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Abstract

In this paper we address the problem of determining and efficiently
computing an approximation to the eigenvalues of the negative Lapla-
cian —A\ on a general domain Q C R? subject to homogeneous Dirichlet
or Neumann boundary conditions. The basic idea is to look for eigen-
functions as the superposition of generalized eigenfunctions of the cor-
responding free space operator, in the spirit of the classical Method of
Particular Solutions (MPS). The main novelties of the proposed ap-
proach are the possibility of targeting each eigenvalue independently
without the need for extensive scanning of the positive real axis, and
the use of small matrices. This is made possible by iterative inclu-
sion of more basis functions in the expansions, and a projection idea
which transforms the minimization problem associated with MPS and
its variants into a relatively simple zero-finding problem, even for ex-
pansions with very few basis functions.

1 Introduction

The numerical computation of eigenvalues of differential operators is usu-
ally performed following two main philosophies. On the one hand, one starts
out with a discretization of the differential operator by a finite dimensional
matrix approximation obtained by finite differences, finite elements or any
other numerical method. The spectrum of the approximation is then taken
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as an approximation to the spectrum of the original differential operator.
This procedure has two main disadvantages. First, it introduces a number
of spurious modes which have nothing to do with the differential opera-
tor. Second, the size of the discretization matrix grows with the number of
eigenvalues to be computed. For this type of approach we refer to [1], [2]
for algorithms using finite elements and finite differences, respectively. One
advantage of this method is of course that it can be applied to a wide class
of operators, not necessarily with constant coefficients. The other, known as
the Method of Particular Solutions (MPS), uses special function series and
seeks the singular values of matrices obtained by imposing boundary condi-
tions to their discretization. It was first introduced in [3] and has recently
been revived by [4], where the authors resolve a major shortcoming of the
method which had been already observed in the original [3]. In its current
form as formulated by [4] we shall refer to it as the modified MPS method.

Other more specialized methods can also be found in the literature [2],
but they are restricted to special cases where the domain has very high sym-
metry properties. As for the characterization of eigenvalues the undoubtedly
most used one is that by the Rayleigh quotient which can equally be applied
to continuous as well as discrete approximations.

The method presented here is similar in spirit to the original MPS and
exhibits similar difficulties. They are partly overcome by a novel algorithm
which is characterized by the use of a secant search, a successive increase of
terms in the basis expansion and a projection idea which significantly im-
proves the deteriorating condition observed as more terms in the expansion
are included. The final product is a method which is more accurate that
MPS but not as accurate as the modified MPS (for domains with singular
corners) but does not require the introduction of interior points nor exten-
sive scanning of the real line in the search for eigenvalues. It can therefore
be applied in conjunction with the modified MPS by providing a good initial
guess and deliver a method that is better than either used independently.

A major problem encountered in the application of MPS is the extremely
bad conditioning of the matrices obtained by enforcing the boundary con-
dition on the expansion. Eigenvalues correspond to dips in the smallest
singular values of such matrices. As the number of basis functions is in-
creased, the width of these dips narrows very rapidly (see Fig. 1), making
it very hard to locate the minimal singular values.

The methodology proposed here mitigates this phenomenon by gradually
increasing the number of basis functions and by the use of a projection
method which allows “preconditioning” of the matrix and effectively leads
to wells which are wide enough to make a fast derivative-free minimization
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Figure 1: Plots of far(r) = o*(r, M, my) for various values of M and mgy = 0.
The domain is defined by p(6) = 1 4 0.05sin(20).

practical (see Fig. 9). We also observe that, unlike the modified MPS
method, ours allows for a trivial computation of approximate eigenfunctions
in the basis of Fourier-Bessel functions once a singular value is found, just
as in the original MPS, whereas in the modified MPS, as mentioned in [4],
solution of an ill-conditioned system is required to obtain these coefficients.

Our method works best for smooth domains, but still delivers an im-
provement over MPS even for “hostile” domains with singular corners. The
methodology described above can, however, be applied to more appropriate
expansions in terms of eigenfunctions for the Laplacian on sectors to better
capture the singular behavior in the corners. In this case it is not yet clear
what the best choice of projection should be.

The proposed method remains stable across a wide range of domains and
does not need domain-specific information. The latter quality, combined
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with its efficiency, makes the method particularly appealing for use in the
resolution of inverse spectral problems. A simple experiment in this direction
is presented in Subsection 4.5.

We also mention our motivation for the study of this problem. We envi-
sion the use of the computed eigenfunctions as trial functions for Galerkin
methods for PDEs. In particular, such trial functions are the best choices
for Krylov Subspace Spectral Methods (see [6]) applied to time-dependent
problems.

The rest of the paper is organized as follows. In the next section the
problem is formulated and the central Ansatz is introduced. The algorithm
is described in Section 3 and a number of numerical experiments and com-
parisons are performed in Section 4.

2 Preliminaries

Consider the eigenvalue problem

—NAp=Ap in ), (1)
p=0 on 0f).
The approach proposed here stems from the natural generalization of the
one dimensional Ansatz for the eigenfunctions and reads in this case

2 :/ . T Ef(&) dogn-1(8) = (f, € C)gn ©)
s7

where SP~! denotes the sphere of radius » > 0 in R™. For any choice of a
density function (which can be happen to be a generalized function) (2) is an
eigenfunction of the negative Laplacian to the eigenvalue 72. An eigenvalue
of (1) is obtained whenever

/Sn_l T (&) dogn-1(§) =0, x € 99, (3)

possesses a non-trivial solution f. Even though this procedure is dimension
independent, we now specialize to the case n = 2 since the suitable special
functions change with dimension. Expanding the density f in a Fourier
series

FO)=>" ame™  0e0,2m), (4)

meZ
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and substituting in (3) the problem can be recast as

Z U T (r]]) €™ =0,z € 09, (5)
meZ

where 0, = arg(z1 + i x2). This follows from lemma 2 below.

