerical rank of

, contains the largest eigenvalues

of , with , and contains the

corresponding eigenvectors. Consequently, a distributed source

with known covariance may be modeled as

in (7), provided that the orientation vector is randomly drawn

from a distribution with known covariance

, and the complex amplitude is independently drawn from a

distribution with variance .

The relative phasings and amplitudes induced by the signal

on the array elements vary from snapshot to snapshot, as each

realization of is built from a different linear combination of

the columns of . The name fluctuating waves indicates that

each wavefront in the sequence will have a different shape. This

is illustrated in Fig. 2(c) for the case of a ULA, where each

realization of is a wrinkled wave, but the wrinkling changes

from one realization to another.

Remark 1: If the array is an -element ULA with half-wave-

length inter-element spacings and the angular power density

is uniform on the angular bandwidth , then

the approximate numerical rank of is ,

where is called the fractional wave-

number bandwidth, and is approximated as . The

columns of are the first discrete prolate spheroidal wave

functions and is the corresponding -dimensional Slepian

subspace [35]–[37].

Similarly, a broadband source at a fixed angle with

power spectral density on the frequency band

may be modeled as in (7). The signal covariance

is of the form (9), with playing the role of . The numer-

ical rank of is given by the time-bandwidth product ,

where is the transmit time of the wavefront across the array

and is thus a function of [38]. Hence, we may use the rank-

eigendecomposition and model as in (7).

The model (7) is also applicable when the uncertainty in

the bearing vector changes randomly during the observation

interval, e.g., due to flexing of a towed array in sonar. Sup-

pose is drawn randomly from a distribution over

. Then, the signal covariance matrix

is1

(10)

If we take the numerical rank of to be , then

may be approximated by a rank- eigendecomposition

. Therefore, we may again express

as , where the random change of from realization to

realization is modeled by the -dimensional zero-mean random

vector with known covariance . In

general, the numerical rank of increases as the support of

increases.

B. Communications

Signal models (3), (5), and (7) are applicable to communi-

cation with a known code over a channel modeled as a -tap

FIR filter. Let be an matrix whose columns are the

time shifts of the length code and let be the

vector of channel coefficients. Then, the received signal is of

the form , where denotes the transmitted bit or

amplitude. If is assumed to be known from pilot symbols,

then may be written as (3) by defining

and . If is unknown but fixed, we may de-

compose as , where is an orthonormal basis for

, and then write as in (5) by defining

and . Finally, if is assumed to be random

with known covariance , then we may ex-

press as in (7) by defining and

.

1Provided that the variance of � is small, (10) may be approximated by a
coherence loss model of the form � � � ����� ��� � ����, where �
denotes the Hadamard matrix product and ���� is a real-valued symmetric
Toeplitz matrix, whose elements are Gaussian functions when � is Gaussian
and sinc functions when � is uniform [10], [39]–[41].



1958 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 5, MAY 2008

C. Biomedical Imaging

Models (3), (5), and (7) are also relevant in biomedical

imaging. In electromagnetic brain imaging [42] an array of

electric and/or magnetic sensors is used to measure the electric

and/or magnetic fields produced due to the electrical activity

of the brain. Focal sources in the brain are modeled as equiv-

alent current dipoles, which are parameterized by location,

orientation, and strength. For a given source location and

brain/sensor array geometry, the measured signal is described

as the weighted sum of the contributions due to unit strength

dipoles oriented in the three coordinate directions. Let be an

matrix, whose columns are the signals at the array

due to unit strength sources in the -, -, and -coordinates.

Then, the signal due to a source with orientation vector and

amplitude may be expressed as . If is assumed

to be known based on MRI and anatomical constraints, then

can be written as (3) by defining and

. If is assumed to be unknown but fixed,

and we decompose as , where the matrix

is an orthonormal basis for , then we may write as

in (5) by defining and .

Finally, if is assumed to be random with known covari-

ance , as in the rotating dipole model of

[43], then the signal may be modeled as in (7) by defining

and .

In Sections III–V, we will develop eigenvalue beamforming

methods to separate signals of the form (3), (5), and (7) from

interference and noise. We treat as a wavefront and use the

terminology of sensor array processing for convenience.

III. MULTIRANK MVDR BEAMFORMING

Let be the output of a vector beamformer

, applied to the array measurement vector .

