
 
 

 
Journal of Mechanical Science and Technology 26 (1) (2012) 1~10 

www.springerlink.com/content/1738-494x 
DOI 10.1007/s12206-011-1008-5 

 

 

 
Eigenvalue problems of rotor system with uncertain parameters† 

Bao-Guo Liu* 
Institute of Mechatronic Engineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China 

 
(Manuscript Received February 20, 2011; Revised July 27, 2011; Accepted September 18, 2011)  

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
A general method for investigating the eigenvalue problems of a rotor system with uncertain parameters is presented in this paper. The 

recurrence perturbation formulas based on the Riccati transfer matrix method are derived and used for calculating the first- and second-
order perturbations of eigenvalues and their respective eigenvectors for the rotor system with uncertain parameters. In addition, these 
formulas can be used for investigating the independent, and repeated, as well as the complex eigenvalue problems. The general method is 
called the Riccati perturbation transfer matrix method (Riccati-PTMM). The formulas for calculating the mean value, variance, and co-
variance of the eigenvalues and eigenvectors of the rotor system with random parameters are also given. Riccati-PTMM is used for cal-
culating the random eigenvalues of a simply supported Timoshenko beam and a test rotor supported by two oil bearings. The results 
show that the method is accurate and efficient.    
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1. Introduction 

Structural systems with uncertain parameters exist widely in 
engineering. Comprehensive reviews on the dynamic prob-
lems of these systems have been presented by Ibrahim [1], 
Oden et al. [2], and Sanchez [3]. The perturbation finite ele-
ment method (PFEM) plays an important role in the investiga-
tion of the dynamic characteristics of these structural systems 
[2, 3]. The corresponding research subjects include the pertur-
bation method of the independent eigenvalue and its eigenvec-
tor [4-8], the perturbation method of the repeated eigenvalue 
and its eigenvectors [9-14] and the calculation method of the 
random eigenvalue and its eigenvectors [15, 16], among oth-
ers. However, since these methods are based on PFEM, the 
errors caused by truncating the high modals cannot be avoided 
[4-16]. On the other hand, similar to FEM, which is not the 
most efficient method for solving rotordynamic problems [17, 
18], PFEM is also not the most efficient method for analyzing 
rotordynamic systems with uncertain parameters. 

Rotordynamic systems with uncertain parameters also exist 
widely in engineering as a special kind of structure. In recent 
years, more and more scholars have focused on their dynamic 
problems [19-22]. However, the dynamic model that most 
researchers have studied is the Jeffcott rotor. The current study 
attempts to investigate a complicated rotordynamic model and 

present a general method to analyze its random eigenvalues 
and eigenvectors. 

The transfer matrix methods (TMM) are very useful and ef-
ficient in undertaking the dynamic analysis of rotordynamic 
systems with deterministic parameters [17, 18, 23-26]. There 
are two kinds of TMMs: the Myklestad-Prohl transfer matrix 
method (MP-TMM) [17, 23] and the Riccati transfer matrix 
method (Riccati-TMM) [18]. MP-TMM has simple mathe-
matical formulas and is easy to program. However, numerical 
difficulties can arise when higher frequencies are calculated 
and/or when there are too many degrees of freedom. Riccati-
TMM, on the other hand, also has simple mathematical for-
mulas and is easy to program. In addition, there are no nu-
merical difficulties [18] involved in using this method, which 
is why it is more often used in engineering. 

In this paper, the recurrence perturbation formulas based on 
the Riccati-TMM are derived to calculate the first- and sec-
ond-order perturbation solutions of the eigenvalues and their 
eigenvectors for rotor systems with uncertain parameters. The 
perturbation frequency equations formulated to analyze the 
independent and repeated eigenvalues are also educed. More-
over, the methods used for evaluating the perturbation solu-
tions of eigenvectors that correspond to the independent and 
repeated eigenvalues are also given. Thus, by not dealing with 
the problems of truncating modals in the process of deriving 
the formulas, the errors caused by truncating the high modals 
are avoided. Furthermore, this method can be applied to 
evaluate the perturbation solutions of real eigenvalues and 
their eigenvectors as well as evaluate the perturbation solu-
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tions of complex eigenvalues and their eigenvectors. This 
perturbation method is called the Riccati perturbation transfer 
matrix method (Riccati-PTMM). 

In the present study, based on the Riccati-PTMM, the for-
mulas are given for calculating the mean value, variance, as 
well as covariance of the eigenvalues and eigenvectors for the 
rotor system with random parameters. The formulas are used 
for calculating random eigenvalues of a simply supported 
Timoshenko beam and a test rotor supported by two oil bear-
ings. The results show that the method is accurate and effi-
cient in comparison with the Monte Carlo simulated results. 

 
2. Recurrence formulas of the Riccati perturbation 

transfer matrix method 

To solve eigenvalue problems, the transfer and recurrence 
formulas of the Riccati-TMM are written as [18]: 

 
{ } { }i ii

= ⎡ ⎤⎣ ⎦f S e  (1) 

[ ] [ ]1
11 12 21 22 1 21 u ui ii i i

−

+
= + + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦S u S u u S u S S  (2) 

{ } { } [ ]{ }1
21 22 21 1ui i ii

−

+ +
= + =⎡ ⎤⎣ ⎦e u S u e S e  (3) 

 
where {f}i and {e}i are the state vectors with r elements at 
section i that satisfy the boundary conditions {f}1 = {0} and 
{e}1 ≠ {0}, respectively; [u11]i, [u12]i, [u21]i, and [u22]i are the 
matrixes with r×r elements defined by the transfer relations of 
state vectors between sections i and i+1 on the element i; [S]i 
is the so-called Riccati transfer matrix; [ ]1 11 12u i i

= +⎡ ⎤⎣ ⎦S u S u ; 
and [ ] 1

2 21 22u i i

−
= +⎡ ⎤⎣ ⎦S u S u . 