Remark 1 From this representation one clearly readily recovers the eigen-
values for the circle as the zeros (1" )m ken of Jm (m € N) and the associated
eigenfunctions (Jp, (ri|z|) et ™b=) corresponding to the non-trivial so-

) m,keN
lutions

a=ep=1(0,...,0,, 1 ,0,...), meN,

m-th entry
of (5). Observe that J_p, = (—1)" Jp,.

This remark is going to play a crucial role in the design of a stable, efficient
algorithm for the computation of the eigenvalues and of the Fourier coeffi-
cients for the density function in the case of arbitrary domains for which a
homotopy to the circle is used in the process. Other boundary conditions
can also be considered. We refer the reader to Subsection 3.3.

Lemma 2 For any r > 0 one has that

1
2™

2m

/ el etml g — I (r]z])e’ mle e R, (6)

0
Hereby & = (cos 0, sin 6). We also make use the standard notation Jp, for
the Bessel functions of integer order.

Proof. First write
z = |z|(cos by, sinb,) , 6, = arg(zy + i x2)
and observe that
e €y _ eir\x\(COSGI cos 0+sin g sin0) _ eir\x\ cos(0—6z)

Then, by virtue of the periodicity of the integrand, it follows that

2 27 27
/ eir x-&gei mo do = / eir\x\ 005(9791)61‘ mo do = eimez / eir\x\ cosGei mo do .
0 0 0

Finally it is know that (cf. [9])

1
2mm

2m
/ ezr|a:| cosGesz do = Jm(ﬂx‘) )
0

from which the claim follows. [J
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Example 3 To show that the density function f in (2) can indeed be a
distribution, we consider the unite square centered in the origin. It is ele-
mentary to verify that

3
f= iz&j &= (COS(7T/4 +j77/2)’Sin(7T/4+j7T/2))
=0

s the density for the first eigenfunction and that any other eigenfunction
also has generalized kernel.

Finally we consider a class of domains which we shall revisit in the numerical
experiments to be presented later.

Example 4 Let 0N) be a star-shaped domain described by
p(0) (cos(0), sin(0)),, 6 € [0,27), (7)

for a given (continuous) periodic function p : [0,27) — [0,00). In this case
the determining equation reads

> amdm(rp(0))e’™ =0, 0 €0,27). (8)
meZ

It seems natural to set up a system of equations for a truncated version of
the series appearing in (8) and taking an inner product with finitely many
basis functions like, e.g., /%9, 0 € [0, 27).

Notice that a translation in the domain only results in the multiplication of
the density function by a non-vanishing function so we can assume without
loss of generality that the domain contains the origin, or, in this case, that
it can even be star-shaped with respect to the origin.

In the one-dimensional case, there is a natural ordering of the eigenvalues
according to their size and, more interestingly, by the number of nodal
points of the associated eigenfunction. A similarly precise characterization
in higher dimension is most likely out of reach except in special cases. We
refer to [7] for some results in this direction. There is, however, a way of
predicting the rough frequency content of an eigenfunction corresponding
to an eigenvalue of a given size. This is related to a propertiy of Bessel
functions, according to which J,,(mt) is exponentially decaying in m for
0 <t<1(cf [9]). In the case of a star-shaped domain, this means that J,
becomes exponentially small for m beyond R|/p|/s. This property clearly
points to the conditioning problems observed when the number of terms in
the expansion is increased.
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3 Computation

In this section we assume () is a star-shaped domain with boundary 0f2
described by (7). We will describe an iterative method for computing an
approximate solution of the determining equation (8) for the coefficients
{am } in the Fourier expansion (4) of the density f(6).

The main idea is to begin with a domain for which we know exact eigen-
pairs, a circle. The eigenvalues will serve as our initial guesses for the eigen-
values of —A on €2, and the eigenfunctions serve as trivial expansions of
the form (5), containing only one term of the form J,,, (v A)e"™? for some
integer mg. Then, our iteration will deform the circle into the shape defined
by 0€) and add terms to the eigenfunction expansions until eigenpairs of (2
are found.

3.1 Definitions

Let M and mg be nonnegative integers representing the size and center, re-
spectively, of the Fourier-Bessel expansion of an approximate eigenfunction.
We define the set of indices I(M,mg) by

I(M,mo):{—mo—M,...,—m0+M}U{m0—M,...,m0+M}.

We denote by |I(M,mp)| the number of indices in this set, and we use

the notation I;(M,mg) to refer to the jth index in the set, when arranged

in increasing order. These indices correspond to the orders of the Bessel

functions that are included in an eigenfunction expansion of the form (5).
For convenience, we define

Om(r,0) = Jm(rp(H))eimg, m € I(M,my).

We then define an n-point grid on the interval [0,27) with gridpoints 0 <
0 < 0y < -+ < 0, < 2m. Next, we define ®,,(r, M, my) to be an n x
|I(M,mp)| matrix with entries

()OIJ' (M,mp) (T7 02)

(@ (r, M, mo))ij =
(S len o (. 00)12)

1/2°

It can be seen from the definition that each column of ®,,(r, M, mg) has unit
2-norm.

Finally, we let Q,, (e, M, mg) be the matrix obtained by orthogonalizing
the columns of @, (e, M, mg), for a parameter € < r. We define the matrix
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A(r, M,mg) by
A(r, M, mg) = [Qn(e, M, mo)|Z®,,(r, M, my). (9)

The columns of ®,,(r, M, mg) correspond to the Fourier-Bessel functions in
the series (5). We will seek a value of r such that a linear combination
of these functions, when projected into the column space of Q,, (e, M, myg),
nearly vanishes on 0f2. In practice, we have found that e should not be
larger than r, but a choice that is optimal for a variety of test cases has yet
to be determined and is left to future work. Note that the matrices @), and
®,, are evaluated with different first arguments, so their column spaces are
not the same.