In standard MVDR beamforming we design to minimize

the output power under the

constraint (u.c.) that the beamformer produces a unit-magnitude

response to a waveform with a known signature vector . That

is

(11)

where is the covariance of the array measurement

vector . The constraint , , guarantees that

the beamformer yields the desired response to any wavefront

with the known signature vector . The MVDR beamformer

performs well and predictably when the signal model is of the

form (3). However, when the signal of interest follows (5) or (7),

the MVDR beamformer cannot match to the unknown signature

vector and its performance degrades unpredictably.

For signals of the form (5) and (7), where the -dimensional

signal subspace is known, but the signal orientation is un-

known, it is more natural to design a matrix beamformer

and control the beamformer response in

the subspace , which contains the signal of interest. Hence,

we constrain our matrix beamformer to satisfy

(12)

where is a left-orthogonal matrix, i.e.,

. This subspace constraint is equivalent to the constraint

where is an

orthogonal matrix. This shows that in (12) images the

linear combinations (or vectors) as and the linear

combinations as zero. These are called distortionless and

zero-forcing constraints, respectively. The problem of choosing

is deferred to Section IV. For now, we assume is an arbi-

trary left-orthogonal matrix.

The matrix beamformer images the array measurement

vector to the beamformer output vector . We wish

to design to minimize the output power

, while forcing the subspace constraint in (12):

(13)

This may be viewed as a multirank generalization of the stan-

dard MVDR beamformer. We note that multirank beamforming

problems of the form (13) have been considered in [19] and [20].

In [19] and [20], the constraint matrix is prespecified or data

independent. When and are vectors, the constraint in (13)

is similar in form to the constraint of a Frost beamformer [22].

Note that the desired response in the Frost beamformer is also

prespecified and data independent.

The solution to (13) may be easily determined using the

method of Lagrange multipliers and completing the square to

obtain the optimum rank- MVDR beamformer and

the minimum output power :

(14)

(15)

The multirank MVDR beamformer may also be formu-

lated using a generalization of the GSC introduced in [26]. Al-

though the GSC is not necessary for implementing , it is

essential for understanding and interpreting multirank MVDR

beamforming. Let be a left-orthogonal matrix

that makes unitary and express the multirank

beamformer as

(16)

where . The beamformer output

is then written as

(17)

where , , and are the vectors

shown in the GSC diagram in Fig. 3.

In the GSC, the vector is decomposed into two sets of co-

ordinates and , with the composite covari-

ance matrix

(18)
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Fig. 3. Generalized sidelobe canceller.

The top branch output is estimated from the bottom branch

output , using the LMMSE filter . Hence,

is the error in estimating from . The error

covariance is given by

(19)

which may also be expressed as

(20)

The output covariance matrix and the output

power of the multirank MVDR beamformer are

expressed in terms of as

(21)

(22)

The top branch of the GSC passes the part of that lies in

the signal subspace and blocks the part of that lies in

the orthogonal subspace . Therefore, the signal

is passed through the top branch along with the parts of inter-

ference and noise that lie in . That is contains

the signal of interest and the resolutions of the interference and

noise onto . The bottom branch of the GSC passes the parts

of interference and noise that lie in . However, due to the or-

thogonality of and the signal does not leak through the

bottom branch, and contains the resolutions of the

interference and noise onto , but no signal. In estimating

from , the interference that has leaked through the signal sub-

space is estimated from the interference that lies in

and subtracted out. Thus, the error vector contains the signal of

interest, and reduced interference and noise. The output vector

is formed by transforming the error vector by the constraint

matrix . This is a subspace selection or coordinate selection

step, which may be designed to extract the signal of interest from

. In beamforming applications the matrix may be steered to

a particular angle , or more generally scanned to a particular

value of a parameter of the uncertain signature vector, and at

each the output power is computed:

(23)

The plot of the output power versus is called a bearing

response pattern.

Remark 2: From (9), it is easy to see that the basis

corresponding to a Slepian subspace steered to angle may be

expressed as

(24)

where corresponds to

relative phasings on a ULA steered to electrical angle and

is the Slepian basis corresponding to angular bandwidth

, centered at . The electrical angle is related

to the geometrical angle as .