Suppose bj (j = 1, …, m) are the uncertain parameters of the 
rotor system, they are calculated using the following expression: 

 

( )0 1   ( 1, , )j j jb b j mε= + = L  (4) 

 
where bj0 is the initial value of the uncertain parameter bj, and 
|εj|<1 is a small parameter. 

Since the parameters are uncertain, the eigenvalue β of the 
system is also uncertain. Its perturbation expression with sec-
ond-order accuracy is stated as: 

 

,0 , ,
1 1 1

jm m

j j jk j k
j j k

β β β ε β ε ε
= = =

= + +∑ ∑∑  (5) 

 
where β,0 is the initial eigenvalue of the system, while bj = bj0 
(j = 1, …, m); β,j and β,jk are the first- and second-order pertur-
bations of β, respectively. 

The perturbation expressions of all the other matrixes and 
vectors that are not listed here are similar to those of β. 

By substituting the perturbation expressions into Eqs. (1)-
(3) and allowing the coefficients of ε with the same power 
equal yields the following equations: 

 
{ } { },0 ,0,0i ii

= ⎡ ⎤⎣ ⎦f S e  (6a) 

{ } { } { }, , ,0,0 ,i j i j ii i j
= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦f S e S e  (6b) 

{ } { } { }, , ,,0 ,i jk i jk i ki i j
= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦f S e S e  

 ( ) { } { } ,0,, ,
1 jk ii ji k i jk

δ+ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦S e S e          (6c) 

 
[ ] [ ]1 2,0 ,01,0 u ui ii+

=⎡ ⎤⎣ ⎦S S S  (7a) 

[ ] [ ] [ ] [ ]1 2 1 2,0 , , ,01, u u u ui i j i j ii j+
= +⎡ ⎤⎣ ⎦S S S S S  (7b) 

[ ] [ ] [ ] [ ]1 2 1 2,0 , , ,1, u u u ui i jk i j i ki jk+
= +⎡ ⎤⎣ ⎦S S S S S  
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{ } [ ] { }2,0 1,0,0ui ii +

=e S e  (8a) 

{ } [ ] { } [ ] { }2 2, 1, 1,0,0 ,u ui j i j ii i j+ +
= +e S e S e  (8b) 

{ } [ ] { } [ ] { }2 2, 1, 1,,0 ,u ui jk i jk i ki i j+ +
= +e S e S e  

 ( )[ ] { } [ ] { }2 2 1,01,, ,
1 jk u u ii ji k i jk

δ ++
+ − +S e S e     (8c) 

 
where δjk is Kronecker delta. 

Eqs. (6)-(8) constitute the recurrence perturbation formulas 
of the Riccati-TMM. 

By substituting the perturbation expressions into the ma- 
trixes [Su1]i and [Su2]i and allowing [ ] 1'

2 2 ,0,0u u ii

−⎡ ⎤ =⎣ ⎦S S , the  
formulas for the calculation of the matrixes [Su1]i,0, [Su1]i,j, and 
[Su1]i,jk as well as [Su2]i,0, [Su2]i,j, and [Su2]i,jk are respectively 
given as follows: 

 
[ ]1 11 12,0 ,0u i i

= +⎡ ⎤⎣ ⎦S u S u  (9a) 

[ ]1 11 11 12, ,0 , , ,0 ,u i j i i j i j i i j
= + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦S u S u S u  (9b) 

[ ]1 11 11, ,0 , , ,u i jk i i jk i j i k
= +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦S u S u S  

 ( ) 11 11 12, , , ,0 ,
1 jk i k i j i jk i i jk

δ+ − + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦u S u S u     (9c) 
 

'
2 21 22 ,0,0u ii

⎡ ⎤ = +⎡ ⎤⎣ ⎦⎣ ⎦S u S u  (10a) 

'
2 21 21 22,0 , , ,0 ,,u i i j i j i i ji j

⎡ ⎤ = + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦S u S u S u  (10b) 

'
2 21 21,0 , , ,,u i i jk i j i ki jk

⎡ ⎤ = +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦S u S u S  

 ( ) 21 21 22, , , ,0 ,
1 jk i k i j i jk i i jk

δ+ − + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦u S u S u     (10c) 
 

[ ] 1'
2 2,0 ,0u ui i

−
⎡ ⎤= ⎣ ⎦S S  (11a) 

[ ] 1 1' ' '
2 2 2 2, ,0 , ,0u u u ui j i i j i

− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦S S S S  (11b) 

[ ] [ ]1 1 1' ' ' ' '
2 2 2 2 2 2 2, ,,0 , ,0 ,0 ,u u u u u u ui jk i ki i jk i i i j

− − −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦S S S S S S S  

 ( ) [ ]1' '
2 2 2 ,,0 ,

1 .jk u u u i ji i k
δ

−
⎡ ⎤ ⎡ ⎤− − ⎣ ⎦ ⎣ ⎦S S S     (11c) 

 
If the boundary conditions at both ends of the rotor system 

are the same (i.e., {f}N+1 = {0} and {e}N+1 ≠ {0}), then the 
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following equation must be established: 
 
{ } { } { } { }1,0 1, 1,

.0
N N j N jk+ + +

= = =f f f  (12) 

 
By substituting Eq. (12) into Eq. (6a), the frequency equa-

tion for β,0 is obtained as: 
 

1,0
0

N +
Δ = =S  (13) 

 
where |S|N+1,0 is the determinant of matrix [S]N+1,0. 