In Section 4.6 we will discuss in greater detail this approach of projecting
the columns of ®,,(r, M, mg). However, we note here that when the bound-
ary p(0) is reasonably smooth, then very accurate results can be obtained
by simply setting the columns of @, (r, M, mg) to be the discretizations of
functions of the form e, for m € I(M,my). In fact, this choice is used to
obtain the numerical results in Sections 5.1-5.3.

3.2 Algorithm Description

For each eigenvalue )\;, we seek an approximate eigenfunction w;(p, ) of the

form
u;(p,0) = Z amjm(\/ij)eime- (10)

mel(M,mg)

The coefficients {am, }ome I(M,mo) and eigenvalue A; must be chosen so that
u;j vanishes, at least approximately, on 0€). To compute these values, for
given M and mg, we can solve the nested minimization problem
min min [|A(r, M, mg)alls. 11
min min | A(r M.mo)all (1)
The vector a represents the coefficients a,, for m € I,,(M,mg), in the
expansion (10), and r corresponds to the square root of the eigenvalue \;.
First, we examine the inner minimization problem for fixed values of r,

M, and mg. We can solve this problem by computing the singular value
decomposition, or SVD (see [10, Ch. 8]), of A(r, M, my),

A(r, M, mg) = USVH, (12)
where U and V are unitary and ¥ is diagonal with diagonal entries

0<o01 <02 < <01 (Mmo)|-
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Then, ||A(r, M, mp)al|2 is minimized by setting a = v, where v; is the ith
column of V for i =1,2,...,|[I(M,mp)|. It follows that ||A(r, M, mg)all2 =
o1q.

Observe that it is not necessary to compute the entire SVD to obtain an
approximation to vi; one can instead apply, for example, a restarted block
Lanczos bidiagonalization method such as those described in [11], which are
specifically designed to compute a small number of extremal singular values
and associated left and right singular vectors.

Let o*(r, M, mg) denote the smallest singular value of A(r, M, mg), which
is also the solution of the inner minimization problem. If we can solve
the outer minimization problem, seeking an r that minimizes o*(r, M, myg),
and if the solution r* is such that o*(r*, M, mg) is nearly zero, then the
coefficients {am }mer(i,my) obtained from the corresponding singular vector
vi(A(r*, M, mg)) and the value \; = (r*)?, when substituted into (10), yield
an approximate eigenfunction of —A on €2 that satisfies Dirichlet boundary
conditions.

We first describe how we choose our initial iterates. We use the eigen-
values for a circle of radius pg, where

po = AvEocpo,2x) P(0)-

These eigenvalues are simply the values of A for which .J,,,(v/Apo) = 0, for
some nonnegative integer m. For m = 0, the eigenvalues are simple; oth-
erwise they have multiplicity 2, in which case they are included twice in
the set of initial iterates and perturbed slightly, so that closely clustered
eigenvalues can be found independently.

For each initial iterate r, where 2 is an eigenvalue for the circle of
radius pg, we let mg be the integer such that J,,,(rpg) = 0, prior to any
perturbation. Then, we begin an iteration to find an eigenvalue. For M =
0,1,2,..., we minimize

fM(T) = Jl(A(T,M,mQ)) (13)

using the minimizer 7* of fys_1(r) as the initial iterate when M > 0, and
the value described in the previous paragraph as the initial iterate when
M = 0. When M = 0, the expansion (10) only includes Bessel functions of
order mg and —mgy. When M = 1, we add Bessel functions of order mg 4 1
and —mg + 1; when M = 2, we add orders my 4+ 2 and —mg + 2, and so on.
The set I(M,mq) describes all orders that are included in the expansion for
any choice of M and my.
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To minimize fys(r), we exploit the fact that near the minimizer, fys(r)
is a continuous, approximately piecewise linear function of r, with the mini-
mizer occurring at the boundary between two pieces. Therefore, we can use
any derivative-free optimization method to quickly obtain an approximation
to the minimizer. However, in using any such method, one should exploit
this behavior of faz(r).

To that end, we perform an inner iteration in which we compute each
iterate 73 by constructing a secant line using the previous iterate r;_1 and
a small perturbation r,_1 + 0. This perturbation is chosen by assuming
that fas(r) is exactly piecewise linear and then choosing the sign of J; to
ensure that r,_q1 + §; lies on the same piece as r,_1. We then obtain r; by
computing the r-intercept of this secant line.

If far(rg) is sufficiently small, then the iteration terminates successfully.
Otherwise, we repeat this process with r;. If r is an outlying value relative
to the previous iterates (that is, it lies outside the smallest interval contain-
ing the iterates and the sequence of iterates is not monotone, indicating it
is outside the “well” we are seeking), then it is rejected and a new iterate
is chosen based on the previous iterates and their slopes, but this is not a
typical occurrence in practice.

The motivation for this approach is illustrated in Figure 1. Note that for
smaller values of M, one must only have a reasonable initial guess in order
to exploit the approximate piecewise linearity of fas(r) near the minimizer.
As M increases, the “well” containing the minimizer begins to “close,” thus
requiring a much more accurate initial guess. If this requirement is not
satisfied, the fact that f,,(r) is very smooth away from the minimizer implies
that this “well” would be missed entirely by a search algorithm that did not
take very small steps.

The reason for the closing of the well is that as M increases, A(r, M, mq)
becomes more ill-conditioned, and o1 (A(r, M, mg)) becomes smaller regard-
less of the value of r. This troublesome trend is mitigated significantly by
normalizing the columns of ®(r, M, mg) and orthogonalizing the columns of
® (e, M,myg), but for sufficiently large M it can still cause difficulties if r is
not already close to an eigenvalue.