IV. SUBSPACE SELECTION FOR EIGENVALUE BEAMFORMING:

MATCHED DIRECTION BEAMFORMING VERSUS

MATCHED SUBSPACE BEAMFORMING

We now address the design of the constraint matrix to re-

solve standing waves (signals of the form (5)) and fluctuating

waves (signals of the form (7)). For ease of exposition, we as-

sume that the interference covariance matrix is rank-1 of

the form , so that .

Inserting in (19), using and the matrix inversion

lemma [44], we obtain the error covariance matrix

(25)

The first term in (25), , is the signal covariance

matrix after it is passed through the top branch of the GSC.

For standing waves (5) with given by (6) this term is

. For fluctuating waves (7) with the mul-

tirank covariance given by (8) we have ,

where is diagonal.2 The second term on

the right-hand side (RHS) of (25) is the covariance matrix for the

interfering wavefront, after it is suppressed by the GSC. The top

branch of the GSC reduces the interference power by a factor

of . The bottom branch further suppresses the interfer-

ence power by a factor of .

Remark 3: If the bottom branch of the GSC is switched off,

the beamformer becomes a multirank Bartlett beamformer

[36], [37], and will reduce to :

(26)

Thus, the factor represents the extra interference suppression

obtained with a multirank MVDR beamformer compared to a

multirank Bartlett beamformer.

The output power of the multirank MVDR beamformer

is related to the error covariance matrix via (22). We now

consider choosing so that captures the signal

power for standing waves and for fluctuating waves.

A. Standing Waves and Matched Direction Beamforming

In the case of standing waves (5), the error covariance matrix

is given by

(27)

2Without loss of generality, we assume � � ��� � ������ � � � � � � 	,
since the known� can always be diagonalized and the eigenvector matrix of
� can be absorbed in 


.
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If the signal subspace and the interference subspace

are well separated, then the interference will be suppressed by

the GSC through and . In that case, the rank-1 signal

term contributes to only the largest eigenvalue of .

Therefore, must carry the dominant eigenvector of . The

dominant eigenvector of identifies and the dominant

eigenvalue of gives a noisy but interference free estimate

of .

However, if the interference term is signifi-

cant, the signal and interference terms together will determine

the two largest eigenvalues of . Thus, to prevent loss of

signal power, must select the two most dominant eigenvec-

tors of . The sum of the two largest eigenvalues of then

captures all of the signal power, plus a fraction of the interfer-

ence power and the noise power. In the more general case where

the interference covariance matrix is not negligible and has rank

, or non-negligible interferer are present,

the matrix must select the dominant eigenvectors of to

avoid loss of signal power. The sum of the largest eigenvalues

of captures all of the signal power, and we may estimate

the signal power at the multirank beamformer output as

(28)

Each eigenvalue of captures an unknown fraction of the

signal plus interference power, plus .

The multirank beamformer , constructed using the dom-

inant eigenvectors of , may be called a matched direction

beamformer, as it is designed to resolve signals that are drawn

from an unknown direction inside the known subspace

.

Remark 4: Matched direction beamforming may be posed as

a constrained max-min problem of the form

(29)

where is the set of all left-orthogonal matrices. Thus, our

matched direction beamformers generalize the minimum vari-

ance CDMA receivers of [23], [24] and the biomagnetic spatial

filters of [25], both of which are vector beamformers

that solve the max-min problem

(30)

where is the set of all unit-norm complex vectors.

B. Fluctuating Waves and Matched Subspace Beamforming

We now consider the case of fluctuating waves (7), where

the signal covariance is . For exposition

we consider the Slepian case where . So the error

covariance matrix in (25) is given by

(31)

When the interference term is negligible, all

the eigenvalues of are equal to ,

. Hence, may be selected as any collection of

of the eigenvectors of and may be estimated

as . When the interfer-

ence term is significant, the largest eigenvalue of is contam-

inated by the interference. However, the remaining eigenvalues

are equal to , . Thus, interfer-

ence is eliminated if is selected from the subdominant

eigenvectors of . In this case an estimate of the signal power

at the beamformer output is

(32)

We have deliberately written the index of the summation in (32)

from to to emphasize that we start by including the

most subdominant eigenvector of in and work toward

more dominant eigenvectors. In Section IV-C, we show that the

most subdominant eigenvalue of gives the best angular res-

olution for resolving fluctuating waves, and that there exists a

tradeoff between angular resolution and the fraction of signal

power captured at the beamformer output.