Since β,0 is obtained from the above equation, the matrix 
[S]N+1,0 must be singular. Conducting singular value decompo-
sition yields: 

 

1,0

T

N +
⎡ ⎤=⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦S U D V  (14) 

 
where the matrixes [U] and [V] are unitary matrixes, and [D] 
is a diagonal matrix. 

 
3. Independent eigenvalue problem 

If the eigenvalue β,0 is an independent root, the last element 
of matrix [D] must be zero as shown in the equation below: 

 

1 1, , ,0 .rdiag d d −=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦LD  (15) 

 
By substituting Eqs. (14) and (12) into Eq. (6a), the result-

ing expression is: 
 

{ } { }1,0
.0

T

N +
⎡ ⎤ =⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦U D V e  (16) 

 
The nonzero solution of the vector {e}N+1,0 is: 

 
{ } { }1,0 rN +

=e V  (17) 

 
where {Vr} is a vector combined by the elements of the last 
column of matrix [V]. 

 
3.1 The first-order perturbation of independent eigenvalue 

and its eigenvector 

Substituting Eqs. (14) and (12) into Eq. (6b) yields: 
 

{ } { } { }1, 1,01,

T

N j NN j+ ++
⎡ ⎤ + =⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ 0U D V e S e  (18) 

 
where 

 

{ } { }1, 1,
.

T

N j N j+ +
⎡ ⎤= ⎣ ⎦%e V e  (19) 

 
Substituting Eq. (19) into Eq. (18), which is then premultiplied 

by the matrix 
T

⎡ ⎤⎣ ⎦U , obtains the following statement: 
 

{ } { } { }1, 1,01,
.0

T

N j NN j+ ++
⎡ ⎤+ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦%D e U S e  (20) 

 
Since the last element of the matrix [D] is zero, the condi-

tion that makes Eq. (20) equal is: 
 

{ }{ }1, 1,01,
ˆ 0.

Tr
N j NN j

r
e + ++

⎡ ⎤= =⎡ ⎤⎣ ⎦⎣ ⎦U S e  (21) 

 
Eq. (21) is the frequency equation for the first-order perturba-
tion β,j ( j = 1, …, m) of the eigenvalue β, where the symbol 
{•}r denotes the rth element of the vector {•}. 

After β,j is obtained, substituting the results into Eq. (20) 
yields: 

 

1, 1,
1 ˆ  ( 1, , 1)p p

N j N j
p

e e p r
d+ += − = −% L  (22a) 

1, 0r
N je + =%  (22b) 

 
where 1,

p
N je +%  is the pth element of the vector { } 1,N j+

%e . Ac-
cordingly, Eq. (22) is substituted into Eq. (19) and pre-
multiplied by the matrix [V]. The resulting equation becomes: 

 
{ } { }1, 1,

.
N j N j+ +

= ⎡ ⎤⎣ ⎦ %e V e  (23) 

 
3.2 The second-order perturbation of independent eigen-

value and its eigenvector 

Similarly, by substituting Eqs. (14) and (12) into Eq. (6c), 
the frequency equation is derived for the second-order pertur-
bation β,jk (j = 1, …, m; k= 1, …, j ) of the eigenvalue β, which 
is expressed as: 

 

{ } ( ) { }({1, 1, 1,1, 1,
ˆ 1

Tr
N jk jkN k N jN j N k

e δ+ + ++ +
⎡ ⎤= + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦U S e S e  

{ } )}1,01,
0.NN jk r

++
+ =⎡ ⎤⎣ ⎦S e  (24) 

 
The solution of the vector {e}N+1,jk is as follows: 
 
{ } { }1, 1,

.
N jk N jk+ +

= ⎡ ⎤⎣ ⎦ %e V e  (25) 

 
The elements of the vector { }

1,N jk+
%e  are: 

 

1, 1,
1 ˆ  ( 1, , 1)p p

N jk N jk
p

e e p r
d+ += − = −% L  (26a) 

1, 0r
N jke + =%  (26b) 

 
where ,

1,
t p
N jke +% is the pth element of the vector { } 1,

t
N jk+

e ; and 
,

1,ˆt p
N jke + is defined by Eq. (24). 
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Eqs. (15)-(26) are the given formulas to solve independent 
eigenvalue problems. Using the frequency Eqs (13), (21), and 
(24), the initial eigenvale β,0 and its first-order perturbations β,j 
( j = 1, …, m) as well as its second-order perturbations β,jk ( j = 
1, …, m; k = 1, …, j ) can be searched, respectively. By substi-
tuting Eqs. (17), (23), and (25) into the recurrence formulas 
(8) and (6), the corresponding eigenvector and its first- and 
second-order perturbations can be calculated. 

 
4. Repeated eigenvalue problem 

If the eigenvalue β,0 is a repeated root with s orders, the last 
s diagonal elements of the matrix [D] in Eq. (14) must be ze-
roes. There must be s nonzero solutions of vector {e}N+1,0 in 
Eq. (16). These s nonzero vectors are derived by: 

 

{ } { }11,0
   ( 1, , )t

r tN
t s− ++

= = Le V  (27) 

 
where {Vr-t+1} is a vector combined by the elements of the (r-
t+1)th column of the matrix; and { } 1,0

t
N +

e  is the tth solution 
of the vector {e}N+1,0. 