If the boundary of €2 is not very smooth, then it is advisable to construct
a homotopy from the circle of radius pg to €, resulting in a sequence of do-
mains g, 21, ...,Q,; where each (2}, is a star-shaped domain with boundary
defined by p,(0) = tpp(0)+(1—tx)po and 0 =ty < t; < --- <ty <tp =1.
Then, when we are minimizing fys(r) for M < M, we are using {7 in place
of 2. This homotopy helps to ensure that as M increases, our initial iterate
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ro is sufficiently close to the minimizer.

Once we have found a minimizer r* of fj;(r), we can obtain the approx-
imate solution a of the determining equation (8) by computing the right
singular vector vy of the matrix A(r*, M, mg). This vector v represents the
coefficients a,y,, for i € I,,(r, M, mg), in the expansion of the approximate
eigenfunction. We then increase the value of M and repeat this process until
our approximate eigenvalue r converges to within some tolerance. It should
be noted that Proposition 2.1 suggests an upper limit on M.

3.3 Neumann Boundary Conditions

With minor modifications, we can find eigenfunctions that satisfy Neumann
boundary conditions. For simplicity, we again consider a star-shaped domain
Q defined by the polar equation r = p(@) for 6 € [0,27). For each 6, we
define ¢n(0) to be the angle that the outward unit normal vector at the
boundary point (p(#)cos 8, p(f)sin@) makes with the positive z-axis. Our
goal is to solve an equation similar to (8),

Z am%[Jm(rp(é?))eimg] =0, 6¢€]0,2m), (14)
meEZL

where

O 1ep(0)6 ™) = v [ Fua (rp(6) DO g (o))l 00-on O]

on
(15)

This expression was obtained using a well-known recurrence relation for
derivatives of Bessel functions, see [12]. We obtain an algorithm analogous
to the Dirichlet case, in which we seek r that minimizes o1 (An(r, M, myg)),
where M and my are chosen as before and the matrix Ay (r, M, mg) is defined
as follows. As in the Dirichlet case, we begin with the set of functions
{om(7,0) }mer(m,me) defined earlier in this section, and a set of gridpoints
0, chosen from [0, 27).

Using (15), we evaluate the normal derivatives of ¢, (r,6;) for each
m € I(M,mg) and ¢ = 1,...,n. These values are stored in a matrix
O N (r, M, mp), in a manner analogous to the definition of ®(r, M, mg) in
the Dirichlet case. We then normalize the columns of ®y(r, M, mg) so that
each has unit 2-norm, as before. We construct the matrix @y (e, M, my)
in the same manner and orthogonalize its columns to obtain Qn (e, M, myg).
Finally, we obtain

AN(Ta M) mO) = QN(ea M) mO)H(bN(T) Ma mO)'
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Using this matrix in place of A(r, M, myg), the algorithm proceeds exactly as
in the Dirichlet case, except that if a homotopy from a circle to 9€2 is used,
the normal vectors for each intermediate boundary must be approximated
numerically.

4 Numerical Results

We now demonstrate the accuracy of our approach on a number of exam-
ples. It will be seen that for “nicer” domains, such as those without singular
corners, very high accuracy (close to machine precision) can be achieved.
While this is not the case for more difficult domains, we will demonstrate
that we can still efficiently obtain reasonably accurate estimates of eigen-
values, using smaller bases than MPS, which, if nothing else, can serve as
excellent initial guesses for other methods such as the modified MPS of [4]
in conjunction with a standard derivative-free optimization method, which
would then require very few iterations. That is, the combination of our
approach with a method such as MPS can be more effective than either
method used alone.

4.1 Domains with Smooth Boundaries

First, we consider a star-shaped domain with a smooth boundary, defined by
(7) with p(f) = 14 0.05sin(26). The domain is shown in Figure 2(a). Table
1 lists approximations to the ten smallest eigenvalues. Note that the value of
the objective function (which is zero at an eigenvalue, based on the discussion
in the preceding sections) is not much larger than machine precision, and
that the number of inner iterations is comparable for all eigenvalues. The
implementation imposes a limit of at most three inner iterations per outer
iteration; that is, we prefer to increase M rather than expend more effort to
find an approximate zero of the objective function for a particular value of
M.

We now examine the coeflicients o, of the corresponding eigenfunctions.
It can be seen in Figure 3 that for fixed values of m, the coefficients {&,},
{&m} appear to converge rapidly as M increases.

We can also obtain roots for domains whose boundaries exhibit greater
oscillation. The domain defined by (7) with p(€) = 1+ 0.25sin(40) is shown
in Figure 2(b). Table 2 lists approximations to the smallest ten eigenvalues.
As can be seen in the table, more iterations and more expansion terms are
required than in the previous example.
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p(B) = 1+0.05sin26 p(B) = 1+0.25sin46

2 2
1 1
> 0 > 0
-1 -1
-2 -2

-2 -1 0 1 2 -2 -1 0 1

X X

Figure 2: (a) Left plot: domain with boundary described by polar equation
p(f) =1+ 0.05sin26. (b) Right plot: domain with boundary described by
polar equation p(f) = 1+ 0.25sin 46.

4.2 Polygons

Next, we move on to piecewise smooth domains, considering polygons. Table
3 lists approximations of the smallest ten eigenvalues on the unit square for
the Dirichlet case. These eigenvalues can be computed analytically, and thus
we can see that very high accuracy can be obtained in this case, just like for
domains with smooth boundaries. Comparable accuracy can be obtained
for the case of Neumann boundary conditions on the unit square, as shown
in Table 4.