The beamformer , constructed from the subdominant

eigenvectors of , resolves signals that are drawn from a

known multidimensional subspace, and is termed a matched

subspace beamformer. Provided that the rank of the interference

term in is less than , the matched subspace beamformer

yields a noisy but interference free estimate of . Since

each eigenvalue of captures of the signal power ,

we could normalize (32) by to make the signal term in

equal to . However, this would scale the noise power by a

factor of .

When the known is not proportional to

the identity matrix, then

. If the signal and interference subspaces are well sepa-

rated the interference will be suppressed and the th eigenvalue

of will capture of the signal power, and an estimate

of the signal power at the beamformer output is given by (32).

Since , the most subdominant eigenvalue

of captures the smallest fraction of the signal power.

However, this eigenvalue gives the best angular resolution for

resolving fluctuating waves. Note that normalization of by

forces the signal power in to be ,

but scales the noise power proportionally. When the interference

term is significant, but has rank , then the subdom-

inant eigenvalues of provide interference free estimates of

fractions of the signal power.

Remark 5: Matched subspace beamforming may be posed as

a min-min problem of the form

(33)

where is the set of all left orthogonal matrices. The

min-min problem in (33) is equivalent to minimizing the output

power under the quadratic constraint

[45]. This establishes a connection between

matched subspace beamformers and robust adaptive beam-

formers of [10], which enforce a quadratic constraint of the

form .
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C. Eigenvalue Beamforming

In both matched direction and matched subspace beam-

forming, the th column of the multirank beamformer

is an eigenvalue beamformer of

the form

(34)

where is the th column of . The output

power of , given by , is

an eigenvalue of . In matched direction

beamforming is the th most dominant eigenvector of

and is the th most dominant eigenvalue. In matched sub-

space beamforming is the th most subdominant eigenvector

of and is its th most subdominant eigenvalue. The

eigenvalue beamformer extracts a fraction of the signal

power from an eigenmode of . When we steer around

in the eigenvalue beamformers and their output powers

vary with , by the virtue of their dependence on . We

call the plot of versus an eigenvalue bearing response

pattern.

Matched direction and matched subspace beamforming are

diversity combining techniques, in which per mode (per sub-

space dimension) output powers extracted by eigenvalue beam-

formers are summed up to produce an estimate of the signal

power. This is analogous to wireless communications where un-

correlated paths are diversity combined. When the signal power

is distributed among multiple directions in the signal subspace

, either because the signal covariance is multirank or be-

cause a signal with rank-1 covariance is in the presence of in-

terference, each eigenvalue beamformer captures a fraction of

the signal power, and the sum of the output powers is a diver-

sity combination designed to capture all of the signal power.

However, we shall show next that angular resolution decreases

as the fraction of the signal power captured by the multirank

beamformer increases.

Each eigenvalue beamformer extracts signal information

from an orthogonal subspace mode, at a different resolution.

Hence, eigenvalue beamformers are fundamental for resolving

signals that are drawn from a multidimensional subspace,

and monitoring the output powers of eigenvalue beamformers

individually can be more insightful for resolving standing and

fluctuating waves than monitoring their diversity sums.

D. Resolution Analysis

In the following resolution analysis, without loss of gener-

ality, we assume that the signal subspace is a Slepian

subspace of dimension , which is steered around in .

However, the argument easily extends to other signal subspaces,

which in general are steered around in a parameter.

We first consider the matched subspace case. Suppose a fluc-

tuating wave with angular bandwidth , centered at ,

and with covariance matrix ,

is incident on the array. If the interference is negligible, then

Fig. 4. Plots of the eigenvalues of ���� �� versus �.

when is steered to angle , the error covariance matrix

is given by

(35)

where . The th eigen-

value of is equal to , and it

depends on the location of the source and the electrical angle

. The eigenvalues of are squares of the cosines of the

principal angles [46] between and . When is

far from such that the angular bandwidth

for and for do not

overlap, all the principal cosines between and

are zero. As moves closer to , so that and begin to

overlap, a few of the principal cosines (cosines of principal an-

gles) become nonzero, while the rest stay close to zero. As the

overlap between and increases, the number of nonzero

principal cosines grows. Finally when and overlap com-

pletely all principal cosines become one. This indicates that the

angular bandwidth over which has only one nonzero

eigenvalue is wider than the angular bandwidth over which it

has nonzero eigenvalues.