 
4.1 The first-order perturbations of repeated eigenvalue and 

its eigenvectors 

By substituting Eqs. (14) and (12) as well as the s solutions 
of the vector {e}N+1,0 into Eq. (6b), the s equations below are 
obtained: 

 

{ } { } { }1, 1,01,
  ( 1, , ) .0

T t t
N j NN j

t s
+ ++

⎡ ⎤ + = =⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ LU D V e S e  

 (28) 
 

Multiplied by s nonzero constants, the above s equations are 
rewritten in the following matrix form: 

 

{ } { } { }1, 1, 1,0

T

N j N j N+ + +
⎡ ⎤ + =⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ 0U D V e u S e u  (29) 

 
where { } 1,

t
N j+

e  is the tth solution of the vector {e}N+1,j; 

{ } { }1
1, 1,1,0

, , s
N NN + ++

⎡ ⎤=⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
L

0 0
e e e ; { } { }1

1, 1,1,
, , s

N j N jN j + ++
⎡ ⎤=⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

Le e e ; 

and {u} is a column vector combined by the s nonzero con-
stants. 

Define 
 

1, 1,
.

T

N j N j+ +
⎡ ⎤=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦%e V e  (30) 

 
Substituting Eq. (30) into Eq. (29) and pre-multiplied by the 
matrix [ ]T

U  yields the following: 
 

{ } { } { }1, 1, 1,0
.0

T

N j N j N+ + +
⎡ ⎤+ =⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦%D e u U S e u  (31) 

 
Since the last s diagonal elements of the matrix [D] are ze-

roes, the condition that makes Eq. (31) equal is: 

{ } { }1
=⎡ ⎤⎣ ⎦ 0W u  (32) 

 
where [W]1 is a matrix made up by the last s element rows of 
the matrix 

1, 1,0

T

N j N+ +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦U S e . Obviously, if the determi-

nant of matrix [W]1 is equal to zero, Eq. (32) has a nonzero 
solution. Therefore, the frequency equation for the first-order 
perturbation β,j (j = 1, …, m) of the eigenvalue β is: 

 

1 0.=W  (33) 

 
Eq. (33) has s roots which correspond to the s first-order 

perturbations of the eigenvalue β. By substituting the s roots 
into Eq. (28), the s solutions of the vector {e}N+1,j are obtained 
as follows: 

 

{ } { }1, 1,
 ( 1, , ).t t

N j N j
t s

+ +
= =⎡ ⎤⎣ ⎦ % Le V e  (34) 

 
The elements of the vector { } 1,N j+

%e  are: 
 

, ,
1, 1,

1 ˆ  ( 1, , ; 1, , )t p t p
N j N j

p

e e t s p r s
d+ += − = = −% L L  (35a) 

( ),
1, 0  1, , ; 1, ,t p

N je t s p r s r+ = = = − +% L L  (35b) 
 

where ,
1,

t p
N je +% is the pth element of the vector { } 1,

t
N j+

e ; and  
,

1,ˆt p
N je + is the pth element of the vector { } 1,01,

T t
NN j ++

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦U S e . 
 

4.2 The second-order perturbations of repeated eigenvalue 
and its eigenvectors 

By substituting Eqs. (14) and (12), as well as the solutions 
of the vectors {e}N+1,0 and {e}N+1,j into Eq. (6c), the frequency 
equation is derived for the second-order perturbation β,jk (j = 1, 
…, m; k= 1, …, j ) of the eigenvalue β as shown below: 

 
2 0.=W  (36) 

 
The matrix [W]2 is made up by the last s element rows of 

the following matrix [W]: 
 

( )( )1, 1, 1, 1, 1, 1,0
1

T
jkN j N k N k N j N jk N

W δ
+ + + + + +

⎡ ⎤= + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦U S e S e S e   

 (37) 
 

where { } { }1

1, 1,1,
, , s

N jk N jkN jk + ++
⎡ ⎤=⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

Le e e . 
Eq. (36) has s roots that correspond to the s second-order 

perturbations of the eigenvalue β. The s solutions of the vector 
{e}N+1,jk are derived as follows: 

 
{ } { }1, 1,

 ( 1, , ).t t
N jk N jk

t s
+ +

= =⎡ ⎤⎣ ⎦ % Le V e  (38) 
 

The elements of the vector { } 1,N jk+
%e  are: 

 
, ,

1, 1,
1 ˆ  ( 1, , ; 1, , )t p t p

N jk N jk
p

e e t s p r s
d+ += − = = −% L L  (39a) 
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( ),
1, 0  1, , ; 1, ,t p

N jke t s p r s r+ = = = − +% L L  (39b) 

 
where ,

1,
t p
N jke +%  is the pth element of the vector { } 1,

t
N jk+

%e ; and 
,

1,ˆt p
N jke + is the element of matrix [W] at the  pth row and tth 

column. 
Eqs. (27)-(39) are the derived formulas for the repeated ei-

genvalue problems. Using the frequency Eqs. (13), (33) and 
(36), the initial repeated eigenvalue β,0 with s orders along 
with their first-order perturbations β,j ( j = 1, …, m) and sec-
ond-order perturbations β,jk ( j = 1, …, m; k= 1, …, j ) can be 
searched, respectively. Thus, by substituting Eqs. (27), (34), 
and (38) into the recurrence formulas (8) and (6), the corre-
sponding eigenvectors and their first- and second-order per-
turbations can be calculated. 

 
5. Random eigenvalue problem 

If βp is the pth eigenvalue of a rotor system, Eq. (5) is re-
written as: 

 

,0 , ,
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where 
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The corresponding eigenvector is: 
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If εj ( j = 1, …, m) are random parameters in Eq. (4), their 

mean values are zeroes, and their standard deviations are σj ( j 
= 1, …, m). Thus, the relation between the variation coeffi-
cient νj of the parameter bj and the standard deviations σj of 
the parameter εj is obtained as follows: 

 
/     ( 1, , )j bj bj jE j mν σ σ= = = L  (43) 

 
where Ebj and σbj are the mean values and the standard devia-
tion of parameter bj, respectively. 