Next, we consider a regular polygon with 128 sides. The eigenvalues
for this domain are not known, but in [5], the ten smallest simple eigen-
values were approximated using a three-term Taylor series centered at the
eigenvalues of the circle,

272 173
)‘g’LN):)‘n(l‘f' T 7T>

3N NG

where N is the number of sides in the polygon and A, is the nth simple
eigenvalue for the circle. Obviously, this approximation is most suitable for
regular polygons with many sides.

The approximations listed in Table 5 were obtained by considering only
the case where M = 0 and mg = 0. The discretization of the polygon used
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Eigenvalues of a Star-shaped Domain with Smooth Boundary

k | mo | Mmaz T = /I o*(rg, Mymaz, mo) | Iterations
1 0 12 2.40900956310833 5.1915e-015 13
2 1 14 3.74095865321159 1.4623e-015 17
3 1 14 3.93284180810808 8.2596e-016 17
4 2 14 5.07072160959815 1.3518e-015 30
) 2 14 5.13847966669082 2.843e-015 14
6 0 14 5.60117924855279 8.3542e-015 17
7 3 14 6.35615204542185 3.1301e-015 15
8 1 14 6.89470061520270 5.5334e-015 18
9 1 14 7.23051290051418 2.4392e-015 18
10| 4 14 7.55755578029419 2.0736e-015 16

Table 1: Approximations {uz};2, to the ten smallest eigenvalues {A\;}}2;
of —A on the star-shaped domain with boundary given by p(6) = 1 +
0.05sin(20), 0 < 0 < 2w. The value M,,,, indicates the largest value of
M used. The number of iterations refers to the number of inner iterations.

to construct A(r,0,0) consisted of 32 points per side, and experimentation
with other discretizations showed quadratic convergence in the number of
points. Because the boundary of the polygon is well-approximated by a
circle, zeros of Bessel functions provide very accurate initial iterates, thus
making iteration beyond M = 0 unnecessary. Non-simple eigenvalues can
be obtained by considering other values of mg, whereas the Taylor series
approach is designed specifically for computing simple eigenvalues.

4.3 Detecting Multiple and Clustered Eigenvalues

Multiple eigenvalues and closely clustered eigenvalues can be detected using
the smallest singular values of A(r, M, mq). Specifically, if 2 is an eigenvalue
of multiplicity k, then we can expect that the k£ smallest singular values of
A(r, M,mg) should be nearly zero if M is sufficiently large. Furthermore, if
the (k + 1)st singular value is small, then this suggests that another eigen-
value is nearby.

To illustrate this, we consider the case of the rectangle [0,1] x [0,1 + €]
which, for Dirichlet boundary conditions, has eigenvalues 72(m? + (n/(1 +
€))?) for positive integers m and n. This leads to several double eigenvalues
when € = 0, and clustered eigenvalues for small nonzero values of €. In Table
6 we consider these cases: (1) m =1 and n =2, and (2) m =2 and n = 1.
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m0=0 M=3 m0=0 M=5
1 1
0.8 0.8
0.6 0.6
“E “E
k=1 k=]
0.4 0.4
0.2 0.2
0 0
-4 -2 0 2 4 -5 0 5
m m
mO—O M=7 mO—O M=9
1 1
0.8 0.8
0.6 0.6
“E “E
k=1 k=]
0.4 0.4
0.2 0.2
0 0
-10 -5 0 5 10 -10 -5 0 5 10
m m

Figure 3: For increasing values of M, coefficients {dm}zo:tn]\g_ M

approximate solutions of the determining equation (8) for eigenfunctions
satisfying Dirichlet boundary conditions on the star-shaped domain defined
by p(#) =1+ 0.05sin(20)

that are

For ¢ = 0, these cases result in a double eigenvalue of 572, whereas for
e = 1079, they yield two distinct eigenvalues that differ by 5.92 x 107°. Our
algorithm will only find one of them, but for the computed eigenvalue 72,
the second smallest singular value of A(r, M, mg) is quite small, indicating
that there exists a linear combination of functions of the form .J,,, (1 p(6))e™™?
that, while orthogonal to the computed eigenfunction, nearly satisfies the
boundary conditions. It is therefore reasonable to conclude that there is a
second eigenvalue r3 nearby, which can be found by scanning the graph of
o1(A(r, M, mg)) near ry.

We can not only use the second smallest singular value to detect the
presence of another nearby eigenvalue, but also determine its approximate
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Eigenvalues of a Star-shaped Domain with Oscillatory Boundary

k | mo | Mmaz T = /I o*(rg, Mymaz, mo) | Iterations
1 0 25 2.68969299056912 2.0328e-015 30
2 1 25 4.12955410262284 8.1337e-016 41
3 2 25 4.85603553243775 1.6213e-015 29
4 2 22 5.48806069658009 2.3608e-015 20
5! 0 25 6.16258921311118 1.4208e-014 46
6 3 24 6.23430327124296 2.5041e-015 36
7 4 23 7.34380858405790 8.3404e-015 28
8 4 25 7.43120441792176 9.8004e-015 50
9 2 25 7.63915899496748 9.9413e-013 48
10| 5 24 8.05954250413219 2.3375e-016 38

Table 2: Approximations {ux};2, to the ten smallest eigenvalues {A\;}}2,
of —A on the star-shaped domain with boundary given by p(6) = 1 +
0.25sin(46), 0 < 0 < 2w. The value M,,,, indicates the largest value of
M used. The number of iterations refers to the number of inner iterations.

location. In Figure 4, we see that after finding either of the eigenvalues
shown in the figure, we can approximate the other one by computing the
horizontal intercept of a secant line for the graph of the second smallest
singular value near the first eigenvalue. It should be noted that in [4],
similar behavior of the second smallest singular value was observed, and
this behavior is also exploited in the scaling method introduced by Vergini
and Saraceno in [13] and improved by Barnett in [14], [15].