Fig. 4 shows the evolution of the eigenvalues of versus

for the case where is a dimensional Slepian

subspace, centered at . We notice that as we move from

the dominant eigenvalue towards the subdomi-

nant one the eigenvalue bearing response patterns

around become sharper. This shows that the subdomi-

nant eigenvalues of offer higher angular resolution for

resolving fluctuating waves than the dominant ones, and points

to a tradeoff between angular resolution and the fraction of the

signal power captured by the matched subspace beamformer.

The eigenvalue beamformer associated with the most subdomi-

nant eigenvalue of provides the highest resolution, but cap-

tures only a small fraction of the signal power. We can cap-
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ture a larger fraction of the signal power by diversity combining

the eigenvalue beamformers associated with other subdominant

eigenvalues of at the cost of reduced resolution. We present

numerical examples to demonstrate this tradeoff in Section V.

Remark 6: The tradeoff between resolution and the fraction

of signal power captured by the matched subspace beamformer

extends to the case where ,

is diagonal, as shown in the Appendix. The most

subdominant eigenvalue beamformer, which offers the highest

angular resolution, captures the smallest per mode signal power

.

The tradeoff between resolution and signal power also applies

in the matched direction case. If the interference is negligible the

most dominant eigenvalue beamformer captures all of the signal

power and fixes the angular resolution. If a strong interferer is

present at a nearby angle, then when is steered nearby,

a fraction of the signal plus interference power will be cap-

tured by the second most dominant eigenvalue of . Diversity

combining the two most dominant eigenvalue beamformers cap-

tures all the signal power, but allows for more leakage of power

from the interferer and degrades the resolution of the source and

interference.

E. Comparison With Multirank Bartlett Beamformer

If the bottom branch of the GSC is switched off, the beam-

former will reduce to a multirank Bartlett beamformer of

the form , and the beamformer output covariance

will be . We can select

to retain either the dominant eigenvalues of

for matched direction Bartlett beamforming or the subdomi-

nant eigenvalues of for matched subspace Bartlett beam-

forming. However, we note that in this case is different than

for matched direction MVDR and matched subspace MVDR

beamforming, because in general the eigenvectors of

and are different. They are the

same only when there is no interference. Matched direction and

matched subspace MVDR beamformers always provide better

interference suppression than their Bartlett counterparts, due to

the extra interference reduction by .

The second matrix on the RHS of (19) is positive semidefinite

(PSD), so the Bartlett matrix and the

error covariance matrix satisfy

the inequality

(36)

where means that is PSD. This matrix in-

equality holds at every electrical angle and is true even when

there is no interference.3 The matrix inequality in (36) implies

that at any given the th eigenvalue of is always greater

than or equal to the th eigenvalue of . Thus, the bearing

response pattern of the th Bartlett eigenvalue beamformer al-

ways lies on or above the bearing response pattern for the th

MVDR eigenvalue beamformer. Since both and

3Equality holds, if there is no interference and������ is steered to the electrical
angle where the signal is located.

capture the same amount of noise power, and peak

around the same angle with nearly (within the factor ) the

same peak value, we conclude that the th MVDR eigenvalue

beamformer has a better angular resolution than the th Bartlett

eigenvalue beamformer. Numerical examples to be presented

validate this observation.

V. NUMERICAL EXAMPLES

We now demonstrate the role of the eigenvalue beamformers

in resolving signals of the form (5) and (7), and study their per-

formance in the presence of signal subspace mismatch using

simple numerical examples. We consider a ULA with

elements and half-wavelength inter-element spacing .

Four narrowband sources of the rank-1 form (5) and four sources

of the rank- form (7) are incident on the array. All sources

are drawn from the dimensional Slepian sub-

space, so is the four-dimensional Slepian subspace with

fractional wavenumber bandwidth . Note that although

we discussed the Slepian subspaces in the context of fluctuating

waves, they are also relevant for modeling standing waves. An

example is the case where the unknown orientation vector

is drawn from a distribution with known covariance, but then

stays unchanged over a sequence of snapshots. The total signal

power for each source is and the noise power

at each sensor element is , resulting in an input SNR

of 10 dB. The four rank-1 sources are centered at electrical an-

gles 0, 1, 2.22, and 2.29 rad, and the four rank-4 sources are

centered at electrical angles , , , and rad.