From Eq. (40), the expressions of the mean value and vari-
ance of the eigenvalue βp are derived as: 
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 (45) 
 
In addition, from Eq. (42), the respective expressions of the 

mean value and covariance of the eigenvector {ψ}p are de-
rived as follows: 
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If εj ( j = 1, …, m) are subject to the normal distribution, and 

independent, Eqs. (44)-(47) are simplified as follows: 
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6. Numerical examples 

6.1 The simply supported Timoshenko beam 

The accuracy of the method presented in this paper was first 
tested in calculating the random eigenvalues of a simply sup-
ported Timoshenko beam. Suppose that the mass density ρ and 
the section diameter d of the beam are independent random vari-
ables to follow normal distribution, the mean value of the mass 
density is Eρ = 7800 kg/m3, and the mean value of the diameter is 
Ed = 0.2 m. The other parameters are certain, such as the length L 
= 10 m and the Young’s modulus E = 2.0×1011 N/m2. 

When the variation coefficient of the mass density νρ is the 
same as that of the section diameter νd, the mean value curves 
of the first natural frequency versus the variation coefficients 
are shown in Fig. 1(a). Based on the analytical formula of 
natural frequency of the simply supported Timoshenko beam, 
the solid curve is 1 million times the Monte Carlo random 
simulated results. The dotted curve is the first-order random 



6 B.-G. Liu / Journal of Mechanical Science and Technology 26 (1) (2012) 1~10 
 

 

perturbation results. Meanwhile, the dash-dot curve represents 
the second-order random perturbation results. 

Fig. 1(a) shows that the mean values of the second-order ran-
dom perturbation are in agreement with those of the Monte 
Carlo simulation results, and the errors are less than 0.2% as the 
variation coefficients νρ = νd <= 0.20. However, the errors of the 
first-order random perturbation are less than 1.7% in the same 
case. It is apparent that the second-order mean values are more 
accurate than those of the first-order. The curve of the first-order 
mean values is a horizontal line, and its value is the natural fre-
quency with variation coefficients νρ = νd = 0 from Eq. (44). 

Fig. 1(b) plots the standard deviation curves of the first natural 
frequency. The figure shows that the accuracies of the first- and 
second-order standard deviations are close at less than 4.4% and 
3.9%, respectively, as the variation coefficients νρ = νd <= 0.20. 

With the variation coefficient of the section diameter νd = 
0.05, Fig. 2 plots the mean value and the standard deviation 
curves of the first natural frequency versus the variation coef-
ficient of the mass density νρ. The errors of the first-order 
mean values and standard deviations are less than 1.7% and 
9.7%, respectively, as νd = 0.05 and νρ <= 0.20; and the errors 
of the second-order mean values and standard deviations are 
less than 0.2% and 8.1%, respectively, in the same case. 

Figs. 1 and 2 show that the second-order random perturbation 
is more accurate than the first-order random perturbation. The 
results obtained by the random perturbation method presented 
in this paper are in agreement with the results of the Monte 
Carlo simulation method within a larger range. However, the 
errors tend to increase as the variation coefficients increase. 

The random analyzed results of the second, third, and fourth 

natural frequencies have the same accuracies as well. How-
ever, the related curves and data are not listed here. 

Since the theoretical vibration modes of the simply sup-
ported Timoshenko beam are not related with the mass density 
ρ and the section diameter d, the random variations of these 
two parameters do not influence vibration modes. The random 
perturbation results are similar to those that have been pre-
sented previously. 

 
6.2 The rotor supported by two oil bearings 

Fig. 3 shows a test rotor supported by two oil bearings. The 
working speed of the rotor was 1000 rpm. The stiffness and 
damping matrixes of the bearings are respectively given as: 
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Fig. 1. Random perturbation and Monte Carlo simulation results of the
first natural frequency of the Timoshenko beam as νρ = νd . 
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Fig. 2. Random perturbation and Monte Carlo simulation results of the 
first natural frequency of the Timoshenko beam as νd = 0.05. 

 

 
Fig. 3. A test rotor with two oil bearings: the distance between the two 
bearings is 4.205 m, the total length is 5.35 m, and the total mass is 
2680.6 kg. 



 B.-G. Liu / Journal of Mechanical Science and Technology 26 (1) (2012) 1~10 7 
 

  

The rotor was segmented to 72 sections according to the di-
ameter, length, and mass of the sections. Polar moments and 
transverse moments of inertia were lumped at both ends of the 
sections. 

Suppose primarily that the stiffness kxx of the two oil bear-
ings are independent random variables to follow normal dis-
tribution, their variation coefficient values may vary synchro-
nously to facilitate the drawing. 

This is a complex eigenvalue problem. Fig. 4 plots the real- 
and image-part curves of the mean value and the standard 
deviation of the first and second natural frequencies versus the 
variation coefficient of the stiffness kxx. The solid curves are 
100,000 times the Monte Carlo random simulated results 
based on the Riccati-TMM. 

Fig. 4 shows that the results of the random perturbations 
and the Monte Carlo simulations are in agreement with each 
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Fig. 4. Random perturbation and Monte Carlo simulation curves of the natural frequencies of the rotor with two oil bearings versus the variation 
coefficient νkxx . 
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other within a larger range. However, to complete a calcula-
tion on the dot of the curve, the first- and second-order ran-
dom perturbations take only 0.19 and 0.62 second, respec-
tively. Meanwhile, the Monte Carlo simulation method needs 
8,668 seconds on the same computer. 