4.4 Domains with Both Singular and Regular Corners

For more challenging test cases, we consider domains that have both regular
and singular corners, where a regular corner is a corner with interior angle
m/a for an integer a and a singular corner is a corner that is not regular.
First, we consider an L-shaped domain, defined by

1
0§9<377T,

9) =
P0) = T sm O] [cos 8])

for which eigenvalues were computed in [4] using a modification of the MPS
introduced in [3]. This domain has a singular corner of angle 37 /2. For this

reason, instead of using the eigenfunctions for the free space operator, we
use the eigenfunctions for the operator defined on an unbounded wedge of
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Eigenvalues of the Unit Square, Dirichlet Boundary Conditions

k| mo | Moz i |tk — Ak|/| k| | Tterations
1 0 16 19.7392088021787 0 14
2 1 18 49.3480220054467 1.8718e-015 29
3 2 20 78.9568352087148 0 22
4 0 20 98.6960440108938 2.8797e-015 17
5} 3 20 128.3048572141659 3.3228e-014 29
6 1 20 167.7832748172576 7.5186e-012 29
7 4 19 177.6528792162691 1.8797e-011 26
8 2 17 197.3920880213265 2.3337e-012 24
9 5 23 246.7401100490182 8.8288e-011 41
10 O 18 256.6097144238706 1.7352e-011 23

Table 3: Approximations {u;}}2; to the ten smallest eigenvalues {\;}2 of
—A on the unit square for Dirichlet boundary conditions. The value M,
indicates the largest value of M used.

interior angle 37/2, which are the Fourier-Bessel functions

2mo

uT,m(p70) :JZm/3(Tp)SinT7 m:0717"'7

which will vanish on the sides of the boundary that define the singular
corner.

The algorithm proceeds as described in the previous section, except that
the series (5) is a linear combination of these eigenfunctions, and the en-
tries of the matrix A(r, M, mg) are obtained by taking inner products with
functions of the form sin(2m@/3) rather than ¢ in view of the discussion
at the end of Section 3.1. Table 7 contains the resulting approximations
{)\k}zzl of the smallest three eigenvalues, compared to the approximations
{ux}3_, reported in [4]. It should be noted that both sets of results were
obtained using MATLAB implementations of the respective algorithms, run
on a Toshiba Satellite A75-211 Notebook with a Pentium 4 processor. Our
algorithm computed these three eigenvalues in 1.11 seconds, while the mod-
ified MPS algorithm (see [16]) did so in 2.31 seconds. In both cases, 72
points were used in the discretization of the boundary, and the modified
MPS algorithm also used 72 randomly chosen interior points.

Next, we use the original version of the algorithm, with free space eigen-
functions and an expansion centered at an interior point of the domain
instead of at the singular corner. In this case, we obtain only a few correct
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FEigenvalues of the Unit Square, Neumann Boundary Conditions

E | mo | M i |tk — Ak|/| k| | Tterations
1 1 15 9.8696044010894 8.9991e-016 28
2 2 16 19.7392088021786 2.8797e-015 16
3 2 18 39.4784176043572 3.9596e-015 29
4 3 18 49.3480220054470 4.1756e-015 31
) 4 20 78.9568352087120 3.5097e-014 22
6 4 20 88.8264396098096 6.0954e-014 37
7 1 17 98.6960440063917 4.5614e-011 25
8 5 20 128.3048572141609 5.7594e-015 31
9 2 18 157.9136703981950 1.2181e-010 31
10 0O 21 167.7832751306811 1.8605e-009 34

18

Table 4: Approximations {s}}>; to the ten smallest nonzero eigenvalues
{Ae 312, of —A on the unit square for Neumann boundary conditions. The
value M., indicates the largest value of M used.

digits for the first two eigenvalues, while still achieving high accuracy for
the third, which coincides with an eigenvalue of the unit square.

Finally, we try our algorithm on one of the GWW drums described in
[17], the GWW1 drum shown in Figure 5. We again use free-space eigen-
functions centered in the interior, and a discretization of Chebyshev points
on each side, so that points will be clustered near each corner. The results
are shown in Table 9. As with the L-shaped domain, we obtain at most a
few digits. However, it is clear that our algorithm can at least be used to
obtain an initial approximation for a method such as the MPS, and future
work will focus on improving our algorithm for such domains.

4.5 An Inverse Problem

We now consider an inverse spectral problem, in which n eigenvalues Aq, ...

s An

of —A are specified and our goal is to find a domain 2 such that —A has
eigenfunctions that vanish on 02 with corresponding eigenvalues equal to
the prescribed values. The solution of this problem is not unique, as dis-
cussed in [17], but we hope to obtain a domain whose boundary is close to
our initial guess. To that end, we define the matrix A(p,r, M, mg) in the
same way as we defined A(r, M, mg) in the previous section, except that in
this case, the function p(f) that defines the boundary is allowed to vary.
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FEigenvalues of a 128-sided Regular Polygon

k| mo i Ak |k — Ak|/| k| | Tterations
1 0 5.78551 5.78552 2.2801e-006 2
2 0 30.48349 | 30.48357 2.6001e-006 2
3 0 74.91706 | 74.91726 2.6745e-006 2
4 0 | 139.09608 | 139.09646 2.7135e-006 2
) 0 | 223.02177 | 223.02237 2.6975e-006 2
6 0 | 326.69441 | 326.69528 2.6759e-006 2
7 0 | 450.11409 | 450.11529 2.6638e-006 2
8 0 | 593.28086 | 593.28245 2.6746e-006 2
9 0 | 756.19474 | 756.19675 2.6567e-006 2
10 | O | 938.85573 | 938.85822 2.6481e-006 2

Table 5: Approximations {,uk},lﬁozl to the ten smallest simple eigenvalues of
—A on the 128-sided regular polygon. These approximations are compared
to those computed in [5], denoted by A\g, £ =1,2,...,10.