Going from negative to positive electrical angles, the subspace

orientation vectors for the rank-1 sources are, respectively,

,

, and .

These orientation vectors are fixed, but they are unknown to the

beamformer. The orientation vectors for the multirank sources

are randomly drawn from a distribution with covariance

.

A. Known Data Covariance

In the first example, we assume that the theoretical data co-

variance is known, and that there is no mismatch between

the signal subspace used in beamforming and the ac-

tual signal subspace. Fig. 5(a) and (b) shows the bearing re-

sponse patterns for the conventional and standard MVDR beam-

formers, respectively. These plots are obtained by steering the

bearing vector in electrical angle and computing

the output power (for conventional) and

(for MVDR) at each . As the plots

show, the conventional beamformer produces false peaks near

rank-1 sources and the MVDR beamformer does not resolve

these sources at all. They also render wide peaks around the

multirank sources and underestimate their powers by approxi-

mately 6 dB.

The behavior of the Bartlett beamformer may be explained as

follows. Suppose there is no interference. Then, the power at the

output of the Bartlett beamformer is

. When we sweep over , for a rank-1 source with covari-

ance , there exists a narrow
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Fig. 5. Bearing response patterns for (a) conventional (Bartlett) beamformer
and (b) standard MVDR beamformer. Dashed vertical lines indicate true source
locations. Going from negative to positive electrical angles in each plot the first
four sources generate fluctuating waves with rank-4 covariances and the next
four sources generate standing waves with rank-1 covariances.

band of angles around inside which is not

small. In this angular band the conventional beamformer passes

a fraction of the source power and the bearing response pattern

peaks. This also happens for the multirank sources with covari-

ance . The power of the source in

this case is equally distributed among four dimensions in the

Slepian subspace and when is close to ,

is approximately one, and the power at the output of the beam-

former is approximately 6 dB.

The behavior of the MVDR beamformer may be explained

using the GSC in Fig. 3 by replacing with and

choosing such that is unitary. The

top branch of the GSC is a conventional beamformer. When

is close to this branch passes some of the signal. This is true

for both rank-1 and multirank sources. However, since is mis-

matched with the actual signal subspace some of the signal leaks

through the bottom branch, which after LMMSE estimation re-

sults in signal suppression

Fig. 6(a)–(d) shows the eigenvalue bearing response patterns

, . We notice that the most dominant

eigenvalue resolves the rank-1 sources. It captures all

the power of the rank-1 sources at 0 and 1 rad. It also

captures a large fraction of the powers of the rank-1 sources at

2.22 and 2.29 rad. However, since each source acts

as an interference for the other a small fraction (-18 dB) of the

signal power is captured by the second most dominant eigen-

value . The subdominant eigenvalues and

in Fig. 6(c) and (d) show no indication of presence of

the rank-1 sources.

The dominant eigenvalue also gives interfer-

ence free, but noisy, estimates of a fraction of the power

of the multirank sources, as the interference nearby is

sufficiently suppressed by the GSC. The peak values of

at locations of multirank sources are approxi-

mately 6 dB, which is consistent with the signal

covariance model . However, note that

is wider around multirank sources than the sub-

dominant eigenvalue bearing response patterns ,

, and thus offers worse angular resolution. In partic-

ular the multirank sources at and are not

well-resolved by .

Fig. 6(b)–(d) shows that each of the subdominant eigenvalues

, , captures a fraction ( in

Fig. 6. MVDR Eigenvalue bearing response patterns: (a) �� �� ����,
(b) �� �� ����, (c) �� �� ����, and (d) �� �� ����. Dashed vertical
lines indicate true source locations. Going from negative to positive electrical
angles in each plot the first four sources generate fluctuating waves with rank-4
covariances and the next four sources generate standing waves with rank-1
covariances.

this example) of the power of the multirank sources. They also

show that the most subdominant eigenvalue offers

the highest angular resolution for resolving multirank sources.

We can diversity combine the eigenvalue beamformers (multi-

rank matched direction and matched subspace beamforming) to

capture a larger fraction of the signal power at the expense of

resolution.