With the variation coefficient of the stiffness νkxx = 0.15, the 
Monte Carlo simulation and the random perturbation results of 
the first vibration mode in X-direction are presented in the 
appendix. The first- and second-order errors of the norm of 
mean values of the vibration mode are 1.73% and 0.01%, 
respectively; the corresponding errors of standard deviations 
are 14.65% and 12.74%. The other vibration modes are not 
listed in the current paper due to limited length. 

 
7. Conclusions 

The Riccati-TMM has been used widely in the field of en-
gineering because it is highly useful and efficient in conduct-
ing a dynamic analysis of the rotor system. From this method, 
the Riccati-PTMM is developed for the perturbation analysis 
of the eigenvalue problems of the rotor system with uncertain 
or random parameters. The recurrence perturbation formulas 
presented in this paper can be used for the first- and second-
order perturbation analyses of the independent, repeated, as 
well as complex eigenvalues and their eigenvectors. Conse-
quently, the formulas for calculating the mean value, variance, 
and covariance of the eigenvalues and eigenvectors of the 
rotor system with random parameters are given. 

The Riccati-PTMM is used for the random lateral eigenvalue 
problem analyses of a simply supported Timoshenko beam and 
a test rotor supported by two oil bearings. The first numerical 
example reveals that the method is highly accurate within a 
larger range. The second example, on the other hand, demon-
strates that the method is efficient. Both examples show that the 
second-order random perturbation results are more accurate 
than those of the first-order. However, these precision im-
provements are not obvious. The second-order random pertur-
bation analysis is much more complex. Hence, the first-order 
random perturbation analysis of Riccati-PTMM is a useful 
choice for engineers. The calculation time of the first-order 
perturbation analysis is also shorter than that of the second-order. 

For concrete problems, as long as the element transfer ma-
trix and the element perturbation expressions are given, the 
method can be used for longitudinal, lateral, and/or torsional 
vibration eigenvalue problems of the rotor system with uncer-
tain or random parameters. Therefore, the method presented in 
this paper can be used generally in other applications. 
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Appendix: Data of the first vibration mode of the rotor with two bearings 
 

Mean values in X-direction Standard deviations in X-direction 
Monte Carlo 
simulation 