Then, we solve the problem of finding p € W,, that minimizes
F(p) = > o1(Alp, VA, MO (1)), (16)
i=1

where W, is a subspace of C,([0,27]), and M® and m(ol) determine the size
and center of the eigenfunction expansion corresponding to \;.

We illustrate the results of this approach with a simple example. We use
eight prescribed eigenvalues of the domain

p(0) =1+ 0.05(cos 6 + sin 20 + cos 36), (17)

computed using the modified MPS, since it is ill-advised to test a method
for solving an inverse problem on data obtained using the same method for
the forward problem. We then define

Wy = span{1, cos 6, cos 20, cos 36, sin 0, sin 20, sin 30},

and choose M) = § and m(()i) =0 for i = 1,...,8. Our initial guess is a
perturbation of the exact solution,

po(0) = 1.01 4 0.04(cos 0 + sin 26 + cos 30). (18)
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Detecting Clustered Eigenvalues

20

€ A mult(\) | o1 (A(V, M, mg)) | o2(A(VX, M, myg))
0 | 49.34802200544679 2 0 0
le-6 | 49.34794304872997 1 0 3.8616e-006

Table 6: Smallest two singular values o and o3 of the matrix A(v/A, M, mg)
for the domain [0,1] x [0,1 + €], with mp = 0 and M = 20. For
€ = 0 the Laplacian has a double eigenvalue at 49.34802200544679 while
for ¢ = 1075, there are two simple eigenvalues at 49.34794304873002 and
49.34800226626760.

Eigenvalues of an L-shaped Domain

k i Ak | A — pl/|Ak| | Tterations
1| 9.63971927923382 | 9.63972384464540 4.7360e-007 10
2 | 15.19727667220087 | 15.19725192576365 1.6283e-006 11
3 | 19.73920878892437 | 19.73920880208238 6.6659e-010 8

Table 7: Approximations {yy}3_, to the three smallest eigenvalues of —A on
an L-shaped domain using Fourier-Bessel functions of order 2m/3 for each
positive integer m, centered at the singular corner. These approximations
are compared to those computed in [4], denoted by A\x, k = 1,2, 3.

We solve the problem (16) using MATLAB’s fminsearch function with
initial guess po(f) and a stopping criterion that the value of the objective
function should be less than 107!°. The output is a function p;(#) that
satisfies ||p1 — p|| & 1.1 x 1073||p||, whereas ||po — p|| = 1.2 x 1072||p||. The
domains defined by p, po and p; are shown in Figure 6.

Figure 7 shows the value of the objective function from (16) after each
iteration performed by fminsearch. Note that there are periods of relatively
steep drops in the function value, between periods of relatively little change.
This suggests that the algorithm is finding multi-dimensional “wells” as it
searches W,,, corresponding to the one-dimensional wells observed in the
solution of the forward problem. Future work will involve attempting to de-
velop an optimization method that can find these wells as quickly as possible,
even if minimizing over a higher-dimensional function space.
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x 107 Detecting clustered eigenvalues

12 ‘ b
N 0, (AN"%,20,0))

N ~ — — 0, (An"%20,0))

0 5e-6 le-5 1.5e-5 2e-5
A2 - 7.0248

Figure 4: Smallest two singular values o7 (solid curve) and o9 (dashed curve)
of the matrix A(v/'\, M,mg) for the domain [0,1] x [0,1 + €], with mg = 0,
M = 20, and € = 1075, The exact eigenvalues are located at the circles on
the horizontal axis.

4.6 Comparison with the Method of Particular Solutions

The Method of Particular Solutions (MPS), introduced by Fox, Henrici and
Moler in [3] and revived by Betcke and Trefethen in [4], can be used to com-
pute eigenvalues of the Laplacian by solving an equation such as (8). Our
approach is similar to the MPS in that both algorithms locate an approxi-
mate eigenvalue A by minimizing a function f(A) whose value is the smallest
singular value of some matrix A(X). In both algorithms, the columns of A(\)
correspond to select eigenfunctions of the Laplacian on some unbounded do-
main, a linear combination of which is taken in (8). In [18], Barnett presents
a generalized MPS, in which robustness is achieved by solving a generalized
singular value problem in order to minimize the ratio of a norm of an ap-
proximate eigenfunction on the boundary to its norm on the interior.

The main difference between our approach and any of these three vari-
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Eigenvalues of an L-shaped Domain, Ignoring Singular Corners

k| mo i Me | Ak — pxl/|Ak| | Tterations
110 9.72384639102523 | 9.63972384464540 0.00873 70
21 2 | 15.16260753106696 | 15.19725192576365 0.00228 72
3| 2 | 19.73920880217876 | 19.73920880208238 1.2373e-011 30

Table 8: Approximations {sy }3_, to the three smallest eigenvalues of —A on
an L-shaped domain using free-space eigenfunctions centered in the interior,
with M = 40. These approximations are compared to those computed in
[4], denoted by A, k =1,2,3.

GWW1 isospectral drum 330-point Chebyshev discretizaton

Figure 5: Left plot: the GWW1 drum. Right plot: a 330-point discretization
of the drum, using Chebyshev points on each side.

ations of the MPS is that rather than minimizing, in some sense, a linear
combination of the restriction of the free space eigenfunctions to the bound-
ary, we minimize its projection into some subspace, such as the columns of
Q(e, M, mp) defined in Section 3.1. To explain the benefit of this tactic, we
consider where MPS, and its variants, may be least efficient.