Fig. 7(a)–(d) shows the Bartlett eigenvalue bearing response

patterns , . Each of the subdominant

eigenvalues of captures the same fraction of the signal

power as its MVDR counterpart. However, the most dominant

Bartlett eigenvalue beamformer no longer provides an inter-

ference free estimate of the power of the multirank source at

0.049 rad, as it can not sufficiently suppress the rank-1 in-

terferer at 0 rad. Furthermore, the resolution of each Bartlett

eigenvalue beamformer around a multirank source is less than

the resolution of its MVDR counterpart. For example, while

the most dominant Bartlett eigenvalue beamformer resolves the

rank-1 signals at 0 and 1 rad it fails to resolve the two

rank-1 sources at 2.22 and 2.29 rad, which are close

in angle. Comparison of and with

and around the rank-1 sources at

2.22 and 2.29 rad clearly shows the superior interference

suppression capability of MVDR eigenvalue beamformers.

B. Experimental Data Covariance

In most applications the data covariance matrix is not

known and has to be estimated from multiple array snapshots.

Assuming copies of the array measurement vector , say

, are available, we may use the sample covari-

ance matrix in place of .

We consider the case where the number of data samples

is . The type of sources and their locations
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Fig. 7. Bartlett eigenvalue bearing response patterns: (a) �� �� ����,
(b) �� �� ����, (c) �� �� ����, and (d) �� �� ����. Dashed vertical
lines indicate true source locations. Going from negative to positive electrical
angles in each plot the first four sources generate fluctuating waves with rank-4
covariances and the next four sources generate standing waves with rank-1
covariances.

Fig. 8. Eigenvalue bearing response patterns: (a) �� �� ����,
(b) �� �� ����, (c) �� �� ����, and (d) �� �� ����. The data
covariance matrix � is estimated from � � ���� � ��	 snapshots. Dashed
vertical lines indicate true source locations. Going from negative to positive
electrical angles in each plot the first four sources generate fluctuating waves
with rank-4 covariances and the next four sources generate standing waves
with rank-1 covariances.

are identical to those of Section V-A. Fig. 8(a)–(d) shows the

plots of the eigenvalues of versus

. Similar to the known data covariance case, the dominant

eigenvalues of resolve the rank-1 sources and the sub-

dominant ones resolve the multirank sources. However, due

to low sample support, loss of signal power is observed. This

suggests that does not perfectly fit the four dimensional

Fig. 9. Eigenvalue bearing response patterns: (a) �� �� ����,
(b) �� �� ����, and (c) �� �� ����. The signal is modeled with a �� � 

dimensional Slepian subspace and is mismatched to the actual �� � �
dimensional Slepian signal subspace. Dashed vertical lines indicate true source
locations. Going from negative to positive electrical angles in each plot the first
four sources generate fluctuating waves with rank-4 covariances and the next
four sources generate standing waves with rank-1 covariances.

signal subspace model, and brings us to the question of signal

subspace mismatch.

C. Signal Subspace Mismatch

We now investigate the effect of signal subspace mis-

match, where the Slepian subspace used in beamforming is

different from the actual Slepian subspace used in generating

the data. Fig. 9(a)–(c) shows the plots of the eigenvalues of

versus , when is taken

to be the dimensional Slepian subspace instead of

the four dimensional Slepian subspace used in generating the

data. In this case, has three eigenvalues. As can be seen,

the dominant eigenvalue of captures a very small fraction

(-15 dB) of the power of the rank-1 sources at ,

2.22, and 2.29 rad. At first it may appear that

captures all the power of the rank-1 source at 0. However,

the power at that location is due to leakage of power from the

nearby multirank source, a result of signal subspace mismatch.