First-order 
random perturbation 

Second-order 
random perturbation 

Monte Carlo 
simulation 

First-order 
random perturbation 

Second-order 
random perturbation 

 0.17499 + 0.05929i  0.17387 + 0.06079i  0.17558 + 0.06068i 0.04009 + 0.01189i 0.04061 + 0.00210i 0.04030 + 0.00170i 
 0.16769 + 0.07555i  0.16674 + 0.07733i  0.16818 + 0.07690i 0.03973 + 0.01150i 0.04021 + 0.00240i 0.03991 + 0.00200i 
 0.16039 + 0.09182i  0.15960 + 0.09388i  0.16079 + 0.09312i 0.03939 + 0.01115i 0.03985 + 0.00270i 0.03956 + 0.00231i 
 0.14862 + 0.11805i  0.14811 + 0.12057i  0.14887 + 0.11929i 0.03889 + 0.01067i 0.03936 + 0.00318i 0.03910 + 0.00280i 
 0.13559 + 0.14714i  0.13537 + 0.15017i  0.13565 + 0.14831i 0.03840 + 0.01028i 0.03896 + 0.00371i 0.03871 + 0.00335i 
 0.11955 + 0.18295i  0.11969 + 0.18661i  0.11940 + 0.18403i 0.03790 + 0.01001i 0.03868 + 0.00436i 0.03844 + 0.00403i 
 0.10426 + 0.21716i  0.10475 + 0.22141i  0.10390 + 0.21815i 0.03755 + 0.00999i 0.03862 + 0.00495i 0.03839 + 0.00465i 
 0.08907 + 0.25121i  0.08991 + 0.25606i  0.08851 + 0.25211i 0.03730 + 0.01021i 0.03878 + 0.00551i 0.03854 + 0.00525i 
 0.07367 + 0.28578i  0.07486 + 0.29123i  0.07290 + 0.28659i 0.03713 + 0.01066i 0.03912 + 0.00603i 0.03886 + 0.00581i 
 0.05492 + 0.32777i  0.05654 + 0.33396i  0.05389 + 0.32848i 0.03701 + 0.01145i 0.03974 + 0.00656i 0.03946 + 0.00641i 
 0.04648 + 0.34662i  0.04829 + 0.35314i  0.04534 + 0.34728i 0.03698 + 0.01188i 0.04009 + 0.00676i 0.03979 + 0.00663i 
 0.02237 + 0.40032i  0.02475 + 0.40777i  0.02091 + 0.40083i 0.03703 + 0.01334i 0.04138 + 0.00718i 0.04102 + 0.00715i 
 0.01472 + 0.41733i  0.01727 + 0.42508i  0.01315 + 0.41779i 0.03709 + 0.01387i 0.04187 + 0.00727i 0.04149 + 0.00727i 
 0.01023 + 0.42730i  0.01288 + 0.43522i  0.00860 + 0.42773i 0.03713 + 0.01418i 0.04218 + 0.00730i 0.04177 + 0.00733i 
 0.00634 + 0.43590i  0.00909 + 0.44397i  0.00466 + 0.43631i 0.03716 + 0.01446i 0.04245 + 0.00733i 0.04203 + 0.00737i 
 0.00119 + 0.44730i  0.00406 + 0.45556i -0.00056 + 0.44767i 0.03722 + 0.01483i 0.04283 + 0.00734i 0.04240 + 0.00741i 
-0.00618 + 0.46361i -0.00314 + 0.47216i -0.00803 + 0.46393i 0.03732 + 0.01539i 0.04341 + 0.00735i 0.04294 + 0.00745i 
-0.01099 + 0.47423i -0.00783 + 0.48297i -0.01291 + 0.47452i 0.03739 + 0.01576i 0.04381 + 0.00734i 0.04332 + 0.00746i 
-0.01784 + 0.48933i -0.01452 + 0.49833i -0.01985 + 0.48957i 0.03751 + 0.01629i 0.04441 + 0.00730i 0.04389 + 0.00745i 
-0.02227 + 0.49909i -0.01884 + 0.50826i -0.02434 + 0.49930i 0.03760 + 0.01665i 0.04481 + 0.00726i 0.04427 + 0.00743i 
-0.02852 + 0.51284i -0.02494 + 0.52225i -0.03068 + 0.51301i 0.03773 + 0.01716i 0.04541 + 0.00717i 0.04484 + 0.00737i 
-0.03254 + 0.52166i -0.02886 + 0.53122i -0.03474 + 0.52180i 0.03782 + 0.01749i 0.04581 + 0.00710i 0.04522 + 0.00732i 
-0.03814 + 0.53396i -0.03433 + 0.54374i -0.04043 + 0.53406i 0.03796 + 0.01796i 0.04640 + 0.00698i 0.04577 + 0.00723i 
-0.04170 + 0.54176i -0.03780 + 0.55167i -0.04404 + 0.54183i 0.03805 + 0.01826i 0.04679 + 0.00688i 0.04614 + 0.00715i 
-0.04662 + 0.55251i -0.04260 + 0.56261i -0.04902 + 0.55254i 0.03818 + 0.01868i 0.04736 + 0.00672i 0.04667 + 0.00702i 
-0.04970 + 0.55923i -0.04559 + 0.56945i -0.05214 + 0.55923i 0.03827 + 0.01895i 0.04772 + 0.00660i 0.04702 + 0.00691i 
-0.05388 + 0.56835i -0.04967 + 0.57872i -0.05638 + 0.56831i 0.03839 + 0.01932i 0.04825 + 0.00641i 0.04751 + 0.00674i 
-0.05644 + 0.57393i -0.05216 + 0.58440i -0.05898 + 0.57387i 0.03846 + 0.01955i 0.04859 + 0.00627i 0.04783 + 0.00661i 
-0.05985 + 0.58134i -0.05548 + 0.59193i -0.06244 + 0.58123i 0.03856 + 0.01987i 0.04907 + 0.00604i 0.04828 + 0.00641i 
-0.06189 + 0.58574i -0.05746 + 0.59641i -0.06450 + 0.58562i 0.03862 + 0.02006i 0.04937 + 0.00588i 0.04856 + 0.00626i 
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-0.06449 + 0.59138i -0.05999 + 0.60214i -0.06715 + 0.59122i 0.03870 + 0.02031i 0.04980 + 0.00563i 0.04896 + 0.00602i 
-0.06598 + 0.59457i -0.06143 + 0.60539i -0.06865 + 0.59439i 0.03874 + 0.02045i 0.05006 + 0.00545i 0.04920 + 0.00585i 
-0.06776 + 0.59839i -0.06315 + 0.60926i -0.07046 + 0.59818i 0.03878 + 0.02064i 0.05042 + 0.00517i 0.04953 + 0.00558i 
-0.06868 + 0.60035i -0.06404 + 0.61125i -0.07140 + 0.60012i 0.03880 + 0.02074i 0.05064 + 0.00497i 0.04973 + 0.00539i 
-0.06963 + 0.60232i -0.06494 + 0.61326i -0.07236 + 0.60207i 0.03882 + 0.02086i 0.05093 + 0.00467i 0.05000 + 0.00510i 
-0.06998 + 0.60303i -0.06527 + 0.61397i -0.07272 + 0.60276i 0.03881 + 0.02091i 0.05110 + 0.00446i 0.05015 + 0.00489i 