Let A(r) be an m x n matrix whose columns consist of the values of
free space eigenfunctions at select points on the boundary. The MPS, and
its modification from [4], locate an eigenvalue by computing the smallest
singular value of such a matrix, while the generalized MPS in [18] computes
the smallest generalized singular value with respect to a matrix B(r) con-
sisting of values of the same eigenfunctions at interior points. If the number
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Eigenvalues of a GWW Drum, Ignoring Singular Corners

k| mo i Me | Ak — pxl/|Ak| | Tterations
11 0 | 2.55996542353383 | 2.537943999798 0.00868 78
21 1 | 3.67093788732147 | 3.655509713520 0.00422 78
3| 2 | 5.16128092767208 | 5.175559356220 0.00458 78

Table 9: Approximations {s;};_; to the three smallest eigenvalues of —A
on the GWW1 drum, with M = 40. These approximations are compared to
those computed in [4], denoted by Ag, k =1,2,3.

of columns, n, is very small, then this smallest singular value or generalized
singular value is not near zero for any value of r, as illustrated in Figure 8.
It follows that it is not practical to employ a secant-line approach such as
that described in Section 3.2, which can also be employed by the MPS when
n is sufficiently large. Instead, an alternative approach must be used such
as repeatedly fitting the objective function with a quadratic polynomial and
minimizing, which can lead to a much greater number of iterations than in
cases for which a secant-line approach is feasible. Furthermore, note that in
Figure 8, the minimia are still not very close to the exact eigenvalues.

Our goal is to use projection to transform the previously described prob-
lem of minimizing the smallest singular value into, essentially, the problem
of finding a zero of a function that is piecewise linear near its roots, for which
a secant-line approach can be employed to more rapidly find a solution, even
if the number of columns is small. To obtain some guidance on the question
of choosing the subspace into which the columns of fl(r) should be pro-
jected, suppose that an approximate eigenfunction u(z,y) with correspond-
ing approximate eigenvalue X is represented as a finite linear combination of
eigenfunctions for an unbounded wedge,

M
u(z,y) = Z At (2,Yy),  un(z,y) = J2m/3(2\/x|x|/3) sin(2m#./3),
m=1

(19)
where M is chosen sufficiently large to obtain high accuracy. Then, choose
M < M and consider the matrix A(r, M, 0) as defined in Section 3.1, except
that only positive indices are used. That is, the mth column of A(r, M ,0)
consists of the values of w,,(x,y) at the boundary points chosen for the
discretization.

Next, we let B(r, M, 0) be an orthogonal matrix whose columns are also
orthogonal to the discretizations of {uy,(7,y)},,-; on the boundary. In
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Figure 6: Results of solving the inverse eigenvalue problem described in
Section 4.5. The solid curve is the exact solution p(6) defined in (17), the
dashed curve is the initial guess po(f), and the open circles describe the
computed solution p;(6).

other words, if we write

A(’I“,M,O) = [ A1 AQ ]
M M-M
where the columns of A(r, M,0) are ordered by increasing Bessel function
index, so that Ay = A(T,M,O), then B(r, ]\;I,O)*Ag = 0. Furthermore,
C(T,M,O)d’ = B(r,M,O)*A(r,M,O)o‘Z ~ 0, where @ = [ ar ooy ],
even if M is chosen to be so small that the matrix A(r,M ,0), with M
columns, is not nearly singular.

Figure 9 displays the graph of C(r, M, 0) as a function of 7. Note that this
function, numerically, has zeros near the locations of the exact eigenvalues,
while A(r,M ,0), shown in Figure 8, does not. It follows that approximate
eigenvalues can be obtained much more rapidly from C(r,M,0), since a
secant-line approach can be employed, significantly reducing the number
of evaluations of the objective function. The reduction in the number of
evaluations, however, is only worthwhile if C(r, M, mg) can be constructed
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Figure 7: The value of the objective function f(p), defined in (16), after
each iteration performed by fminsearch.

efficiently, and this requires an approximation of the orthogonal complement
represented by B(r, M, mo).

If the boundary is sufficiently smooth, then a crude but useful approx-
imation is obtained by simply performing the Fourier transform of the
columns of A(r, M ,mp) and filtering out all but the lowest n frequencies.
As the results in the previous section indicate, even for difficult domains
such as the isospectral drum, accurate initial estimates of eigenvalues can
be obtained by using an approximation of B(r, M, mp) that is independent
of 7, such as Q(e, M,mo) from Section 3.1.

We have seen in this section that these differences can lead to greater
computational efficiency for our approach, especially for the task of obtain-
ing accurate initial estimates of eigenvalues. For domains with both regular
and singular corners, our algorithm can be used in conjunction with MPS
to compute eigenvalues with high accuracy and greater efficiency than with
either method used alone.
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Figure 8: The smallest singular value of A(r, M, mg) for M = 3, mg = 0,
where 7 = V/\, for the L-shaped domain. The red circles represent the exact
values of the smallest three eigenvalues of this domain.

5 Conclusions

An iterative method for the numerical computation of eigenvalues has been
proposed which relies on calculations performed on small matrices and which
allows for the independent targeting of individual eigenvalues. Furthermore,
the method does not require the evaluation of functions at points in the inte-
rior of the domain, and it does not require exhaustive scanning of the positive
real axis. Numerical experiments and comparisons corroborate these claims.
It is our hope that the approach described in this work will eventually lead
to effective methods for solving a variety of PDE on general 2-D and 3-D
domains, as well as insight concerning the eigensystem of the Laplacian and
related operators on such domains.
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Figure 9: The smallest singular value of C(r, M, mq) for M = 3, my = 0,
where 7 = V/\, for the L-shaped domain. The red circles represent the exact
values of the smallest three eigenvalues of this domain.
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