The subdominant eigenvalues of , say and

in Fig. 9(b) and (c), still resolve the multirank

sources. This behavior may be explained using the GSC in

Fig. 3. Roughly speaking, since here the dimension of the

signal subspace is underestimated (three instead of four) the

part of the signal that lies in the subspace spanned by the fourth

Slepian basis vector, associated with , leaks through

the bottom branch of the GSC. The Slepian basis vectors

associated with are different from those associated

with . However, the three-dimensional Slepian sub-

space with lies inside the four-dimensional Slepian

subspace with . Therefore, when estimating the top

branch from the bottom one and forming the error, the signal
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Fig. 10. Eigenvalue bearing response patterns: (a) �� �� ����,
(b) �� �� ����, (c) �� �� ����, (d) �� �� ����, and (e) �� �� ����.
The signal is modeled with a �� � � dimensional Slepian subspace and
is mismatched to the actual �� � � dimensional Slepian signal subspace.
Dashed vertical lines indicate true source locations. Going from negative to
positive electrical angles in each plot the first four sources generate fluctuating
waves with rank-4 covariances and the next four sources generate standing
waves with rank-1 covariances.

components in the top branch that are correlated with those in

the bottom branch are suppressed. The signal suppression can

be more extreme for resolving rank-1 sources than multirank

sources, because the power of a rank-4 source is equally dis-

tributed among four modes in the Slepian subspace. The power

of a rank-1 source on the other hand is concentrated along one

direction in the space and hence may be significantly reduced

when the dimension of the signal subspace is underestimated.

Next we overestimate the signal subspace dimension by

taking the signal subspace to be the dimensional

Slepian subspace. Fig. 10(a)–(d) shows the eigenvalue bearing

response patterns for this case, where has five eigenvalues.

The multirank sources are again resolved by the subdominant

eigenvalues of . The rank-1 sources at and are

resolved at almost full power with the most dominant eigen-

value . However, the rank-1 sources at 2.22 and

2.29 rad are not fully resolved by . Compared to

the previous mismatch scenario, here the dominant eigenvalue

of provides better “detectability” (larger power level)

around the location of the rank-1 sources. Roughly speaking,

since here the dimension of the signal subspace is overestimated

the signal does not leak through the bottom branch of the GSC.

However, the interfering sources are not as strongly suppressed

as before, because less correlated interference passes through

the bottom branch. This effect is evident in Fig. 10(b), where

peaks in the middle of the rank-1 sources located

at 2.22 and 2.29 rad.

VI. CONCLUSION

In many practical imaging and beamforming problems the

signature vector of the signal of interest is not perfectly known,

but the subspace in which the signature vector lies is known

or can be approximated. The unknown orientation of the signal

in the subspace may stay fixed, in which case the signal has a

rank-one but unknown covariance matrix, or it may change ran-

domly from one realization to another, in which case the signal

has a known multirank covariance matrix. We present a uni-

fied and systematic treatment of such signal subspace and signal

covariance models and discuss their relevance in radar, sonar,

wireless communications, and biomedical imaging.

We derive two multirank generalizations of the MVDR beam-

former, namely matched direction and matched subspace beam-

formers, by introducing a data dependent constraint matrix that

is designed to extract information from the error covariance ma-

trix associated with a GSC. When the signal of interest is drawn

from an unknown but fixed direction within a known multidi-

mensional subspace, and has a rank-1 covariance matrix, it is the

dominant eigenvalues of the error covariance matrix that resolve

the signal. When the signal is randomly drawn from a known

multidimensional subspace, and has a known multirank covari-

ance matrix, it is the subdominant eigenvalues that resolve the

signal. In the former case, the constraint matrix is chosen to se-

lect the dominant eigenvectors of the error covariance, while in

the latter case it is chosen to select the subdominant eigenvec-

tors. This leads to eigenvalue beamforming, where each eigen-

value beamformer extracts signal information from an orthog-

onal subspace mode, at a different resolution. Matched direction

and matched subspace beamforming are diversity combining

techniques, in which per mode (per subspace dimension) output

powers of eigenvalue beamformers are diversity combined to

produce an estimate of the signal power. As the fraction of the

signal power captured by the multirank beamformer increases

the angular resolution decreases.

APPENDIX

Let and be matrices with eigenvalues

and , then [47,

ch. 9]

(A.1)

Set and . Since

, ,

and have equal eigenvalues and does not

vary with , it is easy to see that the shape of the

rank- matched subspace bearing response pattern
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, associated with

the diagonal but nonidentity , follows the shape of the rank-

matched subspace bearing pattern associated with .

For exposition, let and , corresponding to a rank-2

matched subspace beamformer. Then, we have

(A.2)

Since we can write

(A.3)

Since does not vary with the inequality in (A.3), which holds

for any , shows that the width of

around has to be less than or equal to the width of

around .
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