-0.07008 + 0.60314i -0.06535 + 0.61408i -0.07282 + 0.60285i 0.03879 + 0.02096i 0.05131 + 0.00413i 0.05034 + 0.00458i 
-0.06986 + 0.60259i -0.06512 + 0.61351i -0.07260 + 0.60228i 0.03876 + 0.02097i 0.05143 + 0.00391i 0.05045 + 0.00435i 
-0.06911 + 0.60084i -0.06436 + 0.61173i -0.07185 + 0.60051i 0.03870 + 0.02095i 0.05156 + 0.00356i 0.05056 + 0.00402i 
-0.06832 + 0.59903i -0.06357 + 0.60989i -0.07105 + 0.59869i 0.03864 + 0.02091i 0.05162 + 0.00332i 0.05061 + 0.00378i 
-0.06673 + 0.59544i -0.06200 + 0.60622i -0.06945 + 0.59509i 0.03854 + 0.02082i 0.05168 + 0.00297i 0.05065 + 0.00342i 
-0.06537 + 0.59239i -0.06066 + 0.60312i -0.06808 + 0.59203i 0.03846 + 0.02073i 0.05168 + 0.00272i 0.05065 + 0.00318i 
-0.06296 + 0.58698i -0.05827 + 0.59761i -0.06564 + 0.58661i 0.03832 + 0.02058i 0.05165 + 0.00234i 0.05061 + 0.00280i 
-0.06105 + 0.58273i -0.05639 + 0.59327i -0.06371 + 0.58234i 0.03821 + 0.02045i 0.05161 + 0.00209i 0.05055 + 0.00254i 
-0.05784 + 0.57554i -0.05322 + 0.58595i -0.06046 + 0.57515i 0.03803 + 0.02022i 0.05150 + 0.00170i 0.05043 + 0.00216i 
-0.05540 + 0.57011i -0.05082 + 0.58042i -0.05799 + 0.56971i 0.03790 + 0.02005i 0.05139 + 0.00144i 0.05032 + 0.00189i 
-0.05141 + 0.56121i -0.04689 + 0.57135i -0.05395 + 0.56081i 0.03769 + 0.01976i 0.05120 + 0.00105i 0.05012 + 0.00149i 
-0.04846 + 0.55464i -0.04398 + 0.56466i -0.05097 + 0.55423i 0.03753 + 0.01954i 0.05104 + 0.00078i 0.04996 + 0.00122i 
-0.04373 + 0.54410i -0.03933 + 0.55393i -0.04618 + 0.54369i 0.03728 + 0.01919i 0.05077 + 0.00038i 0.04969 + 0.00081i 
-0.04029 + 0.53644i -0.03595 + 0.54613i -0.04270 + 0.53603i 0.03710 + 0.01893i 0.05057 + 0.00011i 0.04948 + 0.00054i 
-0.03486 + 0.52435i -0.03062 + 0.53381i -0.03721 + 0.52394i 0.03682 + 0.01852i 0.05022 + 0.00029i 0.04914 + 0.00013i 
-0.03097 + 0.51567i -0.02679 + 0.52498i -0.03327 + 0.51526i 0.03663 + 0.01822i 0.04997 + 0.00056i 0.04888 + 0.00015i 
-0.02489 + 0.50212i -0.02082 + 0.51118i -0.02712 + 0.50171i 0.03633 + 0.01776i 0.04955 + 0.00096i 0.04847 + 0.00056i 
-0.02058 + 0.49250i -0.01658 + 0.50138i -0.02275 + 0.49209i 0.03611 + 0.01743i 0.04925 + 0.00123i 0.04817 + 0.00084i 
-0.01391 + 0.47760i -0.01003 + 0.48622i -0.01600 + 0.47720i 0.03579 + 0.01691i 0.04877 + 0.00162i 0.04770 + 0.00124i 
-0.00921 + 0.46711i -0.00542 + 0.47553i -0.01125 + 0.46671i 0.03557 + 0.01655i 0.04843 + 0.00189i 0.04736 + 0.00152i 
-0.00200 + 0.45100i  0.00166 + 0.45913i -0.00395 + 0.45061i 0.03524 + 0.01599i 0.04790 + 0.00227i 0.04684 + 0.00191i 
 0.00304 + 0.43973i  0.00660 + 0.44765i  0.00115 + 0.43934i 0.03501 + 0.01560i 0.04753 + 0.00253i 0.04647 + 0.00218i 
 0.00684 + 0.43122i  0.01033 + 0.43899i  0.00500 + 0.43084i 0.03485 + 0.01530i 0.04724 + 0.00272i 0.04619 + 0.00237i 
 0.01124 + 0.42136i  0.01466 + 0.42895i  0.00946 + 0.42098i 0.03465 + 0.01496i 0.04691 + 0.00293i 0.04587 + 0.00259i 
 0.01882 + 0.40436i  0.02209 + 0.41164i  0.01713 + 0.40399i 0.03432 + 0.01436i 0.04631 + 0.00326i 0.04528 + 0.00294i 
 0.04291 + 0.35019i  0.04573 + 0.35650i  0.04152 + 0.34987i 0.03331 + 0.01246i 0.04436 + 0.00421i 0.04338 + 0.00393i 
 0.05140 + 0.33107i  0.05406 + 0.33703i  0.05012 + 0.33076i 0.03299 + 0.01178i 0.04367 + 0.00449i 0.04270 + 0.00423i 
 0.06557 + 0.29911i  0.06795 + 0.30450i  0.06446 + 0.29882i 0.03245 + 0.01065i 0.04248 + 0.00492i 0.04155 + 0.00469i 
 0.07076 + 0.28736i  0.07305 + 0.29254i  0.06972 + 0.28709i 0.03226 + 0.01024i 0.04204 + 0.00506i 0.04112 + 0.00484i 
 0.08656 + 0.25166i  0.08854 + 0.25620i  0.08571 + 0.25142i 0.03172 + 0.00898i 0.04069 + 0.00544i 0.03980 + 0.00524i 
 0.10186 + 0.21711i  0.10354 + 0.22102i  0.10120 + 0.21690i 0.03125 + 0.00775i 0.03939 + 0.00573i 0.03854 + 0.00556i 
 0.11727 + 0.18238i  0.11865 + 0.18568i  0.11681 + 0.18221i 0.03087 + 0.00652i 0.03811 + 0.00593i 0.03730 + 0.00579i 
 0.13343 + 0.14603i  0.13450 + 0.14867i  0.13318 + 0.14589i 0.03056 + 0.00522i 0.03681 + 0.00606i 0.03604 + 0.00594i 
 0.14977 + 0.10947i  0.15052 + 0.11145i  0.14972 + 0.10937i 0.03037 + 0.00392i 0.03556 + 0.00606i 0.03482 + 0.00597i 
 0.16619 + 0.07296i  0.16663 + 0.07428i  0.16634 + 0.07289i 0.03031 + 0.00261i 0.03436 + 0.00595i 0.03366 + 0.00588i 
 0.18265 + 0.03648i  0.18277 + 0.03714i  0.18300 + 0.03644i 0.03035 + 0.00131i 0.03321 + 0.00569i 0.03254 + 0.00564i 
 0.19912 + 0.00000i  0.19892 + 0.00000i  0.19968 + 0.00000i 0.03050 + 0.00000i 0.03212 + 0.00528i 0.03148 + 0.00526i 
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